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Abstract: In this paper we consider quantization of complex variables and mean-square error (MSE).  The best 
polar quantizer is Wilson’s unrestricted polar quantizer (UPQ) [1]. The MSE minimization is constrained only by the 
total number of quantization points, N.  Our method is different from Wilson’s algorithm [1] that has predetermined 
number of points Mi at each magnitude level i, 1≤i≤L, which makes it impractical for large number of points. In our 
approach, we consider MSE as a function of the vector M= LiiM ≤≤1)(  whose elements are numbers of phase 
quantization levels at each magnitude level. The Wilson's method finds the optimal quantizer in such a way that the 
decision and reconstruction levels r, m are iterative found for each combination M, while the optimal combination is 
found by searching all combinations. Wilson's algorithm cannot be applied for middle and great N. The asymptotic 
analysis of the polar quantizers with circular symmetric densities is given in [2]. This analysis is approximate and 
cannot be applied for any number of points and for great N, which will be shown in this paper. We define the 
extension of the MSE over RL (denoted by MSE(P)). We prove the convexity of this function and show an efficient way 
to find M= LiiM ≤≤1)(  by Popt.  Our algorithm consists of two main iterative processes. The first iterative process finds 
Popt, ropt, mopt with ε accuracy, while the second iterative process determines Mopt, mopt, ropt using Popt as the starting 
value. This paper eliminates incompleteness from [1] and [2]. We also give an example of the quantizer construction 
for a Gaussian source. The authors see their work as a contribution in knowing the best possible solution in these 
classes of problems and also a possibility of applying the technique exposed inhere on other classes of problems and 
on larger dimensions. 
 
Keywords: Quantization, polar quantization, iterative process, extended distortion function, convexity function, 
optimization, integer optimization . 
 

I. INTRODUCTION 
 Quantization is the heart of analog-to-digital 

conversion. Quantizers play an important role in the 
theory and practice of modern-day signal 
processing.The algorithm for the optimal scalar 
quantization has been introduced in literature since 
distant 1960 by Max. Extensive results have been 
developed on scalar quantization but more on vector 
quantization. The simplest vector quantization is 
polar quantization. Polar quantization techniques as 
well as their applications in areas such as computer 
holography, discrete Fourier transform encoding, 
image processing and communications have been 
studied extensively in the literature. However, the 
algorithm for the optimal polar quantization has not 
been found till now. 

In these paper the existence of one minimum will 
be proved and we will give the algorithm after which 
we can effectively find the optimal solution. 
Problem of the integer optimization is present for 

larger dimensions than 2 when the lattice-encoders 
and geometrical source shapes are used [11]. 

This problem is effectively solved in our work 
(or, applied with small modifications it can be 
extended for problem [11]).Also, the compromise 
between the complexity and performance of the 
suggested solutions must always exist. In these sense 
we suggest an optimal quantizer with look-up table, 
which would memorize (r, m, M). Better 
performances obtained by noted technique can be 
gained using larger dimensions, but the complexity 
will arise consequently. Trellis coded quantization 
(TCQ) could be seen as better solution but its 
complexity is much larger and also the time-delay 
will be needed. Moreover, signal constellations 
mostly used in TCQ are two-dimensional, so the 
projecting method of these constellations and 
searchings to the nearest represent can be 
accomplished by techniques presented in this paper.    

In this paper we consider a complex random 
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variable φjrez =  with circularly symmetric density 
function p(z)=f(r)/(2π). Conventional polar 
quantization independently quantizes r and φ  with L 
and M levels, respectively (L× M =N). In other 
words, complex plane is partitioned into L 
concentric rings around z=rejφ=0, and each ring is 
divided angularly into M slices. In this paper we 
consider nonuniform polar quantizer, i.e. quantizer 
which consists of nonuniform magnitude and 
uniform phase quantizers. We use mean-square-error 

(MSE) distortion measure )(
2ψφ jj mereED −=  

where m and ψ represent the magnitude and phase 
reconstruction levels respectively.  

The MSE quantization of the complex variables 
with circularly symmetric densities is considered by 
Bucklew and Gallagher [5], [6] where the 
minimization of the MSE is done assuming that the 
factorization of N into L× M is given. Wilson [1] 
showed that further MSE reduction could be 
achieved by allowing different numbers of points on 
different magnitude rings. These quantizers are 
called unrestricted polar quantizers (UPQs) because 
minimization of MSE is restricted only by total 
number of points, and complete freedom is allowed 
in distribution of numbers phase levels at different 
magnitude levels. Wilson also demonstrated vast 
improvement in performance over strictly polar 
quantizers for small N (N<36). He did not 
considered large values N due to the complexity of 
his design method. The minimization of the MSE 
over all combinations of number of points Mi 
(number of phase reconstruction levels) on the 
magnitude  reconstruction levels i, 1≤i≤L becomes 
intractable for large N, ( ∑ == L

i iMN 1 ) since the 
number of these combinations grows exponentially 
with N (it is easy to show that there are 2N-1 such 
combinations). In the paper Peric and Stefanovic [7] 
analyses are given for optimal asymptotic uniform 
polar quantization. Optimal piecewise uniform 
product  polar quantization was considered  in the 
paper Peric and Milovic[10]. Swaszek and Ku gave 
[2] an asymptotic solution for this problem but 
without any mathematical proof of the optimality 
and using, sometimes, pretty hard approximations, 
which limit the application. We will point out some 
of the lacks of this work latter. 

Instead of minimizing the MSE over all integer 
Mi, 1≤i≤L, they introduced (intuitively, without any 
proof!) the extension of the MSE function to the real 
field, i.e. they minimized MSE over Mi , 1≤i≤L 
assuming that Mi are real numbers (we will denote 
these real values by Pi). They approximated such 
extended real MSE function and found the 

approximate solutions by Langrange multipliers 
technique. They found approximations for: (a) 
optimal decision and reconstruction levels ri and mi 
of the magnitude quantizer, (b) the number of points 
Mi on each reconstruction level i, 1≤i≤L,  and (c) the 
resulting MSE. Their approach does not lead to the 
optimal solution, although they showed an 
improvement over quantization with same number of 
phase levels on each magnitude level. Swaszek and 
Ku find Mi by simple rounding of each Pi, 1≤i≤L. 

We define the extension of the MSE over RL 
(denoted by MSE(P)). We prove the existence of 
one minimum and derive the expression for 
evaluating Popt(r,m) for fixed values of 
representative levels, decision levels and number of 
levels L. We give the procedure (with proof) for 
evaluating Mopt(r,m)  from  Popt(r,m). On the basis of 
these results, we give the iterative algorithm for 
determining Popt(ropt ,mopt) and  Mopt(ropt ,mopt) for 
optimal reconstruction and representative levels. The 
simpliest explanation of crossing from Popt to Mopt 
comes from a proof that for the convex function with 
one minimum gradient method can be used for 
finding an optimal integer solution (Mopt). Applying 
our algorithm, the predictions presented in [1] are 
realized and incompleteness from [2] is eliminated. 
In algorithm we use the combination of gradient and 
iterative methods because the system is not very 
compromised by the system of non-linear equations 
(the exact mathematical solution of optimization 
problem would come to the problem of solutioning 
system of non-linear equations for ropt ,mopt , Mopt, 
λopt. 

Polar quantization techniques as well as their 
applications in areas such as computer holography, 
discrete Furrier transform encoding, image 
processing and communications have been studied 
extensively in the literature. Synthetic Aperture 
Radars (SARs)  images can be represented in polar 
format (i.e., magnitude and phase components). The 
motivation behind this work is to maintain high 
accuracy of phase information that is required for 
some applications such as interferometry and 
polarimetry, without loosing massive amounts of 
magnitude information [3]. We also give an example 
of the quantizer construction for a Gaussian source. 
This case is of importance because using Gaussian 
quantizer on an arbitrary source we can take 
advantage of the central limit theorem and the 
known structure of an optimal scalar quantizer for a 
Gaussian random variable to code a general process 
by first filtering it to produce an approximately 
Gaussian density, scalar-quantizing the result, and 
then inverse-filtering to recover the original . 
Various processing techniques, when applied to non-
Gaussian sources with memory, produce sequences, 
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which are "approximately" independent, and 
Gaussian [16]. 

The paper is organized as follows. In Section II 
we introduce distortion function extended on set of 
reals, and its minimization. In this section we also 
describe the optimization procedure and prove its 
optimality. In Section III we apply the minimization 
procedure to the construction of the polar quantizers. 
We give step by step construction procedure, and 
present the Gaussian source example, where we 
derive the MSE in a closed form.  Section IV gives 
an example of quantization of the Gaussian 
memoryless source by optimal non-uniform polar 
quantizers. Section V gives some conclusions. 

 
2. POLAR QUANTIZATION : DESCRIPTION 

AND OPTIMIZATION 
We assume that the quantizer input is a complex 

random variable with  variance 2 2σ  ( 12 =σ ) and 

circularly symmetric density function f(r), and we 
consider non-uniform polar quantizer with L 
magnitude levels and Mi phase reconstruction points 
at magnitude reconstruction level mi, 1≤i≤L. In order 
to minimize the distortion we proceed as follows. 

First we partition the magnitude range [0,rL ] into 
magnitude rings by L decision levels ri 1≤i≤L 
(0=r1<r2<...<rL<rL+1= ∞ ) .The magnitude 
reconstruction levels obviously satisfy 
(0<m1<m2<...<mL ). Next we partition each 
magnitude ring into Mi phase subdivisions. Let φi,j 

and φi,j+1 be two phase decision levels, and let  ψi,j 
be j-th phase reconstruction level for the i-th 
magnitude ring, 1≤j≤Mi. Then 

iji Mj /2)1(, πφ −= , and  iji Mj /)12(, πψ −= . 
Total distortion D is a combination of granulation 
and overload distortions, D=Dg+Do, wherein 
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Obviously, for fixed L, Dg is a function of M=(Mi)1≤i

≤L, Dg=∆(Μ), where ∆: Z+
L→R. 

In order to be able to minimize Dg over integer 
vectors M= LiiM ≤≤1)(  we introduce an extension of 
the function ∆  to the real field. We denote this 
function ∆e: RL→R, and write Dg

e= ∆e(P), where 

P=(Pi)1≤i≤L ∈RL denotes the argument of extended 
function ∆g

e
.  

 Now, the decision and reconstruction levels of 
the uniform phase quantizer at i-th magnitude level 
can be written as 
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wherein   iP  and  iP  are the smallest and the 
largest integer respectively, such that 
   iii PPP ≤≤ . Using this notation the extended 

granulation distortion function Dg
e(P) can be written 

as  
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After the integration over φ and the reordering, (1) and (3) become 
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wherein sinc(x)=sin(x)/x. Implicit use has been made 
of the fact that in circularly symmetric densities the 
magnitude random variable with probability density 
f(r) is independent of the uniformly distributed 
[−π,π] phase random variable. 
 The minimization problem for restricted polar 
quantizer can be formulated in this way: for fixed N 
find Liir ≤≤= 1)(r , Liim ≤≤= 1)(m , L, and 

LiiM ≤≤= 1)(M for which D is minimal. The optimal 
decision and reconstruction level vectors r and  m 
are obtained from the following set of equations 
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Note that formula (7) is same as in [1], [5], [6], 
and that formula (8) can be obtained from [1] (by 
solving equation (8b) from [1]).  

By substitution of (7) into (9) for UPQ 
( ∞=+1Lr ) we have 
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is the output variance. Note that equation (10) 
corresponds to the description of the optimal 

quantizer given in [8, 9]. In addition to [8] we give 
the procedure for finding optimal distribution of 
phase quantization points on magnitude levels. 

 Now, instead of minimizing D(M) we will 
minimize extended function De(P) and use the 
solution Popt for finding the optimal integer vector 
Mopt. The minimization of the extended function 
De(P) for fixed number of magnitude levels L 
constrained by total number of reconstruction points 
N is formulated in this way: minimize De(P) under 
the constraints 

0),,,(
1

210 ≥−= ∑
=

L

i
iL PNPPPg L  

 .1;0)( LiPPg iii ≤≤≥= . 
 Before we describe the minimization procedure, 

we prove that the problem of minimization of the 
De(P) is a convex programming problem. This 
follows directly from Lemma 1. 

Lemma 1: Function De(P) is convex and 
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constraints g0(P) and gi(Pi) form the convex set (the 
proof is given in [3]). 

The next theorem gives the properties of the 
minimum of the De(P) with constraints g0(P) and 
gi(Pi). 

Theorem 1: Global minimum Popt of the function  
De (P) constrained by   

0),,(
1

210 ≥−= ∑
=

L

i
iL PNPPPg L  

LiPPg iii ≤≤≥= 1,0)( . 
satisfies with accuracy δ (δ<< 1) the following 

equation (similary as in [3]) 
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In order to obtain  Mopt(r,m) from  Popt we use the extended function J 
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The nearest integer combination M(0) is determined using the procedure given in the following Lemma 2.  

Lemma 2: Integer combination M(0) that satisfies  
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The optimal combination Mopt(r,m) for fixed 
values of r and m  is determined by applying the 
procedure given in Lemma 3.  
Lemma3: The optimal combination Mopt(r,m)  is 

determined from M(0)  in NM
L
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minimum. If NM
L

i
i <∑

=1

)0( , then in every step we 

increase the number of points for one on that level 
where 
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Using approximation of the function De(L) given in 
[2] 
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it is easy to prove that De (as a function of number of 
magnitude levels, L) is a convex function (we denote 
this as De(L)). In the above formula g(r) is a 
compressing function given by 
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, it follows that De  is indeed a 

convex function of L. 
The optimal value for number of levels L can be 
found in the neighborhood of the estimation based 
on [2]. The number of points to be checked in order 
to find Mopt is reduced from 2N-1

 to k (where k is a 
number of unit intervals in the neighborhood of the 
estimation for L).  
 

3 ITERATIVE ALGORITHM FOR 
CONSTRUCTION OF POLAR QUANTIZERS: 

 In this Section we will give step by step 
procedure for constructing optimal polar quantizer. 
Then we will illustrate it on constructing the 
quantizer for Gaussian source. We start with the 
construction algorithm. 

Step 1) 
The preliminary numbers of magnitude levels, 

the “numbers” of reconstruction points, the 
reconstruction points and decision levels are 
calculated by using [2]  
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Mi) and calculate )1( +k
iP ,1≤i≤L (by using Theorem 
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When we reach the fixed point of the iterative 

algorithm, we obtain Popt, i.e. we obtain the global 
minimum of De(P). 
Step 3) 

 The existence of the reconstruction point in 
the coordinate origin (z=0) should be also examined. 
So we put a reconstruction level to z=0, and 
optimize the polar quantizer whose N-1 other 
reconstruction points are free variables. We find the 
De(P) and compare it with a quantizer without 
reconstruction level at z=0. One with minimal De(P) 
is a winner. 
Step 4) 
In order to find Mopt it is necessary to apply once 
more the iterative method where the number of 
points on levels is integer. The first integer 
combination is determined by  
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Lemma 2 and Lemma 3 determine the optimal 
combination. M(1) is used as the starting value of 
more accurate iterative process for finding Mopt. This 
iterative process is as follows:  
For integer combination, we determine iterative 

)(),( )()( k
opt

k
opt MmmMrr optopt ==   (by using 

equations (7) and (8) where )(k
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The iterative procedure is terminated when 

)()1( kk MM =+  the optimum is found and 
)())(),(( k

optoptoptopt MMmMrMM (k)(k) == , 

)(),( )()( k
opt

k
opt MmmMrr optopt == . 

Step 5)  
It has been already explained in Section II, so we 
will complete this explanation on an example. If 
P1<4, then we check other combinations for P2, P3, 

etc, and decrease the number of magnitude levels by 
one and repeat whole procedure. De(L) is convex, 
and optimal value for L is in the neighborhood of the 
rough estimation of L given in [2]. 
Step 6)  
Optimal value for rmax is obtained by repeating our 
optimization method for different rmax and choosing 
the values for which D=Dg+Do is minimal.  
 
4. COMPLEX GAUSSIAN SOURCE EXAMPLE 
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AND COMPARISON WITH FORMER PAPERS 
The number of combinations that is necessary to 

check to find the reconstruction magnitude and 
phase levels for non-extended MSE function (the 
MSE function of integer arguments) is k, instead of  

1
1

1
1 2 −

=
−
− =∑ NN

L
L
NC  combinations in Wilsons’s 

approach (k is a number of trials in the procedure of 
finding Lopt  by using initial value obtained from 
[2]). 

Wilson [1] in his paper finds the best 
combination by searching all possible combinations. 
His method cannot be applied for middle and great 
values of total number of points N. That is the 
reason why he considered the polar quantization of 
the Gaussian source for N<36.  In addition, he 
concludes that it will be interesting to extend 
investigation for great values of N.  

Moo and Neuhoff showed that UPQ could be 
very simply analyzed and optimized by using the 
vector quantization (VQ) version of Benett's integral 
[4]. They introduced the power law polar 
quantization (PLPQ) in which the number of phase 
levels is proportional to a power of the quantized 
magnitude NmM ii

α~  [4] (where is 10 ≤≤ α ). 
However, since this relation is not completely 
accurate (although it gives an important insight into 
the connection between the power and number of 
phase quantization levels), PLPQ gives worse results 
than UPQ from [2]. In this paper we find optimal 
dependence between Mi and power α and show that 
result from [2] can be obtained from our result.  

The paper [2] presents the optimization of 

approximate MSE by using compression function. 
Due to the approximations in calculating Popt (made 
in that paper), there is great difference between their 
and our result independently of the value of N. 

Method presented in the paper [2] can not be 
applied for some values of N and given number of 
level L. For number of level L, the total number of 
points is in the range [N1-N2), 

2
1 )5.0)((2 −= LroundN ,

2
2 )5.0)((2 += LroundN . This follows from the 

fact that r and m are equal for any N in the range 
[N1-N2), and since Popt is dependent on m, N and 

introduced approximations then  NP
L

i
i =∑

=1

 will not 

be satisfied. In addition, for some values of N from 

the former range, we cannot reach NM
L

i
i =∑

=1

 by 

setting  ii PM =  or  ii PM =  as it is said in the 
paper [2], (there is deviation between given and 
calculated number of points less or equal L).  

On the difference of Wilson's algorithm, our 
algorithm is applicable for any number of points and 
is much simpler, and for N<36 results obtained by 
using both algorithms are identical. Our algorithm is 
more complex then the method presented in [2], but 
it gives the optimal results for any number of points 
N and there is not any constraints in application.  

We consider the complex valued Gussian source 
with probability density function  

2

2

2
1)(

r
j rerep

−

⋅=
π

θ  

and apply the iterative procedure for construction of  
the polar quantizer with total number of 
reconstruction points N. Fig. 1 presents the 
quantization signal-to-noise ratio 
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Fig. 1 - Signal-to-noise ratio in dependence on rate for method presented in [2] and our 

optimal quantization method for Gaussian source  
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With the iterative procedure for construction of 
the polar quantizer with the total number of 
reconstruction points  N=256 , the resulting MSE 
distortion is D=0.0160776 . Note that the UPQ [2] 
has D(=D[2])=0.01683, while optimal vector 
quantizer(OVQ) gives D=0.01575. OVQ gives the 
0.28 of SNR gain relative to UPQ. Our method gives 
SNR which is only for  0.089 dB less than SNR of 
OVQ. The available design algorithms have very 
slow convergence unless the rate-dimension product 
is small [17], and implementation of the optimum 
vector quantizer is a computationally burdensome 
full search procedure. For great rates R there is 
deviation in the number of points on some levels 
(especially on the last one) and deviation in r and m 
among our results and results obtained by applying 
the algorithm from the paper [2], but the deviation in 
MSE is less then 0.08dB already for rates R>10.  
Application of Optimal Polar Quantization: 

Short-time pdf of speech segments are described 
by Gaussian pdf [13]. This paper addresses potential 
improvements achievable by means of joint 
quantization of two consecutive samples (x, y), 
referred to as  two-dimensional quantization (2-D 
quantization), over the scalar quantization. Also a 
transform coding scheme known as spectral phase 
coding (SPC) is essentially a polar format 
representation of the discrete Fourier Transform 
(DFT) of a random phase time series.  SPC utilises 
the discrete Fourier Transform and a two-
dimensional quantizer to obtain its robust 
characteristics.  

The design of optimal uniform polar 
quantization  method is presented in image 
processing applying it on complex reflectivity 
function in Synthetic Aperture Radars (SARs) 
systems [14] (images can be represented in polar 
format i.e., magnitude and phase components). The 
motivation behind this work is to maintain high 
accuracy of phase information that is required for 
some applications such as interferometry and 
polarimetry, without loosing massive amounts of 
magnitude information. Also it may apply optimal 
polar quantization at Differential Pulse Code 
Modulation (DPCM) and Adaptive Differential 
Pulse Code Modulation (ADPCM). In DPCM and 
ADPCM systems it utilises uniform scalar 
quantization[12]. Optimal uniform scalar 
quantization for R=4 (bit/sample)  has 
SNR=19.38dB [16] until optimal polar quantization 
has SNR=20.96. Optimal OPQ may achieve gain of 
about 1.58dB in regard to Optimal Scalar 
Quantization. 

 
5 CONCLUSION 

The solution given by Swaszek and Ku is the best 

one found by now but for big N. Wilson gives the 
way to find the optimal solution (full search of Mopt) 
but his method can only be used for small values of 
N. Also, his method for finding Mopt and ropt is more 
complex than search shown in our paper. Swaszek 
and Ku gave an asymptotic solution for this problem 
but without any mathematical proof of the optimality 
and using, sometimes, pretty hard approximations, 
which limit the application.  

In this paper we prove the convexity of the 
function MSE in dependance on the disposition of 
number of points on levels under the constraint of 
the total number of points and derive the expression 
for determining the optimal number of points on 
levels for fixed values of decision thresholds and 
representation levels. We give the method for 
determining optimal integer combination and 
optimal real combination for the fixed values of the 
decision thresholds and representation levels. On the 
basis of these results the simple and complete 
iterative optimization procedure is given for 
constructing polar MSE quantizers for complex 
sources with circularly symmetric probability 
density. Two iterative processes are used. In the first 
iterative process we determine Popt, ropt(Popt), 
mopt(Popt) with ε accuracy. In the second one, which 
is more accurate, we determine Mopt, ropt(Mopt), 
mopt(Mopt).   We give the step by step optimization 
procedure (the algorithm for the optimal polar 
quantization) and demonstrate it on example of a 
Gaussian source.  All incompleteness from the paper 
[1] and [2] are eliminated in this paper. Polar 
Quantization has a great application nowadays and 
we predict that it would have greater application in 
future. 
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