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Abstract: Practical realization of model-based emergency forecasting in pulse systems for the case of multi-parameter 
variation in a possible wide range associates with the problem of a-priori forming of single-statement information on 
system dynamics. The fractal diagram is proposed to use for the purpose of system dynamics presentation. This 
diagram allows one-to-one correspondence between the both, parameter and phase,spaces establishing by line up 
stages. 
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1. INTRODUCTION 
An application of pulse energy conversion 

systems (PECS) is one of promising ways to be used 
for the improvement of an energy conversion 
process efficiency. According to the investigations 
[1-4], in the case of possible wide range parameter 
variations the PECS dynamics is characterized as 
complicated and multivariated, that stipulate the 
necessity of emergency forecasting based on real-
time PECS dynamics identification. 

PECS belong to the class of essentially nonlinear 
complex dynamic systems with the variable 
structure of their mathematical models. The most 
comprehensive information about the same class 
system dynamics is represented by means of 
bifurcation and parameter diagram building [4-6]. 
That is why, the bifurcation approach to model-
based real-time PECS dynamics identification and 
forecasting was proposed [7-8]. The approach 
comprises the following steps: 

 a-priori information forming by model-based 
parameter diagram building on a possible system 
dynamics within investigated parameter range; 

 a-priori information analysis by parameter space 
partition into “dangerous” and “non-dangerous” 
domains for different system stale states; 

 PECS dynamics identification for the particular 
parameter vector value and dynamics forecasting 

(including emergencies) regarding the 
bifurcation boundaries of the parameter diagram. 

The problem situation of the bifurcation approach 
practical realization of emergency forecasting in the 
case of the PECS parameter possible wide range is 
considered in the paper. Also, one of possible 
problem decisions on the basis of PECS dynamics 
fractal regularity use is proposed.   
 

2. PROBLEM SITUATION 
Let m-type of a system motion will be referred to 

a stable state with the period T=ma, then the type of 
motion m=1 will be corresponded to the 
fundamental mode with the frequency f0=1/a. The 
stability loss of m=1 motion type will be regarded as 
an emergency. The variation of PESC parameters 
(P), as a temperature trend, random parameter values 
fluctuations, system degradation, etc., will be 
considered as a reason of system dynamics (system 
motion type) evolution. That is why, deviation of the 
state vector (X) trajectory from the previous motion 
trajectory will take place. In such way, by analogy 
with the Cauchy problems, it will be necessary to 
solve the inverse dynamics identification problem. 
The comparative characteristics of the inverse and 
direct dynamics identification problems are given in 
Table 1.  
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An absence of one-to-one correspondence 
between the X- and P-spaces is the main complexity 
of this problem solving. On the one hand, there are 
domains in the system parameter space with more 
than only one possible motion— multi-motion 
domains (for instance, in Fig. 1b: an intersection of 
the motion domains D1∩D2=Dmulti(1,2) to which the 
multi-motions type corresponds in Fig. 1a (in the 
middle)).  In this case, the set of different motion 
type phase trajectories corresponds to every one 
parameter vector of the multi-motion domain Pmulty 
(for instance, multi-motion type in Fig. 1a (in the 
middle) consists of m1- and m2-types of motions in 
Fig. 1a (in the left) and 1a (in the right) 
accordingly). Therefore dynamics evolution versions 
may be different (for instance, several possible 
dynamics evolution versions, that were projected 
from parameter diagram domain Dmulti to (p1,m)–
space are shown in Fig. 1c — so called branching 
patterns [9]). 

 
Table 1. Dynamics identification problems 

 

Dynamics identification problems 

in the  (P,X,m,t)-space 

direct inverse 

Specific reason — uncertain 
consequence 

Specific consequence — 
uncertain reason 

What will set the system 
motion type, if parameter 

vector is changing? 

Why system dynamics 
(parameter vector or (and) 
motion type) has changed? 

Specific parameter vector Uncertain parameter vector 

P = var, X, m → ? X = var, P, m → ? 

common sub-problem —  type of motion identification 
 

It means, that both, present dynamics 
identification and forecasting, regarding the 
bifurcation boundaries of the parameter diagram 
need in information not only on (P,m)-space 
dynamics, but also on (X,m)-space dynamics too. On 
the other hand, the set of parameter vectors with 
corresponding motion types is possible to confront 
to the present phase trajectory at different time 
moments t (for instance, Fig. 1f). Moreover, the 
mutual disposition of parameter vectors and 
corresponding phase trajectories (consequently 
phase vectors and fixed points) may be modified in 
parameter and phase spaces. For instance, 
comparative vector mutual dispositions in (P,m)- 
and (X,m)-spaces are shown in Fig. 1d,e. As a result, 
the uncertainty of the PECS state identification in 
the multi-dimensional space  (P,X,m,t) is formed. 

Complication of a bifurcation boundary pattern 
leads to a number of dynamics evolution version 
increasing. Then a number of different consequences 
of these versions between motions are increasing 
too.  (for instance, in Fig.1g is shown two different 
scenarios between two system states: 1-4-5-6, 1-3-
6). Nevertheless, one can pick out the typical PECS 
dynamics evolution cases, that are illustrated in 
Fig.1g. Let the parameter diagram domain D1 
contains fundamental mode (m1-type of motion 
under control). According to mentioned above, this 
mode changing is regarded as emergency, then there 
are following cases: 

 the parameter vector of the system is changing 
only within one-type motion domain. In this case 
either m1=const (for instance, transition 1→2 
within only the fundamental motion domain as 
absence of an emergency), or m1≠const (for 
instance, transition  3→7 beyond fundamental 
mode domain as an emergency); 

 m type of motion changes only within multi-type 
motion domain (for instance, transition-loop  
4→5 with m1–to–m3 type of motion changes as 
an emergency) ; 

 the parameter vector of the system Р are 
changing as well as the motion type m (for 
instance, transitions 1→3 (m1–to–m2 ,P=var), 
1→4(m1 = const  ∪  m1–to–m2, P = var), 4→6 
(m3 = const  ∪  m1–to–m2 ∪  m1–to–m3, P = var), 
6→3 (m2 = const  ∪  m3–to–m2 , P = var)— as 
emergencies). 

It is necessary to note, that every case contains the 
possibility of an emergency. A classification of the 
described transitions is given in Table2. One can see, 
that one to one correspondence between the both, 
parameter and phase, spaces may be achieved 
through by line up stages of system dynamics 
identification. A-priori information on PX-plane of 
(P,X,m,t)-space will be formed at the first stage, 
since it is necessary to safe the fundamental motion 
state in the system (m1-type of motion). 
 

Table 2. One to one correspondence classification 
 

Cases Variations Constancies One to one 
correspondence 

1→2, 
3→7 P, X m X ↔ P 

4→5 m, X P X ↔ m 

1→3, 
1→4, 
4→6, 
6→3 

P, m, X — — 
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g)  (P,m)-subspace information

p1 

p2 

1 

Dmulti (2,3) 

D2 

D1 

D3 

Dmulti (1,3) 

2 

3

4 

5 6

7

D1:  1→2  
 m1 = const, P = var ; 

D2:  3→7  
 m2 = const, P = var ; 

D1 →D2:  1→3  
 m = var, P = var ; 

D1→ Dmulti (1,3):  1→4  
 m1 = const  ∪  m = var, P = var ; 

Dmulti (1,3):  4→5 
m = var, P = const ; 

Dmulti (1,3)→ Dmulti (2,3):  4→6  
 m3 = const  ∪  m = var, P = var ; 

Dmulti (2,3)→ D2:  6→3  
m2 = const  ∪  m = var, P = var ; 

p1 p1
* 

Dmulti 

(1 2)D1 

D2 A A

p2 

p2
* P1 

P2Pmulti 

b) (P,m)-space information

x2 

x1 

x2
* x1 x2 

m1-motion type  

x1 

x2 

x7 x8 

m2 –motion type  

x2 

x1 

x3 x4 x5 x6 

multi- motion type  

x1 

x2 

P9, m2 

P1, m2 

t 

P5, m1 

P6, m1 

P7, m1 

P8, m2 

f) dynamics evolution opportunity from 
the present phase trajectory 

x1

x2 P1, m1 

P1, m2 

P2, m1 

P2, m2 

P4, m1 

P4, m2 

P3, m1 

P3, m2 

e) (X,m)-space phase trajectory mutual 
disposition  
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P3 

d) (P,m)-space parameter vector mutual 
disposition  
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p1 
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m2 

m1 

p1 

m 

m2 

m1 

c)  (m,p1)-space information  
 

x1
* 

 



Yury Kolokolov, Anna Monovskaya / Computing, 2004, Vol. 3, Issue 3, 131-137 
 

 134 

3. FRACTAL DIAGRAM 
An approach to practical realization of both, 

model-based on-line dynamics identification and 
emergency forecasting, suggesting in the paper, is 
considered for one of the simplest PECS example 
(the synchronous buck voltage converter with the 
second kind pulse-width modulation and 
proportional regularity low). Because it is sometime 
helpful to consider small prototype physical systems 
where fundamental concepts can be more clearly 
apprehended [10-12]. The equivalent circuit of the 
buck voltage converter is shown in Fig.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The resulting simplified mathematical model 
represents the system of two differential equations 

with a discontinuous right-hand side and a scalar 
commutation function of a state vector at time. The 
state vector X includes the power source current (i) 
and load voltage (u). The parameter vector P, use for 
fractal diagram building, includes the error signal 
amplification coefficient of the voltage regulator (α) 
and load resistance (R3) 

The mathematical model of the system (in Fig. 2) 
is represented in the terms of shift mapping [4] for 
the purpose of PX-plane building. In this case, the 
PECS dynamics from (P,X,m,t)-space is projected 
into (P,X,m)-space. Let us consider the bifurcation 
diagram building (in Fig. 3a) in (u,i)-phase space (in 
Fig. 3b).  The obtained geometrical construction 
presents fractal structure of 1-2-4-… scenario with 
clearly predominate axis of m=1 type of motion (in 
Fig. 3b). The direction of the α-axis confronts 
direction, that was formed by fixed points of  
mapping of m=1 type of motion within an interval of 
α-parameter value changing. Analogous building for 
R3-parameter value interval changing composes the 
fractal row, as a sequence of topologically equal 
structures with insignificant dimension 
modifications (fig. 3c). The R3-parameter axis 
direction confronts the direction of fractal row 
moving. The obtained geometrical constructions (in 
Fig.1b,c) will be denoted fractal diagrams. An each 
point of the fractal diagram presents a fixed point of 
mapping (u,i) for a parameter vector (R3,α). 
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Fig. 3 — Dynamics fractal properties  
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Fig. 2 - Equivalent circuit of  the synchronous buck voltage 
converter 
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Thus, one-to-one correspondence between the 
both, state (X) and parameter (P), vectors for the 
specific type of motion (the first dynamics 
identification stage: X↔P, m=const, Table 2.) is a 
supplementary information property of the fractal 
diagram. Moreover, phase trajectories of each 
motion type possesses of its own characteristic 
fractal structure. Within one-type  motion domain 
phase trajectories are either not changed practically  
(for instance, for m=1), or changed by similar mode. 
There is a common trend that with m increasing a 
radius of a phase trajectory is also increasing. 
Hence, it is possible to realize the second dynamics 
identification stage: one-to-one correspondence 
between the state vector X and m-type of a motion 
for the specific parameter vector P (X↔m, P=const, 
Table 2.). Therefore, the fractal presentation of the 
PECS dynamics information allows emergency 
forecasting for the case of a wide range of parameter 
variation by means of the fundamental motion 
control: the state space X changes confront to those 
of parameter variations. 
 

4. MULTI-DIMENTIONAL PARAMETER 
VARIATION IDENTIFICATION 

The following parameter values of the system (in 
Fig. 2) were used for numerical calculations: 

 R1=0.1Ω, R2=0.1Ω, L=1e-4H, С=1e-5F. The 
parameters α∈[2,10] и R3∈[2,50] Ω were varied and  
used for fractal diagram building of 1-2-4-… 
dynamics evolution scenario. In this case, a-priori 
fractal diagram information is quite enough for 
emergency forecasting algorithm forming according 
to the following rules: 

 while m=1 type of motion maintains in the 
present system dynamics, the pulse value range 
of one phase variable (∆i) is not practically 
changed. Therefore, the present parameter vector 
is one-to-one  identified by the present state 
vector within m=1 type motion domain. Thus, 
∆i-value will be considered as m=1 type of 
motion identification criterion proceeding from 
the phase trajectory fractal properties; 

 when another phase variable (u) will be equal to 
the bifurcation value u1-2 , then m=1 type of 
motion changes into  m=2 one. That is why, the 
u1-2-values of the fractal diagram will be 
considered as the emergency identification 
criteria within 1-2-4-… dynamics evolution 
scenario. 

  

 

Fig.4 — Identification criteria 

a) R2 - variation 

R2 max 

R2 min 

U1-2 min 

U1-2  

U1-2 max 

∆i ≈ const 

c) C - variation 

C min 

C max U1-2 max ≈ U1-2 

U1-2 min 

∆i ≈ const 

L min 

L max 
U1-2 max U1-2  

U1-2 min 

b) L - variation 

∆imin  
∆i  

∆imax  

∆im=3 

m=1 

m=3 

d) bifurcation scenario changing 

∆im=1 

voltage 

current 0 0.5 1 1.5 

11.3

11.4

11.5

11.6

11.7
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Let us assume, that 3-dimentional parameter 
variation will be possible, stipulated by the scheme 

element degradation, as an example. In this case, the 
estimation of admissible value range of the 
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following parameters {R1,R2,L,C}are presented in 
Table 3. One can illustrate, that a-priori 2-
dementional parameter variation information 
uncertainty arises. It is exposed  by phase trajectory 
topological transformations, including  
transformations of identification criterion values (∆i 
and u1-2). For instance, the phase trajectory 
topologically transformations for R2, L, C 
parameters is shown in Fig.4 a, b, c accordingly. 
Nevertheless, one can determine the new 
identification criterion value range and these value 
deviations in accordance with the identification 

criterion values of the fractal diagram (see in Table 
3.). One can illustrate, that these deviations are 
considerably smaller than deviations, revealed in the 
system dynamics in the case of bifurcation scenario 
changing. For instance, if m=1 type of motion of  1-
2-4-.. dynamics evolution scenario changes into 
m=3 type of motion of 3-6-… dynamics evolution 
scenario, then the identification criterion value ∆i 
changes nor less than for +180% . This example is 
shown in Fig. 4d.  
 

Table 3. Identification criteria for 1,2,3-dimentional parameter variation 
 

Possible value range of parameter variations Identification criterion of  
m=1 type of motion  

Type of motion change 
identification criterion in the case 

of  m=1 to  m=2 changing 

For fractal diagram 
building 

Stipulated by scheme 
element degradation By value 

Deviation in 
accordance 
with  ∆i, %  

By value 
Deviation in 

accordance with  
u1-2, % 

— 

— 

R1 = 0,08…0,12 Ω 

u1-2 about 0 

R2 = 0,08…0,12 Ω 

∆i about 0 

u1-2 max - 0,3  

L = 0,8…1,2 e-4 H ∆imin … ∆imax -20…+25 

α=2…10 R3=2…50 Ω 

C = 0,4…1,6 e-5 F ∆i about 0 
u1-2 min - 0,1 

 
5. CONCLUSION 

So, the fractal diagram presents 2-dimentional 
fractal geometrical construction, projecting from 
(P,X,m,t)-space, which gives the opportunity to 
statement one-to-one correspondence between 
spaces of (P,X,m,t)-space. It is possible to pick out 
fractal structure units, containing sufficient 
information for the model-based on-line dynamics 
identification and emergency forecasting practical 
realization, as well as to estimate evolution 
directions and boundary existence for these units. 

On the basis of the information obtained on 
PECS dynamics fractal regularities is supposed to 
form the specific dynamics identification algorithms. 
It is necessary to denote, that these algorithms are 
hardly formalized, so characteristic system motions 
as well as fractal dynamics properties are not known 
without a priori system dynamics information. 
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