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Abstract: The coarse-grain parallel algorithm of modular neural networks training with dynamic mapping onto 
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library, which measures processor executing time of parallel routines. 
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1. INTRODUCTION 
Nowadays, parallel computers are advanced 

technologies that are pushing several applications 
towards new challenge in many fields. The 
computational capacity of one-processor computers 
does not always satisfy the constantly growing 
requirements of data processing in science, industry 
and business [1-3]. Parallel data processing is one of 
the approaches that would make feasible the 
execution of complicated algorithms with a large 
number of variables and iterations. A trivial 
parallelism consists in dividing the sequential 
program among the available processors and running 
it in parallel in order to reduce the total execution 
time. However, this simple approach might not be 
effective due to additional overhead spending in 
synchronization, communication and load imbalance 
among processors. As a result, several issues related 
to the development of effective parallel programs are 
still remaining urgent. 

It is necessary to consider each of these issues 
separately in each specific application, because any 
application imposes certain limitations on the design 
of the parallel algorithm as well as on the parallel 
architecture and the parallel programming paradigms 
to be used. Therefore the issues of effective 
parallelization include effective parallel algorithms, 
parallel architectures, parallel programming 
languages and performance analysis of parallel 
programs [4-5]. 

The goal of this paper is efficiency analysis (by 
visualization) of coarse-grain parallel algorithm of 
dynamic mapping of Integrating Historical Data 
Neural Networks [6] used for sensor drift prediction. 
The original method of training set forming of 
Integrating Historical Data Neural Networks 
(IHDNN’s) gives the possibility to solve the 
problem of the sensor drift prediction much better 
than the well-known mathematical methods [7-8]. 
The advantages of this method consist in ability of 
the neural networks to improve the accuracy of the 
sensor data acquisition and processing in several 
times (3-5) on increased duration of inter-calibration 
interval (6-12 times) using small number of input 
data as training set [8]. However, this method 
requires a considerable computational load (approx. 
40 min. for one data acquisition channel). 
Description of historical data integration method, 
choice of the architecture of IHDNNs, choice of the 
approach of task parallelization and choice of the 
level of parallelism are out of scope of this paper. 
These issues are described in details in papers [6, 9]. 

This study is organized as follows: the 
development of dynamic mapping algorithm of 
IHDNNs parallelization and the results of 
experimental researches are described in Section 2, 
the efficiency analysis based on visualization 
technique is described in Section 3 and some final 
remarks in Section 4 conclude this paper. 
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2. COARSE-GRAIN PARALLEL 
ALGORITHMS OF IHDNNS TRAINING 

WITH DYNAMIC MAPPING 
2.1. Design of the algorithm 
As it is shown in [6, 9], M IHDNNs are used to 

solve integration historical data algorithm, M is 
equal to 50 for the experiments. In mentioned papers 
we showed, that it is necessary to choose coarse-
grain parallelization level of neural networks, i.e. 
each module of neural network is executing on 
separate processor of parallel computer. 

Parallel algorithm (Fig. 1) is developed by using 
a “centralized” planning approach with only one 
processor (Master, 0=cp ) having the role of task 
planner and each of the other processors (called 
Slaves) will train the IHDNNs assigned by the 
Master. Once a Slave has finished its task, it asks the 
Master for a new one till no tasks are left. We note 
here that, besides the role of planner, the Master 
does not fulfill any further calculation. The 
communications between the Master and the Slaves 
are ensured by using the standard MPI 
sending/receiving functions MPI_Send() and 
MPI_Recv() [10, 11]. 

The sequential part of the algorithm includes two 
operations: (i) reading the input data with the sensor 
drift and (ii) defining the sequential numbers of the 
IHDNNs based on the input data. However these 
operations are showed separately in Fig. 1 in order 
to simplify the description of the algorithm. The 
parallel part of the algorithm starts with the call of 
the MPI_Init() function (Fig. 1b). Here the index 

>< cn  denotes the sequential number of IHDNN 
and the >< cp  index refers to the processor ID. All 
the communications between the Master and the 
Slave include the index >< cn , which is useful for 
each process to pick up the data corresponding to the 
IHDNN to be trained. This scheme allows a 
considerable decrease of the length of the messages 
and consequently the latency time of the 
communications. 

The Master starts with assigning the first M  
IHDNNs to the M  available processors and then 
continues the execution of the mapping procedure 
consisting of assigning dynamically the tasks to the 
Slaves as soon as they become idle. The Master 
receives also the results of the already trained 
IHDNNs by using the function MPI_Recv() with the 
MPI_ANY_SOURCE parameter and saves its content 
in the appropriate cell of the output matrix ComM . 
The stopping condition of the algorithm is to check 
that all the IHDNNs have been already mapped. 

Each Slave checks the availability of a new 
message from the Master by using the function 
MPI_Probe(). Among all the received messages, 

each Slave should consider only those having an 
index >< cp  corresponding to its proper ID. 

On the basis of the IHDNN index >< cn  to be 
trained each Slave performs the following 
operations: 
• Form the training set of the IHDNN based on 

the values ][cnrow  and ][cncol  for the 
appropriate IHDNN based on steps described in 
[12]; 

• Train the IHDNN as multi-layer perceptron 
using back propagation error training algorithm; 

• Run the historical data integration procedure and 
send the results, together with the IHDNN index 

>< cn , to the Master. 
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Fig. 1 - Coarse-grain parallel algorithm of IHDNNs 
training with dynamical mapping: (a) Master’s 

procedure, (b) Slave’s procedure 
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On the basis of the above description it is clear 
that our parallel algorithm with dynamic mapping 
does not make use of any synchronization point. 
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Therefore, the only source of efficiency loss in our 
implementation can derive from the overhead caused 
by the message passing communication. 

2.2. Experimental researches 
The experimental researches of developed 

parallel algorithm with dynamical mapping were 
fulfilled using the sensor drift “with saturation” [8]. 
We have measured execution time of 50 IHDNNs on 
2, 4 and 8 Slaves of Origin 300 (placed in the Center 
of Excellence of High Performance Computing, 
University of Calabria, Italy), one additional 
processor have been used as Master. The sequential 
and parallel routines are developed on C language 
using MPI library v.1.2 [10, 11] and performance 
visualization library MPE [13, 14]. 

The experiments mentioned above have been 
fulfilled on the parallel computer Origin300 
containing 8 RISC processors MIPS R14000 with 
clock rate 500 MHz and 4 Gb total RAM. Each 
processor has 2 Mb internal cash memory. Computer 
Origin300 operates under operation system UNIX 
(IRIX64 6.5). The execution time, speedup and 
efficiency of developed parallel routine are shown in 
the Table 1, Fig. 2 and Fig. 3 respectively. As it is 
seen, the speedup is non-linear, the effectiveness is 
decreasing as during increasing sum-squared 
training error (SSE) of neural networks, as well as 
during increasing the number of parallel processors 
used. 

Table 1. Execution time in seconds: drift with 
“saturation” 

Processors 1 2 4 8 
SSE=10-3 23.41 12.07 6.14 3.16 
SSE=10-4 173.14 88.70 45.22 25.23 
SSE=10-5 637.70 326.00 234.70 219.76
SSE=10-7 1114. 53 570.70 304.33 282.93

 
3. ANALYSIS OF PARALLELIZATION 

EFFICIENCY 
Taking into account the nature of the developed 

parallel algorithm by using message passing 
approach among the leaves (against usage of 
synchronization and barriers), the efficiency can be 
decreased by: 
• Non-accuracy of time measurement of parallel 

routine execution; 
• Latency during communication among leaves; 
• Load imbalance among processors. 

For efficiency reduction estimation we have 
used MPE visualization library [13, 14]. Our case 
study was: 50 IHDNNs have been parallelized 
among 8 processors of Origin 300 at SSE=10-7 for 
drift “with saturation” (Fig. 4). 
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Fig. 2 - Speedup vs number of processors 
for drift “with saturation”  

 

2 4 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors of Origin300

E
ffi

ci
en

cy
: 

SSE=10-3
SSE=10-4
SSE=10-5
SSE=10-7

Fig. 3 - Efficiency vs number of processors 
for drift “with saturation”  

 
Dark color shows execution time of each 

processor, light color shows waiting time of the 
Master (number 0) during reducing the data from the 
Slaves. Thin dark strips on the processing time 
rectangle of the Master show its working time for 
receiving the data from the Slaves and the 
communication time.  

The visualization results from Fig. 4 show, that 
total executing time of parallel routine (see field 
View Final Time on Fig. 4) is considerably bigger 
(482.81 seconds) than execution time of this routine 
on 8 processors from Table 1 (282.93 seconds). 
After several investigations of this situation we 
showed, that MPE library provides non-accurate 
time management. In particular, for time 
measurement inside of parallel routine we have used 
function times(), which measure pure processor time 
of parallel routine. However, MPE library measure 
real (astronomic) time of parallel routine operation, 
which depends on loading of parallel computer by 
another system or user programs. In other words, 
MPE library measure the time interval between two 
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events in the past and the future using some 
functions of astronomic time measurement. All 
system and user programs, which are executed by a 
parallel computer during this period of time, 
influence on the duration of this interval. In this case 
the resource of each processor is distributed among 
all the routines of parallel computer.  
 

Fig. 4  Visualization of IHDNNs training at SSE=10-7

on 8 processors of Origin 300 using astronomic time  
 

This fact causes non-accurate calculation of 
speedup and efficiency of parallelization. It is 
possible to avoid this disadvantage by measurement 
of the routine’s processor time as we have done for 
our parallel code. Processor time can be measured 
by using processor ticks approach. This 
measurement technology allows avoiding the 
influence of other running programs. We can note at 
least two ways of this problem solving: (i) to modify 
the existing MPE library and (ii) to develop new 
visualization tool based on processor time 
measurement. 

It is obvious, that the first way is easier, therefore 
we have replaced function of astronomic time 
measurement CLOG_timestamp() of existing MPE 
library. We have done it by adding new function 
CLOG_timestamp2(), which uses function of 
processor time measurement times(). More detailed 
description of this modification is described in [15]. 

During experimental research of modified MPI 
library we have chosen such a situation, when our 
parallel routine is run on the parallel computer 
Origin 300 loaded by execution of other routines. 
The results of modified MPE library in Fig. 5 are 
similar by form to Fig. 4, however they are 
practically the same with the results, presented in 
Table 1. For example, total execution time of 
parallel routine by using modified MPE library (see 
box View Final Time in Fig. 5) is equal to 280.41 
seconds, which is practically the same to 282.93 
seconds spent by Origin 300 to parallelize this 
algorithm in Table 1. This small difference between 
these two experiments can be explained by error of 

processor time estimation by modified MPE library. 
Thus, using the modified MPE library with 
processor time measurement allows ignoring the 
influence of other system and user computational 
tasks on Origin 300.  
 

Fig. 5 Visualization of IHDNNs training at SSE=10-7

on 8 processors of Origin 300 using processor time  
 

It is necessary to note, that some modern parallel 
computers have built-in functions of processor time 
calculation of running parallel programs. Parallel 
computer TX-7 [16] by NEC Corporation is one of 
such computers. Similar experiments described 
above were fulfilled on the model i9010 of this 
parallel computer, which is also placed in the Center 
of Excellence of High Performance Computing. 
Model i9010 contains 16 processors Intel® Itanium-
ІІ with clock rate 1GHz, 3Mb L3 cash-memory and 
64 Gb total RAM. The results of experimental 
researches have shown [6] that the values of time 
calculated both by functions of real (astronomic) 
time and processor time are the same. Therefore it is 
expedient to use the functions of processor time 
calculation on any parallel computer in order to 
provide the accurate results in general and modified 
MPE library in particular. 

Therefore in our case the time of parallel routine 
executing is measured accurately. This time 
measurement does not influence on decreasing of 
parallelization efficiency.  

Latency during communication among the 
Master and the Slaves is expedient to estimate using 
MPE profiling. For this purpose we have used slog 
(scalable logging) file and jumpshot-4 software tool 
[17]. Jumpshot-4 is implemented on Java 
programming language and therefore it requires 
j2sdk (Software Development Kit) packet, needed to 
be installed in order to provide the visualization. 
Jumpshot-4 transforms the binary data from “log”-
file as color rectangles (see Fig. 4 and Fig. 5), which 
show operation (by color) and duration of this 
operation (by length of the rectangle on X axis). 
Also this tool allows increasing a visualization step 
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and showing smaller time intervals of parallel 
programs running. For example, we have shown 
IHDNN’s training time by dark color and 
communication time between Master and 1st Slave 
by light color in Fig. 6. It is visible that 
communication time among two processors does not 
exceed 0.08 second. According to Fig. 1 spending 
this time the Master (i) receives the results of 
IHDNN training from 1st Slave, (ii) saves this result 
in own memory and (iii) sends next IHDNN (with 
bigger reference number) to 1st Slave. Generally low 
communication latency is confirmed by very thin 
dark strips (they are communication time) on the 
light rectangle of the Master (it is waiting time) in 
Fig. 4 and Fig. 5. Therefore the latency practically 
does not influence on decreasing of parallelization 
efficiency. It also can be explained by the fact that 
we have chosen a coarse-grain approach to 
parallelize modular neural networks [6, 9]. 
 

Fig. 6 - Communication time between the Master 
and 1st Slave does not exceed 0.08 second  

 
The analysis of Fig. 4 and Fig. 5 clearly shows 

that efficiency decreasing of developed parallel 
algorithm with dynamic mapping caused by load 
imbalance among processors, i.e. the processing 
time of 5th Slave is biggest one. It is connected with 
non-stationary and non-uniform distribution of the 
training time of all IHDNNs. For example, we have 
shown a distribution of the training time of all 50th 
IHDNNs in Fig. 7.  

Thus, summarizing the analysis above, it is 
expedient to consider two following approaches to 
parallelize this task in a case of non-uniform 
distribution of the training time of each module of 
IHDNN: 
• If we can predict the training time of each 

IHDNN module before the parallelization, then 
it is possible to increase the efficiency by 
optimal mapping of the IHDNNs using predicted 
training time as mapping criteria. In this case 

long tasks should be mapped first on separate 
processors; 
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Fig. 7 - Distribution of the training time of 
all 50th IHDNNs  

 
• If we can not predict the training time of each 

IHDNN module before the parallelization, then 
it is expedient to develop another methods of 
IHDNNs parallel training by using fine-grain 
approach and to apply this fine-grain algorithm 
dynamically to such IHDNN module, which 
remains training when other modules have 
already finished the training process. 
 

4. CONCLUSION AND FUTURE 
RESEARCHES 

The efficiency analysis of coarse-grain parallel 
algorithm of modular neural networks training using 
visualization technique is considered in this paper. A 
standard MPE library is used for visualization. 
During researches there is corrected the 
disadvantage of a standard MPE library, based on 
astronomic time measurement. This disadvantage 
has become apparent on the parallel computer Origin 
300. Modification of standard MPE library by usage 
of functions of processor time measurement allows 
accurate visualizing parallel routine executing 
without any influence of other computational tasks 
of parallel computer. As a result, decreasing of 
efficiency of IHDNNs parallel training algorithm is 
caused by load imbalance among processors not 
latency during communication. This load imbalance 
is characterized by non-stationary and non-uniform 
distribution of the IHDNNs training time. Therefore 
we pay our attention for development of fine-grain 
parallelization techniques for artificial neural 
networks in the future, which allows parallelizing 
each module of neural network independently.  
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