
Volodymyr Turchenko, Viktor Demchuk / Computing, 2005, Vol. 4, Issue 1, 12-18

 12

EFFICIENCY ANALYSIS OF PARALLEL ROUTINE USING
PROCESSOR TIME VISUALIZATION

Volodymyr Turchenko1)-2), Viktor Demchuk1)

1) Research Institute of Intelligent Computer Systems

Ternopil Academy of National Economy
3 Peremoga Square, Ternopil, 46004, UKRAINE, e-mail: {vtu}, {vde}@tanet.edu.te.ua

2) Center of Excellence of High Performance Computing, University of Calabria,
via. P. Bucci 22A, Rende (CS), 87036, ITALY, e-mail: vtu@hpcc.unical.it

Abstract: The coarse-grain parallel algorithm of modular neural networks training with dynamic mapping onto
processors of parallel computer is described in this paper. Parallelization of the algorithm is done on parallel computer
Origin 300 using MPI technology. The efficiency of this algorithm is estimated using modification of MPE visualization
library, which measures processor executing time of parallel routines.

Keywords: efficiency analysis, processor time, dynamic mapping, coarse-grain parallelization, neural networks, МРІ,
МРЕ.

1. INTRODUCTION
Nowadays, parallel computers are advanced

technologies that are pushing several applications
towards new challenge in many fields. The
computational capacity of one-processor computers
does not always satisfy the constantly growing
requirements of data processing in science, industry
and business [1-3]. Parallel data processing is one of
the approaches that would make feasible the
execution of complicated algorithms with a large
number of variables and iterations. A trivial
parallelism consists in dividing the sequential
program among the available processors and running
it in parallel in order to reduce the total execution
time. However, this simple approach might not be
effective due to additional overhead spending in
synchronization, communication and load imbalance
among processors. As a result, several issues related
to the development of effective parallel programs are
still remaining urgent.

It is necessary to consider each of these issues
separately in each specific application, because any
application imposes certain limitations on the design
of the parallel algorithm as well as on the parallel
architecture and the parallel programming paradigms
to be used. Therefore the issues of effective
parallelization include effective parallel algorithms,
parallel architectures, parallel programming
languages and performance analysis of parallel
programs [4-5].

The goal of this paper is efficiency analysis (by
visualization) of coarse-grain parallel algorithm of
dynamic mapping of Integrating Historical Data
Neural Networks [6] used for sensor drift prediction.
The original method of training set forming of
Integrating Historical Data Neural Networks
(IHDNN’s) gives the possibility to solve the
problem of the sensor drift prediction much better
than the well-known mathematical methods [7-8].
The advantages of this method consist in ability of
the neural networks to improve the accuracy of the
sensor data acquisition and processing in several
times (3-5) on increased duration of inter-calibration
interval (6-12 times) using small number of input
data as training set [8]. However, this method
requires a considerable computational load (approx.
40 min. for one data acquisition channel).
Description of historical data integration method,
choice of the architecture of IHDNNs, choice of the
approach of task parallelization and choice of the
level of parallelism are out of scope of this paper.
These issues are described in details in papers [6, 9].

This study is organized as follows: the
development of dynamic mapping algorithm of
IHDNNs parallelization and the results of
experimental researches are described in Section 2,
the efficiency analysis based on visualization
technique is described in Section 3 and some final
remarks in Section 4 conclude this paper.

computing@tanet.edu.te.ua

www.tanet.edu.te.ua/computing

ISSN 1727-6209

International Scientific
Journal of Computing

Volodymyr Turchenko, Viktor Demchuk / Computing, 2005, Vol. 4, Issue 1, 12-18

 13

2. COARSE-GRAIN PARALLEL
ALGORITHMS OF IHDNNS TRAINING

WITH DYNAMIC MAPPING
2.1. Design of the algorithm
As it is shown in [6, 9], M IHDNNs are used to

solve integration historical data algorithm, M is
equal to 50 for the experiments. In mentioned papers
we showed, that it is necessary to choose coarse-
grain parallelization level of neural networks, i.e.
each module of neural network is executing on
separate processor of parallel computer.

Parallel algorithm (Fig. 1) is developed by using
a “centralized” planning approach with only one
processor (Master, 0=cp) having the role of task
planner and each of the other processors (called
Slaves) will train the IHDNNs assigned by the
Master. Once a Slave has finished its task, it asks the
Master for a new one till no tasks are left. We note
here that, besides the role of planner, the Master
does not fulfill any further calculation. The
communications between the Master and the Slaves
are ensured by using the standard MPI
sending/receiving functions MPI_Send() and
MPI_Recv() [10, 11].

The sequential part of the algorithm includes two
operations: (i) reading the input data with the sensor
drift and (ii) defining the sequential numbers of the
IHDNNs based on the input data. However these
operations are showed separately in Fig. 1 in order
to simplify the description of the algorithm. The
parallel part of the algorithm starts with the call of
the MPI_Init() function (Fig. 1b). Here the index

>< cn denotes the sequential number of IHDNN
and the >< cp index refers to the processor ID. All
the communications between the Master and the
Slave include the index >< cn , which is useful for
each process to pick up the data corresponding to the
IHDNN to be trained. This scheme allows a
considerable decrease of the length of the messages
and consequently the latency time of the
communications.

The Master starts with assigning the first M
IHDNNs to the M available processors and then
continues the execution of the mapping procedure
consisting of assigning dynamically the tasks to the
Slaves as soon as they become idle. The Master
receives also the results of the already trained
IHDNNs by using the function MPI_Recv() with the
MPI_ANY_SOURCE parameter and saves its content
in the appropriate cell of the output matrix ComM .
The stopping condition of the algorithm is to check
that all the IHDNNs have been already mapped.

Each Slave checks the availability of a new
message from the Master by using the function
MPI_Probe(). Among all the received messages,

each Slave should consider only those having an
index >< cp corresponding to its proper ID.

On the basis of the IHDNN index >< cn to be
trained each Slave performs the following
operations:
• Form the training set of the IHDNN based on

the values][cnrow and][cncol for the
appropriate IHDNN based on steps described in
[12];

• Train the IHDNN as multi-layer perceptron
using back propagation error training algorithm;

• Run the historical data integration procedure and
send the results, together with the IHDNN index

>< cn , to the Master.

No

No

Yes

Send M tasks
to M processors

row[cn],col[cn]

Fig. 1 - Coarse-grain parallel algorithm of IHDNNs
training with dynamical mapping: (a) Master’s

procedure, (b) Slave’s procedure

Start

Read the input data

Receive a message from
Slave [cp]with the

results of IHDNN [cn]

Assign an index [cn]
to each IHDNN,

MPI_Init()

Form the training
vectors for IHDNN
row[cn],col[cn]

Train IHDNN
row[cn],col[cn]

Save ComM
row[cn],col[cn]

cn < N ?

End

cn++

Send message to
[cp] Slave to train
[cn] IHDNN

Master: Save results

End

a)

Start

Read the input data

Assign an index [cn]
to each IHDNN,

MPI_Init()

New cn ?

Yes
Receive a message from
the Master with IHDNN

[cn] to train

Send a message to
Master with the results

of IHDNN [cn]

b)

On the basis of the above description it is clear
that our parallel algorithm with dynamic mapping
does not make use of any synchronization point.

Volodymyr Turchenko, Viktor Demchuk / Computing, 2005, Vol. 4, Issue 1, 12-18

 14

Therefore, the only source of efficiency loss in our
implementation can derive from the overhead caused
by the message passing communication.

2.2. Experimental researches
The experimental researches of developed

parallel algorithm with dynamical mapping were
fulfilled using the sensor drift “with saturation” [8].
We have measured execution time of 50 IHDNNs on
2, 4 and 8 Slaves of Origin 300 (placed in the Center
of Excellence of High Performance Computing,
University of Calabria, Italy), one additional
processor have been used as Master. The sequential
and parallel routines are developed on C language
using MPI library v.1.2 [10, 11] and performance
visualization library MPE [13, 14].

The experiments mentioned above have been
fulfilled on the parallel computer Origin300
containing 8 RISC processors MIPS R14000 with
clock rate 500 MHz and 4 Gb total RAM. Each
processor has 2 Mb internal cash memory. Computer
Origin300 operates under operation system UNIX
(IRIX64 6.5). The execution time, speedup and
efficiency of developed parallel routine are shown in
the Table 1, Fig. 2 and Fig. 3 respectively. As it is
seen, the speedup is non-linear, the effectiveness is
decreasing as during increasing sum-squared
training error (SSE) of neural networks, as well as
during increasing the number of parallel processors
used.

Table 1. Execution time in seconds: drift with
“saturation”

Processors 1 2 4 8
SSE=10-3 23.41 12.07 6.14 3.16
SSE=10-4 173.14 88.70 45.22 25.23
SSE=10-5 637.70 326.00 234.70 219.76
SSE=10-7 1114. 53 570.70 304.33 282.93

3. ANALYSIS OF PARALLELIZATION

EFFICIENCY
Taking into account the nature of the developed

parallel algorithm by using message passing
approach among the leaves (against usage of
synchronization and barriers), the efficiency can be
decreased by:
• Non-accuracy of time measurement of parallel

routine execution;
• Latency during communication among leaves;
• Load imbalance among processors.

For efficiency reduction estimation we have
used MPE visualization library [13, 14]. Our case
study was: 50 IHDNNs have been parallelized
among 8 processors of Origin 300 at SSE=10-7 for
drift “with saturation” (Fig. 4).

2 4 8
1

2

3

4

5

6

7

8

Number of processors of Origin300

S
pe

ed
up

SSE=10-3

SSE=10-4

SSE=10-5

SSE=10-7

Fig. 2 - Speedup vs number of processors
for drift “with saturation”

2 4 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors of Origin300

E
ffi

ci
en

cy
:

SSE=10-3
SSE=10-4
SSE=10-5
SSE=10-7

Fig. 3 - Efficiency vs number of processors
for drift “with saturation”

Dark color shows execution time of each

processor, light color shows waiting time of the
Master (number 0) during reducing the data from the
Slaves. Thin dark strips on the processing time
rectangle of the Master show its working time for
receiving the data from the Slaves and the
communication time.

The visualization results from Fig. 4 show, that
total executing time of parallel routine (see field
View Final Time on Fig. 4) is considerably bigger
(482.81 seconds) than execution time of this routine
on 8 processors from Table 1 (282.93 seconds).
After several investigations of this situation we
showed, that MPE library provides non-accurate
time management. In particular, for time
measurement inside of parallel routine we have used
function times(), which measure pure processor time
of parallel routine. However, MPE library measure
real (astronomic) time of parallel routine operation,
which depends on loading of parallel computer by
another system or user programs. In other words,
MPE library measure the time interval between two

Volodymyr Turchenko, Viktor Demchuk / Computing, 2005, Vol. 4, Issue 1, 12-18

 15

events in the past and the future using some
functions of astronomic time measurement. All
system and user programs, which are executed by a
parallel computer during this period of time,
influence on the duration of this interval. In this case
the resource of each processor is distributed among
all the routines of parallel computer.

Fig. 4 Visualization of IHDNNs training at SSE=10-7

on 8 processors of Origin 300 using astronomic time

This fact causes non-accurate calculation of
speedup and efficiency of parallelization. It is
possible to avoid this disadvantage by measurement
of the routine’s processor time as we have done for
our parallel code. Processor time can be measured
by using processor ticks approach. This
measurement technology allows avoiding the
influence of other running programs. We can note at
least two ways of this problem solving: (i) to modify
the existing MPE library and (ii) to develop new
visualization tool based on processor time
measurement.

It is obvious, that the first way is easier, therefore
we have replaced function of astronomic time
measurement CLOG_timestamp() of existing MPE
library. We have done it by adding new function
CLOG_timestamp2(), which uses function of
processor time measurement times(). More detailed
description of this modification is described in [15].

During experimental research of modified MPI
library we have chosen such a situation, when our
parallel routine is run on the parallel computer
Origin 300 loaded by execution of other routines.
The results of modified MPE library in Fig. 5 are
similar by form to Fig. 4, however they are
practically the same with the results, presented in
Table 1. For example, total execution time of
parallel routine by using modified MPE library (see
box View Final Time in Fig. 5) is equal to 280.41
seconds, which is practically the same to 282.93
seconds spent by Origin 300 to parallelize this
algorithm in Table 1. This small difference between
these two experiments can be explained by error of

processor time estimation by modified MPE library.
Thus, using the modified MPE library with
processor time measurement allows ignoring the
influence of other system and user computational
tasks on Origin 300.

Fig. 5 Visualization of IHDNNs training at SSE=10-7

on 8 processors of Origin 300 using processor time

It is necessary to note, that some modern parallel
computers have built-in functions of processor time
calculation of running parallel programs. Parallel
computer TX-7 [16] by NEC Corporation is one of
such computers. Similar experiments described
above were fulfilled on the model i9010 of this
parallel computer, which is also placed in the Center
of Excellence of High Performance Computing.
Model i9010 contains 16 processors Intel® Itanium-
ІІ with clock rate 1GHz, 3Mb L3 cash-memory and
64 Gb total RAM. The results of experimental
researches have shown [6] that the values of time
calculated both by functions of real (astronomic)
time and processor time are the same. Therefore it is
expedient to use the functions of processor time
calculation on any parallel computer in order to
provide the accurate results in general and modified
MPE library in particular.

Therefore in our case the time of parallel routine
executing is measured accurately. This time
measurement does not influence on decreasing of
parallelization efficiency.

Latency during communication among the
Master and the Slaves is expedient to estimate using
MPE profiling. For this purpose we have used slog
(scalable logging) file and jumpshot-4 software tool
[17]. Jumpshot-4 is implemented on Java
programming language and therefore it requires
j2sdk (Software Development Kit) packet, needed to
be installed in order to provide the visualization.
Jumpshot-4 transforms the binary data from “log”-
file as color rectangles (see Fig. 4 and Fig. 5), which
show operation (by color) and duration of this
operation (by length of the rectangle on X axis).
Also this tool allows increasing a visualization step

Volodymyr Turchenko, Viktor Demchuk / Computing, 2005, Vol. 4, Issue 1, 12-18

 16

and showing smaller time intervals of parallel
programs running. For example, we have shown
IHDNN’s training time by dark color and
communication time between Master and 1st Slave
by light color in Fig. 6. It is visible that
communication time among two processors does not
exceed 0.08 second. According to Fig. 1 spending
this time the Master (i) receives the results of
IHDNN training from 1st Slave, (ii) saves this result
in own memory and (iii) sends next IHDNN (with
bigger reference number) to 1st Slave. Generally low
communication latency is confirmed by very thin
dark strips (they are communication time) on the
light rectangle of the Master (it is waiting time) in
Fig. 4 and Fig. 5. Therefore the latency practically
does not influence on decreasing of parallelization
efficiency. It also can be explained by the fact that
we have chosen a coarse-grain approach to
parallelize modular neural networks [6, 9].

Fig. 6 - Communication time between the Master
and 1st Slave does not exceed 0.08 second

The analysis of Fig. 4 and Fig. 5 clearly shows

that efficiency decreasing of developed parallel
algorithm with dynamic mapping caused by load
imbalance among processors, i.e. the processing
time of 5th Slave is biggest one. It is connected with
non-stationary and non-uniform distribution of the
training time of all IHDNNs. For example, we have
shown a distribution of the training time of all 50th
IHDNNs in Fig. 7.

Thus, summarizing the analysis above, it is
expedient to consider two following approaches to
parallelize this task in a case of non-uniform
distribution of the training time of each module of
IHDNN:
• If we can predict the training time of each

IHDNN module before the parallelization, then
it is possible to increase the efficiency by
optimal mapping of the IHDNNs using predicted
training time as mapping criteria. In this case

long tasks should be mapped first on separate
processors;

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Number of IHDNN

Tr
ai

ni
ng

 ti
m

e,
 m

in
ut

es

Fig. 7 - Distribution of the training time of
all 50th IHDNNs

• If we can not predict the training time of each

IHDNN module before the parallelization, then
it is expedient to develop another methods of
IHDNNs parallel training by using fine-grain
approach and to apply this fine-grain algorithm
dynamically to such IHDNN module, which
remains training when other modules have
already finished the training process.

4. CONCLUSION AND FUTURE
RESEARCHES

The efficiency analysis of coarse-grain parallel
algorithm of modular neural networks training using
visualization technique is considered in this paper. A
standard MPE library is used for visualization.
During researches there is corrected the
disadvantage of a standard MPE library, based on
astronomic time measurement. This disadvantage
has become apparent on the parallel computer Origin
300. Modification of standard MPE library by usage
of functions of processor time measurement allows
accurate visualizing parallel routine executing
without any influence of other computational tasks
of parallel computer. As a result, decreasing of
efficiency of IHDNNs parallel training algorithm is
caused by load imbalance among processors not
latency during communication. This load imbalance
is characterized by non-stationary and non-uniform
distribution of the IHDNNs training time. Therefore
we pay our attention for development of fine-grain
parallelization techniques for artificial neural
networks in the future, which allows parallelizing
each module of neural network independently.

Volodymyr Turchenko, Viktor Demchuk / Computing, 2005, Vol. 4, Issue 1, 12-18

 17

5. ACKNOWLEDGEMENTS
Dr. Volodymyr O. Turchenko, the corresponding

author of this paper, would like to thank European
Organization INTAS for financial support of this
research within Postdoctoral Fellowship INTAS

YSF 03-55-2493 “Development of Parallel
Neural Networks Training Algorithms on Advanced
High Performance Systems”. This support is
gratefully acknowledged.

6. REFERENCES
[1] Parallel processing of information: 5 volumes /

АS USSR. Phys. – mech. institute. – К.:
“Naukova dumka”, 1984-1990. – Vol.5:
Problem-oriented and specialized means of
information processing / Aksenov А., Aristov
V., Barsylovych E. et al.; Eds. B. Malinovsky
and V. Hrytsyk. – 504 P.

[2] V. Kumar, A. Grama, A. Gupta, G. Karypis.
Introduction to Parallel Computing. – СА
(USA): Benjamin/Cummings, 1994.

[3] B.H.V. Topping, J. Sziveri, A. Bahreinejad,
J.P.B. Leite, B. Cheng. Parallel processing,
neural networks and genetic algorithms //
Advances in Engineering Software. – 1998. –
Vol. 29, No. 10. – P. 763–786.

[4] Chang L.-C., Chang F.-J. An efficient parallel
algorithm for LISSOM neural network // Parallel
Computing. – 2002. – Vol. 28, No. 11. – P.
1611-1633.

[5] Estévez P. A., Paugam-Moisy H., Puzenat D. et
al. A scalable parallel algorithm for training a
hierarchical mixture of neural experts // Parallel
Computing. – 2002. – Vol. 28, No. 6. – P. 861-
891.

[6] V. Turchenko. Parallel Algorithm of Dynamic
Mapping of Integrating Historical Data Neural
Networks // Information Technologies and
Systems. – 2004. – No. 1. – Vol. 7. – No. 1. –
pp. 45-52.

[7] Patent #50380 Ukraine, IPC 7 G06F15/18.
Method of the training set formation for neural
network predicting drift of data acquisition
device / A.Sachenko (UA), V.Kochan (UA),
V.Turchenko (UA), V.Golovko (BY), J.Savitsky
(BY), T.Laopoulos (GR). – Filled 04 Jan 2000;
Issued 15 Nov 2002. – 14 p.

[8] Sachenko, V. Kochan, V. Turchenko.
Instrumentation for Data Gathering // IEEE
Instrumentation and Measurement Magazine. –
2003. – Vol. 6, No. 3. – P. 34-40.

[9] V. Turchenko. Static Mapping of Integrating
Historical Data Neural Networks on Parallel
Computer // Proceedings of the 16th IASTED

International Conference Parallel and
Distributed Computing and Systems. – 2004. –
Cambridge (MA, USA). – P. 884-889.

[10] National Science Foundation Science and
Technology Center (NSF), MPI: A Message-
Passing Interface Standard, 1995 – 239 p.

[11] J. Dongarra, D. Laforenza, S. Orlando (Eds),
Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Lecture Notes in
Computer Science #2840. – Berlin: Springer-
Verlag, 2003. – P. 188-195.

[12] V. Turchenko, V. Kochan, A. Sachenko et
al. Enhanced method of historical data
integration using neural networks // Sensors and
Systems. – 2002. – Vol. 7 (38). – P. 35-38.

[13] Chan, W. Gropp, E. Lusk. User’s Guide for
MPE: Extensions for MPI Programs. Technical
report ANL/MCS-TM-ANL-98/xx, Argonne
National Laboratory, 1998, pp. 1-31

[14] S. Moore, D. Cronk, K. London and J.
Dongarra. Review of Performance Analysis
Tools for MPI Parallel Programs, 2001, 8 p
(http://icl.cs.utk.edu/publications/pub-papers/
2001/perftools-review2.pdf).

[15] V. Turchenko, B. Demchuk. Visualization
Tools of Processor Time of Parallel Programs,
Scientific Journal of Khmelnitsky National
University, 2005, Vol. 2, No. 4, pp. 146-151

[16] T. Senta, A. Takahashi, T. Kadoi et al.
Itanium2 32 way Server System Architecture //
NEC Research and Development. – 2003. – Vol.
44. – P. 8-12.

[17] http://www.cs.indiana.edu/classes/b673/
notes/HTML/jumpshot.html

Volodymyr Turchenko
received his M.S. degree
from Brest Polytechnic
Institute, Belarus in 1995
and Ph.D. degree from
Lviv National Technical
University, Ukraine in
2001 both in computer
engineering.
Now he is an Assistant
Professor of the
Information Computing
System and Control
Department of the

Institute of Computer Information Technologies. He
is the leader of Neural Network Research Group. His
main research interests are intelligent
instrumentation, distributed sensor networks and
neural networks.

Volodymyr Turchenko, Viktor Demchuk / Computing, 2005, Vol. 4, Issue 1, 12-18

 18

Viktor Demchuk from
2002 year student of
Institute of computers
information technologies
of the Ternopil academy
of national economy.
From 2004 year works as
the technician of
educational computer
laboratory of department
of the informative
computer systems and
management. Now he is

an engineer of International Scientific Journal of
Computing. Areas of scientific interests: neural
networks, parallel algorithms, high performance
computing, grid.

