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Abstract: In this paper the flutter of nonlinear viscoelastic plates in a supersonic flow is investigated. The basic 
direction of work is consisted in taking into account of viscoelastic material’s properties at supersonic speeds.Quasi-
steady aerodynamic panel loadings are determined using piston theory. The vibration equations relatively of deflection 
are described by Integrо-differential equations in partial derivatives. The plate nonlinear partial integro-differential 
equation is transformed info a set of nonlinear ordinary IDE through a Bubnov-Galerkin’s approach. The resulting 
system of IDE is solved through the Badalov-Eshmatov integration method. Critical speeds for plate flutter are defined.   
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1. INTRODUCTION 
At present, there are much literature on the 

flutters, and the problem sufficiently is solved, 
though we need enough accordance between the 
theory and experiments for configuration and Mach 
number, In the [1,2 ] work Fung has analyzed the 
problem of the flutters. The problem is investigated 
by Dowell and Boss [3].     

The stability of plates and shells in supersonic 
flow was considered in many works [4-6]. The 
analysis of the motion of structures under 
deterministic treatment of the problem is given in 
these works. The mathematical modeling is based on 
linear representation of elastic and aerodynamic 
forces. The aerodynamic load is obtained from a 
quasi-steady first-order aerodynamic piston theory. 

In connection with wide introduction of 
composite materials in the aircraft designs, creation 
of the calculation methods of separate elements of 
constructions, made of the materials had great 
importance [7, 8].   

In the given work mathematical models of the 
problems of the viscous-elastic plates were 
constructed by taking account of the geometrical and 
aero dynamical non-linearity, aero dynamical 
damping, statically pressure dropping on the basis of 
the Kirchhoff-Love hypothesis. 

For the solution to the system was applied the 
problem was solved by the usual IDE based on 
flexure polynomial approximation by means of 
Bubnov-Galerkin’s method. The numerical method 
based on quatrature proposed by F.Badalov and 

H.Eshmatov [9]. It was described the algorithm of 
the numerical solution on the basis of the method. 

Critical speeds of the viscous-elastic plate’s 
flutter moved by constant super sound speed were 
found in all parts of the problem. 

 
2. MAIN EQUATIONS 

Considered here is the response of three 
dimensional viscous-elastic plates in high supersonic 
flow to a disturbance.  

Von Karman’s  large deflection plate equations 
are used to describe the viscous-elastic  behavior of 
the plate [4]: 
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Where D is the plate stiffness obtained from  
D=Eh3/12(1-µ2), with E  being the Young modulus, 
h the plate thickness, and µ the Poisson ratio. In 
Eq.(1), ρ is the plate material density. The 
biharmonic term is defined as 
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In Eq.(1),  R* is the relaxation operator obtained 
from  
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R(t-τ ) the relaxation kernel. The plate deflection is 
W whereas φ is the Airy stress function. 

In Eq.(1), q is the aerodynamic pressure loading 
due to the uniform supersonic flow. For high Mach 
numbers this pressure is given approximately by the 
usual quasi-steady expression 
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 ∞p -pressure; V∞  is the speed of sound. 
  

3. SOLUTION OF THE STRESS  
FUNCTION 

To solve Eq.(2) for the function  φ, the deflection 
W(x,y,t)  may be expressed in terms of the assumed 
mode expansion 
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where  Wnm(t)  are the generalized coordinates. 

Solution (4) satisfies the geometric boundary 
conditions of a simply supported plates at the four 
sides. Substitution of Eq.(4) into Eq.(2) gives the 
non-homogeneous partial differential equation 

 

{ }4321

1, 1,

*
22

4
4

)()()()(

)()()1(
4

λλλλ

πφ

nmirirnmirnmnmir

nrtWtWR
ba

E
in rn

irnm

−+++++−×

×−=∇ ∑∑
∞

=

∞

=
   (5)                  

 
where  

b
yrmCos

a
xinCos ππλ )()(

1
++

= ;        

 

b
yrmCos

a
xinCos ππλ )()(

2
−+

= ; 

 

b
yrmCos

a
xinCos ππλ )()(

3
+−

= ;         

 

b
yrmCos

a
xinCos ππλ )()(

4
−−

= . 

 

The solution of this equation consists of two 
parts: the particular integral and the homogeneous 
solution. The particular integral may be written in 
the from 
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4. MODAL DYNAMIC EQUATIONS 
Substituting the stress function solution (6) are 

substituted along with the modal expansion (4) for 
W   into the plates equation of motion (1) and 
applying Bubnov-Galerkin method gives the 
ordinary nonlinear IDE : 
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aklnmirjs  ,  Gklnmir     - non-dimensional coefficients [10]. 

 
Introducing these  parameters, 
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and keeping the previous designations, the equations 
(7) takes the non-dimensional forms. 

Equation (7)  takes the non-dimensional form 
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Equations (8) allow conducting qualitative 

analysis of solving the problems of the flutters of the 
viscous-elastic plates.   
 

5. NUMERICAL RESULTS 
Integration of the system (8) of Koltunov-

Rjanitsin kernel (R(t)=Aexp(-β t)tα -1, 0<α<1) was 
made by numerical method [9]. According to this 
method the equation (8) twice integrating over t 
from 0  to t. By considering  for that purpose t=ti, 
ti=ih, i=1,2,… (h=const) and replacing integrals by 
quadrature formulas of trapezes for calculation of 
Wikl=Wkl(ti)  we shall receive recurrent formulas. 

On the basis of algorithm, is created of the 
programs in algorithmic language "Turbo-Pascal". 

The results of calculations are given in Table. 
The results of calculations, conducted by the 

formulae (8) for plates, flowed by supersonic gas 
with parameters p∞=1,014 kg/sm2, æ=1,4 and 
V∞=340 m/s are given in Table. 

 

Table. Dependences of critical speeds of visco-elastic  
plate from physico- mechanical and geometrical 

parameters 

     
   A 

 
α 

 
β 

 
  λ 

a/h  
Vcr 

0 
0,001 
0,04 
0,1 

 
0,25 

 
 0,05 

 
3 

 
400 

854,15 
852,45 

762 
753 

 
0,05 

0,1 
0,5 

0,75 

 
 0,05 

 
  3 

 
400 

624 
835 
863 

0,1 0,25  0,08 
  0,1 3 400 762 

746 
 

0,1 
 

0,25 
 
      
0,05 

1 
1,5 
   2 

 
400 

488 
839 

1363 
 

0,1 
 

0,25 
 

 0,05 
 

  3 
350 
450 
500 

1130 
525 
435 

 
As a criterion, determining the critical speed Vcr 

we take condition that at the speeds amplitude of 
oscillations is changed by harmonica law. At more 
supercritical speeds oscillatory motions take place in 
intensive amplitude, which can lead to damage of 
the construction. At  V<Vcr  the oscillatory 
amplitude is attenuated. 

The analysis of the results given in the table 
shows that the coefficient Vcr is elastic (A=0)  and 
viscous-elastic (A=0,1) according to 854,15 m/s and 
753 m/s. Viscous-elastic properties of the material 
lead to reduction of the flutter speed. 

 Increasing the α parameter leads to changing Vcr 

. The research was conducted at  α=0,1 ; 0,5 ; 0,75 . 
It’s clear that increasing the parameter α from 0,1 to 
0,75 is accompanied by increasing the critical 
number Vcr of the flutter from Vcr=624 m/s to 
Vcr=863 m/s. 

  It was observed the influence of the parameter λ 
to plates. Increasing the parameter λ  from 1 to 2 
leads to reducing Vcr up to 179 percent. 
 

6. CONCLUSION 
Calculative experiments showed, that the in 

influence of attenuation parameter β of kernel to 
critical speed of the plate flutter in comparison with 
the viscosity A  parameter and singularity α were 
negligible that confirms the known conclusion-
exponential kernel of relaxation can’t describe the 
material construction properties fully. The negligible 
reducing the singularity parameter leads to 
substantial reducing the critical speed of the flutter. 
Consequently taking in consideration of this effect at 
the aircraft construction projecting has great 
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importance, as the less the singularity parameter of 
the material, the higher intensity of dissipative 
processes in these constructions.    
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