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Abstract: In this work is investigated the flutter of viscoelastic cylindrical shell streamlined by gas current. The basic 
direction of work is consisted in taking into account of viscoelastic material’s properties at supersonic speeds. The 
vibration equations relatively of deflection are described by Integra-differential equations in partial derivatives. By 
Bubnov-Galerkin methods reduced the problems to investigation of system of ordinary Integro-Differential Equations 
(IDE). The IDE are solved by numerical method, which based on using of quadrature formula. The algorithm of the 
numerical solution on the basis of the method was described.  Critical speeds for cylindrical shell flutter are defined. 
The influence of the viscoelastic property of the material, geometrical and aerodynamically non-linearity to the 
current value of critical speed and amplitude-frequency characteristics of the cylindrical shells was analyzed.    
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1. INTRODUCTION 
The problems of algorithmization of mechanics 

problem of continua are studied in works of the 
academician of Academy of Sciences of Republic of 
Uzbekistan V.K.Kabulov [1-3]. In the given article 
this problem is examined for non-linear problems 
on flutter of viscous-elastic cylindrical shells.  

Earlier in works [4-8] and others flutter of elastic 
cylindrical panels and shells in a supersonic gas 
current were examined. For description of elastic 
behavior of shells the equations of Margerra were 
used. 

In connection with wide introduction of 
composite materials in the aircraft designs, creation 
of the calculation methods of separate elements of 
constructions, made of the materials had great 
importance [9-11].   

In the given work mathematical models of the 
problems of the visco-elastic shells were constructed 
by taking account of the geometrical and 
aerodynamical non-lineariaty, aerodynamical 
damping on the basis of the Kirchhoff-Love 
hypothesis. 

For the solution to the system was applied the 
problem was solved by the usual IDE based on 
flexure polynomial approximation by means of 
Bubnov-Galerkin’s method. The numerical method 
based on quatrature proposed by F.Badalov and 

H.Eshmatov [12, 13]. It was described the algorithm 
of the numerical solution on the basis of the method. 

Critical speeds of the visco-elastic shell flutter 
moved by constant supersound speed were found in 
all parts of the problem. 

 
2. MAIN  EQUATIONS 

Let's consider hinget supported, selfcontained, 
circumferential, visco-elastic cylindrical shell with 
radius of curvature R of a median surface and 
length L, externally streamlined by a supersonic 
gas current with speed V, directed along generatrix.  

 The equation of motion of the shell is [7, 8] 
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Where D=Eh3/12(1- 2µ ) is the flexural rigidity, 

E  the Young’s modulus, h the shell thickness, and 
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µ  the Poisson ratio. In Eq.(1), ρ  is the shell 
material density, W(x,y,t) – is the transverse 
displacement; ( )tyx ,,Φ - Airy stress function . 

The biharmonic term is defined as 
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L – the differential operator : 
 

( ) ,2,
22

2

2

2

2

2

2

2

2

yxyx
W

xy
W

yx
WWL

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
Φ

∂
−

Φ
+

Φ
=Φ

 
 

( ) .2,
22

2

2

2

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

−=
yx

W
y
W

x
WWWL

∂
∂

∂
∂

∂
∂

 
In Eq.(1),  R* is the relaxation operator obtained 

from  
 

∫ −=∗
t
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0

)()( ττψτψ  , 

 
  )( τ−tR  the relaxation kernel.  

The strain components in each point of shell 
ε x , yε , xyε   are connected to stress components    

xσ , yσ   and   xyσ   relations: 
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The inverse relationships is given by as follows 

[7]:  
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mutually return. 
Let's express now moments   

Mx , M y  and  M xy  

through  function of  W(x,y,t) is the transverse 
displacement [8]: 
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The forces per unit length in the x and y axis 

directions, as well as the shear force, are given by 
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Alongside with components yx εε ,  and  εxy (3)  

we shall enter also mean is thickness h components 

yx εε ,  and хуε . They can be considered as 
components of deformation of a median surface [7]:  
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The  strain components xyy    and    , εεε x  are 
given by the nonlinear relations [7]: 
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where ( )yxu , ,  v(x,y)    -tangential displacement of 
points of a median surface, кx, ку - main curvatures of 
a unreformed median surface. 

In Eq.(1), q is the aerodynamic pressure loading 
due to the uniform supersonic flow. For high Mach 
numbers this pressure is given approximately by the 
usual quasi-steady expression [14] 
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 ∞p - pressure; V∞  is the speed of sound. 
 

3. SOLUTION OF THE STRESS  
FUNCTION 

The stress function Φ and W- transverse 
displacement of shells is expanded in a series of 
functions  
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So that only the modes Bubnov-Galerkin method 

is used to transform Eq.(2) into a set of simultaneous 
IDE for  Φkl :    
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The array  Akl  possesses a unique in verse  Akl

-1   
that can be found numerically. The solution for  Φkl   
then has the form 
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4. MODAL DYNAMIC EQUATIONS 

Substituting the stress function solution (5)  are 
substituted along with the modal expansion (6) for 
W   into the shells equation of motion (1) and 
applying Bubnov-Galerkin method gives the 
ordinary nonlinear  IDE : 
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and keeping the previous designations, the equations 
(8) takes the non-dimensional forms as follows:   
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aklnmir , Kklnmir , Fklnmir - non-dimensional 
coefficients  [11].  

Equations (9) allow conducting qualitative 
analysis of solving the problems of the flutters of the 
viscous-elastic cylindrical shells.   

 
5. NUMERICAL  RESULTS 

Integration of the system (9) of Koltunov-
Rjanitsin kernel (R(t)=Aexp(-β t)tα -1, 0<α<1) was 
made by numerical method [12]. According to this 
method the equation (9) twice integrating over t 
from 0  to t,  then the formula of numerical 
integration will as follows:   

For this purpose we shall write it in the integral 
form, then the formula of numerical integration will 
look like as follows:  
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P1,   N,1,   ,...;2,1 === mni ; 
where Aj, Bs – numerical coefficient which are not 
dependent on selection of integrands and receiving 
different values depending on the used quadrature 
formulas.  
      On the basis of algorithm (10), is created of the 
programs in algorithmic language "Turbo-Pascal". 

The results of calculations, conducted by the 
formulae (10) for shells, flowed by supersonic gas 

with parameters p∞=1,014 kg/sm2, æ=1,4 and 
V∞=340 m/s are given in Table . 

As a criterion, determining the critical speed Vcr 
we take condition that at the speeds amplitude of 
oscillations is changed by harmonically law. At 
more supercritical speeds oscillatory motions take 
place in intensive amplitude that can lead to damage 
of the construction. At  V<Vcr  the oscillatory 
amplitude is attenuated [15]. 

The analysis of the results given in the table 
shows that the coefficient Vcr is elastic (A=0)  and 
viscoelastic (A=0,1) according to 780 m/s and 423 
m/s. Viscoelastic properties of the material lead to 
reduction of the flutter speed. 

 
Table. Dependences of critical speeds of visco-elastic  
shells from physico- mechanical and geometrical  

parameters  

 
Increasing the α parameter leads to changing Vcr . 

The research was conducted at  α=0,1 ; 0,5; 0,75.  
It’s clear that increasing the parameter  α from 0,1 to 
0,75 is accompanied by increasing the critical 
number Vcr of the flutter from Vcr=505 m/s to 
Vcr=575 m/s. 

It was observed the influence of the parameter 
L/h to shells. Increasing the parameter L/h  from 
2000 to 2500 leads to reducing Vcr up to 49,4 
percent.  
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The finding out of a role of number of surges m in 
a circumferential direction introduces large concern 
for problems of a flutter of shells. At first, knowing a 
role of number m it is possible to eliminate known 
uncertainty of the problem of a flutter, which is 
caused by availability of m in input equations. 
Secondly, having found out the role of m, it is 
possible to penetrate more deeply into an entity of the 
flutter phenomenon of shells. However, there is no 
general analytical and authentic expression for 
calculus of number m in problems of flutter of shells. 
Usually each concrete problem at first solved for a 
number of values m and select that value mmin, which 
is corresponds to minimum critical speed of a flutter 
(see tab. ). All further calculi are carried out, using 
the obtained value of mmin.  

From the presented analysis it is visible, that to 
minimum critical speed of a flutter for a 
circumferential cylindrical shell there corresponds 
number of surges in a circumferential direction, equal 
to six. This number of surges mmin also depends on 
the sizes and characteristics of shell material.   

 
6. CONCLUSION 

Calculative experiments showed, that the in 
influence of attenuation parameter β of kernel to 
critical speed of the shell                                                                                                               
flutter in comparison with the viscosity A  parameter 
and singularity α were negligible that confirms the 
known conclusion-exponential kernel of relaxation 
can’t describe the material construction properties 
fully. The negligible reducing the singularity 
parameter leads to substantial reducing the critical 
speed of the flutter. Consequently taking in 
consideration of this effect at the aircraft 
construction projecting has great importance, as the 
less the singularity parameter of the material, the 
higher intensity of dissipative processes in these 
constructions.    
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