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Abstract: Many papers and articles attempt to define or even quantify privacy, typically with a major focus on 
anonymity. A related research exercise in the area of evidence-based trust models for ubiquitous computing 
environments has given us an impulse to take a closer look at the definition(s) of privacy in the Common Criteria, which 
we then transcribed in a bit more formal manner. This led us to a further review of unlinkability, and revision of 
another semi-formal model allowing for expression of anonymity and unlinkability – the Freiburg Privacy Diamond. 
We propose new means of describing (obviously only observable) characteristics of a system to reflect the role of 
contexts for profiling – and linking – users with actions in a system. We believe this approach should allow for 
evaluating privacy in large data sets. 
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1. INTRODUCTION 
This paper outlines the development of our 

appreciation of privacy concepts that started with a 
research exercise on data mining in evidential data 
for evidence-based reputation systems. Earlier 
versions of this work were presented at the 2004 
IEEE Workshop on Privacy and Security Aspects of 
Data Mining, and at the 2005 NATO Advanced 
Research Workshop on Security and Embedded 
Systems. 

The novel idea of evidence-based reputation (or 
trust) systems is that such systems do not rely on an 
objective knowledge of user identity [1, 2, 11]. One 
has instead to consider possible privacy 
infringements based on the use of data (evidence) 
about previous behaviour of entities in the systems. 
We provide a brief introduction to evidence-based 
trust/reputation systems, as well as to the privacy 
issues, addressing the common problem of many 
papers that narrow the considerations of privacy to 
anonymity only. 

The paper is structured in the following way – 
remaining parts of this introductory section provide 
a brief overview of issues related to evidence-based 
systems, Common Criteria and Freiburg Privacy 
Diamond models, motivation for our research, and a 
simple example used to illustrate the use of privacy 
models. Section two then presents some of the 
Common Criteria concepts used in the following 

discussions, and also outlines the Common Criteria 
approach to privacy issues (families), together with a 
discussion of unlinkability – the most complex 
property/quality of privacy. The third section 
presents the Freiburg Privacy Diamond – a semi-
formal model allowing for expression of anonymity 
and unlinkability, focussing on the mobile 
environment. Section four then examines the role of 
contexts in these two approaches to modelling 
privacy. This leads to the fifth section that proposes 
using contextual information to model systems for 
privacy evaluations, and presents non-existential 
definitions of the four Common Criteria privacy 
concepts. Section six concludes with an outline of 
related ideas and open issues. 

 
1.1 Evidence-based trust/reputation 

Evidence-based systems work basically with two 
sets of evidence (data describing interaction 
outcomes). The primary set contains evidence that is 
delivered (or selected from locally stored data) 
according to a given request content. That data is 
used for reputation evaluation to grant/reject access 
requests. Data in this first set may contain 
information from third parties representing evidence 
about behaviour collected by other nodes – 
recommenders. 

The secondary set comprises data relevant to a 
local system. That data is used for self-assessment of 
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the local system security in various contexts (it may 
be a non-deterministic process in a certain sense). 
This set may be also referenced as derived or 
secondary data. Note that there may be an 
intersection between the two evidence sets with 
implications to privacy issues that we are 
investigating in related projects [4, 5]. 

The approach of reputation systems is rather 
probabilistic and this feature directly implies 
properties of security mechanisms that may be 
defined on top of such systems. The essential 
problem arises with recommendations that may be 
artificially created by distributed types of attacks 
(Sybil attack [7]) based on large number of nodes 
created just to gather enough evidence and achieve 
maximum reputation that would allow them to 
launch their attack(s). 
 
1.2 A NOTE ON THE COMMON CRITERIA 

AND THE FREIBURG PRIVACY 
DIAMOND MODELS 

This paper proposes formal definitions of 
existing Common Criteria concepts/areas of privacy 
and compares them with the Freiburg Privacy 
Diamond model (FPD) [18]. Recent research in 
anonymity systems [6, 10, 15] demonstrates that it is 
usually unfeasible to provide perfect anonymity and 
that implementations of privacy enhancing systems 
may provide only a certain level of privacy 
(anonymity, pseudonymity). This leads to definitions 
of several metrics that can quantify level of privacy 
achievable in a system, most often a (remailing) 
mix. 

The Common Criteria class Privacy deals with 
aspects of privacy as outlined in their four families. 
Three of these families have a similar grounding 
with respect to entities (i.e., users or processes) 
whose privacy might be in danger. They are 
vulnerable to varying threats, which make them 
distinct from each other. These families are 
Unobservability, Anonymity, and Unlinkability. The 
fourth family – Pseudonymity – addresses somewhat 
different kind of threats. 
 

1.3 MOTIVATION 
While working on related issues [5], we became 

aware of the need to define the Common Criteria 
concepts (called families) dealing with privacy in a 
bit more precise fashion. As we were examining 
definitions of privacy concepts/families as stated in 
Common Criteria two negative facts emerged. First, 
the definitions are given in an existential manner, 
and secondly, not all aspects of user interactions 
relevant to privacy are covered. Both issues come 
from research carried out in the areas of side-

channel analysis and security of system 
implementations, showing that it is not sufficient to 
take into account only the idealised principals and 
messages. It is also very important to consider the 
context, in/with which the interactions are 
undertaken. Information like physical and virtual 
(IP, MAC addresses) positions of users and 
computers, time, type of service invoked, size of 
messages, etc. allow to profile typical user behaviour 
and successfully deteriorate privacy of users in 
information systems. 

We propose to introduce context information 
(side/covert channels, like physical and virtual 
location of users and computers, time, type of 
service invoked, size of messages, etc.) into the CC 
model and compare it with the FPD model that 
reflects only one very specific context information – 
location. 

Our objectives for starting this work are as 
follows. Firstly, we want to provide a model that 
allows one to cover as many aspects of user 
interactions as is beneficial for improving 
quantification/measurement for different aspects of 
privacy; this model shall definitely provide for better 
reasoning/evaluation of privacy than Common 
Criteria and Freiburg Privacy Diamond models do. 
Secondly, and in a close relation to the first 
objective, we want to illustrate the deficiency of the 
Common Criteria treatment of privacy, and to 
provide a foundation that would assist in improving 
this treatment. Thirdly, with a long-term perspective, 
we aim to provide basis for partly or fully automated 
evaluation/measurement of privacy. 

This paper does not address all aspects of data 
collection for privacy models, and neither does it 
suggest any means for improving the level of 
privacy protection. 

 
1.4 A SIMPLE EXAMPLE 

Let us present a trivial example that we use later 
in this paper to compare the formal models for 
privacy. The attacker attempts to determine which 
payment cards are used by a certain person with a 
particular card – she is interested in linking together 
all the cards of this person (identification of the 
particular person is not part of the attacker's goal at 
the moment). We assume the attacker is able to 
collect till receipts of shoppers from the same house 
or the same company. For this subset of supermarket 
clients we then do not mind a given receipt to show 
only a part of the payment card number. 

There are three payment cards (with numbers 11, 
21, 25) used for three actual shoppings (visits of the 
supermarket resulting in payments – A, B, C), and 
there is also a set of typical baskets/shopping lists (l, 
m) in our simplistic example. 
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The attacker has a precise (100%) knowledge 
about connections between payment cards and 
shoppings, and an imprecise knowledge about 
classification of individual shoppings into typical 
“consumer group” baskets. This classification to 
“typical baskets” is usually done with some kind of a 
data-mining algorithm over actual shopping lists. 
Note that one could obviously achieve perfect 
knowledge should loyalty cards be used (and their 
numbers on the receipts), introduction of this has no 
qualitative impact to this example illustration in our 
model. 

With just changing semantics, we may define a 
very similar example based on users of chat services 
connecting from a given Internet cafe. The 
categories would then be chat-room pseudonyms, 
chat sessions, and classification into groups based on 
interest (content) and/or language, with the attacker's 
goal of identifying pseudonyms used by one user in 
different chat sessions. 
 
2.  PRIVACY IN THE COMMON CRITERIA 

 
2.1  THE STARTING POINT – MODEL 
Since some of the discussions and proposals in 

this paper are based on the Common Criteria 
concepts, let us briefly present the related 
information. Relevant Common Criteria notions and 
concepts are as follows [17]: 
 
Target of Evaluation (TOE) – An IT product or 
system and its associated administrator and user 
guidance documentation that is the subject of an 
evaluation. 
 
TOE Security Functions (TSF) – A set consisting 
of all hardware, software and firmware of the TOE 
that must be relied upon for the correct enforcement 
of the TOE security policy. 
 
TSF Scope of Control (TSC) – The set of 
interaction that can occur with or within TOE and 
are subject to the rules of the TOE security policy. 
 
Subject – An entity within a TSC that causes 
operations to be performed. 
 
Assets – Information or resources to be protected by 
the countermeasures of a TOE. 
 
Object – An entity within a TSC that contains or 
receives information and upon which subject 
perform operations. 
 
User – Any entity (human user or external IT entity) 
outside the TOE that interacts with TOE. 

We can see (Fig. 1) that user does not access 
objects directly but through subjects – internal 
representation of herself inside TOE/TSC. This 
indirection is exploited for definition of 
pseudonymity as we will see later. Objects represent 
not only information but also services mediating 
access to TOE's resources. This abstract model does 
not directly cover communication like in (remailer) 
mixes as it explicitly describes only relations 
between users/subjects and resources of target 
information system. 

 

 
Fig. 1 – Common Criteria Model. 

However, it is not difficult to extend the proposed 
formal definitions of major privacy concepts based 
on this model for communication models. 
 

2.2 PRIVACY IN THE COMMON 
CRITERIA 

Unobservability: This family ensures that a user 
may use a resource or service without others, 
especially third parties, being able to observe that 
the resource or service is being used. The protected 
asset in this case can be information about other 
users' communications, about access to and use of a 
certain resource or service, etc. Several countries, 
e.g. Germany, consider the assurance of 
communication unobservability as an essential part 
of the protection of constitutional rights. Threats of 
malicious observations (e.g., through Trojan Horses) 
and traffic analysis (by others than communicating 
parties) are best-known examples. 
 
Anonymity: This family ensures that a user may use 
a resource or service without disclosing the user 
identity. The requirements for Anonymity provide 
protection of the user identity. Anonymity is not 
intended to protect the subject identity. Although it 
may be surprising to find a service of this nature in a 
Trusted Computing Environment, possible 
applications include enquiries of a confidential 
nature to public databases, etc. A protected asset is 
usually the identity of the requesting entity, but can 
also include information on the kind of requested 
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operation (and/or information) and aspects such as 
time and mode of use. The relevant threats are: 
disclosure of identity or leakage of information 
leading to disclosure of identity – often described as 
“usage profiling”.  
 
Unlinkability: This family ensures that a user may 
make multiple uses of resources or services without 
others being able to link these uses together. The 
protected assets are of the same as in Anonymity. 
Relevant threats can also be classed as “usage 
profiling”. 
 
Pseudonymity: This family ensures that a user may 
use a resource or service without disclosing its user 
identity, but can still be accountable for that use. 
Possible applications are usage and charging for 
phone services without disclosing identity, 
“anonymous” use of an electronic payment, etc. In 
addition to the Anonymity services, Pseudonymity 
provides methods for authorisation without 
identification (at all or directly to the resource or 
service provider). 
 

2.3  PRIVACY FAMILIES REVISITED 
Common Criteria privacy families are defined in 

an existential manner and any formal definition of 
them has to tackle a number of ambiguities. It is 
unrealistic to assume perfect/absolute privacy as 
demonstrated by several anonymity metrics, based 
on anonymity sets (number of users able to use a 
given resource/service in a given context) [12] or 
entropy  assigned to a projection between service 
and user/subject identities (uncertainty about using a 
service) [15]. 

Can we introduce more formal definition of 
privacy notions and use them to define mutual 
relations? It is not easy, but the prospects of getting 
a clearer picture of mutual relations between 
different privacy aspects/qualities are encouraging. 

Our proposal for the CC model privacy 
formalisation is based on the following graphical 
representation (Fig 2.). The set S  represents 
observations of uses of services or resources, IDP  is 
equivalent of subjects and ID  stands for users as 
defined in the CC. Sets SU  and IDU  are sets of all 
possible service use observations and identities, 
respectively – not only those relevant for a given 
system. By stating with probability not significantly 
greater than in the following definitions, we mean 
negligible difference (lower than ε ) from a 
specified value [3]. Let A be any attacker with 
unbounded computing power. 

Our formal transcription of existential definitions 
of CC privacy families is as follows. 

 

ID

u

UID

mi

US

P

ID

m

S

 
Fig. 2 – Schematics for the CC view of privacy. 

Unobservability – there is a space of encodings 
( SU ) from which some elements are defined to 
encode use of service/resource ( S ). However A is 
not able to determine Ss∈∀  with a probability 
significantly greater than 1/2 whether a particular 

Ss∈  or )( SUs S −∈ . 
 
Anonymity – there is a probability mapping 

IDu USm →: . When 
1.  A knows the set ID  – then Ss∈ , IDuID ∈ , 

she can only find IDu usm =)(  with a 
probability not significantly greater than 1/|ID|. 

2.  A does not know anything about ID  (particular 
elements or size) – then for IDID Uu ∈∀ , she 
cannot even guess whether IDuID ∈  with a 
probability significantly greater then 1/2. (The 
probability of finding IDu usm =)(  would not 
be significantly greater then 0. 

 
Unlinkability – let us assume there is a function 

],[: yesnoSSm →××δ . This function determines 
whether two service uses were invoked by the same 

IDID Uu ∈  or not. Parameter m stands for a function 
that maps service uses ( S ) into sets of identities 

IDU  (e.g. um  from Fig 2.). 
It is infeasible for A with any δ  and any ,, 21 Sss ∈  

21 ss ≠  to determine whether )()( 21 smsm =  with a 
probability significantly greater than 1/2. 
 
Pseudonymity – there exists and is known to A an 
unambiguous mapping IDu PuSsusm ∈∈∀= ,,)( . 
There also exists a mapping IDi uum =)( , IDPu∈∀ , 

IDuID ∈ , but is subject to strict conditions and is 
not known to A. When A 
1.  knows ID , she cannot determine IDu  with a 

probability significantly greater than  1/|ID|; 
2.  does not know ID , she can only guess with a 

probability not significantly greater than 1/2 
whether IDuID ∈ . 

These existential expressions can then be easily 
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turned into probabilistic ones that allow for 
expressing different qualitative levels of all these 
privacy concepts/families. This can be done simply 
by changing the “not significantly greater than” 
expression to “not greater than ∆  “, where ∆ is the 
given probability threshold. 
 

2.4 THE UNLINKABLES 
Unlinkability cannot be satisfied without other 

privacy families. It is now understood [13, 14] that 
the Common Criteria definition of unlinkability is 
not supporting some aspects of unlinkability in real 
systems, and a Common Criteria modification 
proposal in this manner is currently submitted. We 
point the reader to the fact that when pseudonymity 
is flawed, an attacker may obtain the ID of an actual 
user. The same holds when anonymity is breached. 

Moreover, we are convinced that unlinkability 
may be a property of other privacy families. This 
comes straight from the formal unlinkability 
definition as stated above, where mapping m is the 
link binding the families together. Unlinkability 
should ensure that the particular family (or rather its 
implementation) does not contain side-channels 
(context information) that could be exploited by an 
attacker. We have found, in this context, two other 
meanings for unlinkability during our analysis. The 
first meaning is expressed in the following definition 
of unlinkable pseudonymity. It says that when a user 
employs two different pseudonyms, any A is not able 
to connect these two pseudonyms together. 

 
Unlinkable pseudonymity – As for the definition of 
pseudonymity above in part 2.3, and also for any 

,, 21 Sss ∈  21 ss ≠ , 11)( usmu = , 22 )( usmu =  
(where IDPuu ∈21, ) 
1.  if A knows ID – she cannot find (with 

probability significantly greater than 1/|ID|), 
whether )()( 21 umum ii = , or 

2.  A does not know ID – she cannot guess with a 
probability significantly greater than 1/4 
whether )()( 21 umum ii × belong to IDID× , 

IDID× , IDID× , IDID× , respectively. 
)( IDUID ID −=  

 
The second semantics is built on the assumption 

that knowledge of several pieces of mutually related 
information is much more powerful than knowledge 
of just one piece of such information. When 
compared with the previous definition of unlinkable 
pseudonymity, the definition is now concerned with 
a property ensuring that there is no increase in the 
probability of correct identification of a given user 
when more information is available. The same 

reasoning lies behind the following definition of 
unlinkable anonymity. 
 
Unlinkable anonymity – As for the definition of 
anonymity above in part 2.3, and 
1.  If A knows ID – she cannot find (with 

probability significantly greater than 1/|ID|), 
such ,, 21 Sss ∈  where 21 ss ≠ , 

)()( 21 smsm uu = . 
2.  A does not knot ID – with a probability not 

significantly greater than 1/4 whether 
)()( 21 smsm uu ×  belong to IDID× , IDID× , 

IDID× , IDID× , respectively. 
 
We can apply profiling when unlinkability is 

breached. Basically, unlinkability should ensure that 
the particular family (or its implementation) does not 
contain side-channels that could be used when 
several service invocations appear. 
 
The example: The Fig. 3 depicts how CC models 
our example from part 1.4. It is obvious that there is 
no information about the context information for the 
basket (chat) contents. This implies that an attacker 
will not id any link between payment cards 
(pseudonyms) using this model, even though the 
link/connection exists. This shows that CC simply 
do not address contextual information. 

4

u

user IDs payment card numbers

3
1 B

A
2

1
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21
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objectssubjects

u
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u
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25

shoppings

1

1
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Fig. 3 – The example in the CC model. 

 
3.  FREIBURG PRIVACY DIAMOND 

FPD is a semiformal anonymity (and partly also 
unlinkability) model by A. Zugenmaier et al. [18, 
19]. The model originated from their research in the 
area of security in mobile environments. The model 
is graphically represented as a diamond with vertices 
User, Action, Device (alternatives for CC's user, 
service, and subject), and Location (Fig. 4). The 
main reason for introducing location as a category 
here is probably due to the overall focus of this 
model on mobile computing. 
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Fig. 4 – Freiburg Privacy Diamond. 

Anonymity of a user u performing an action a is 
breached when there exists a connection between a 
and u. This may be achieved through any path in the 
diamond model. Let us recap basic definitions of the 
FPD model: 
1. Any element x has got a type ∈)(xtype  

},,,{ LocationDeviceActionUser . Any two 
elements such as ∨=∈ Useretypeeyx )(|{,  

},LocationDeviceAction ∨∨ ≠)(xtype  
)(ytype  are in relation R if the attacker has 

evidence connection x and y. 
2. An action is anonymous if 

}),()(|{ RauUserutypeuU R ∈∧==  is 
either empty or ,1|| >> tU R  where t is an 
anonymity threshold defining minimum 
acceptable size of anonymity set. 

3. There is the transitivity rule saying that if 
Ryx ∈),(  and ,),( Rzy ∈  and ≠)(xtype  

),(ztype  then Rzx ∈),( . 
4.  The union of all initial relation known to an 

attacker A defines his initial view AView . 

5.  The transitive closure AView of AView  defines 
all the information an attacker A may infer from 
her initial view. 

 
The book [18] also introduces three types of attacks 
with context information. 

• Recognition attack – A realizes that several 
users ( Userxtypex ii =)(, ) are in fact a 
single user. 

• Linking attack – Ryx ∈),(  and Ryz ∈),(  

are in the AView . When A is able to find 
just one pair Rxy i ∈),(  then she will know 
that xxi =  and Rxz ∈),( . 

• Intersection attack – A knows anonymity 
sets for several actions. When she knows 
that a certain user is in all anonymity sets, 
she can apply intersections to reduce size of 

anonymity set and eventually identify the 
user. 

 
Finally, the model assigns probabilities to edges 

in order to express attacker’s certainty about 
existence of particular relations with some simple 
rules how to derive certainty for transitive relations. 
 
The example: When attempting to model the 
example scenario (see part 1.4) in the FPD model, 
the attacker ends up with three diamonds for each 
service use (see Fig. 5). Here user and location 
represent domains with no particular values as there 
is no such information available. The attacker cannot 
find any intersection of the three diamonds – i.e., 
there is no attack as defined by the FPD model 
theory. This is obvious since the FPD model does 
not cover any other contextual information, only 
location and device. 
 

user

A

location location

user user

location

B C

252111

 
Fig. 5 – The example in the FPD model. 

4.  CONTEXTS IN THE TWO MODELS 
Contexts and their roles are not reflected in the 

CC model. Considering Fig. 2, we see that the two 
vectors in question ),( ui mm  are bound together 
through a pseudonym – subject in the CC language. 
Contexts may be assigned to any element of the 
model. ID represents physical entities and we may 
know their mobile phone locations, addresses, 
patterns of network usage, etc. IDP – virtual IDs – 
can be characterised by previous transactions and 
possibly virtual locations (a virtual location may be 
in some cases very effectively mapped on a physical 
location). Elements of S may be further 
characterised by type, provider, etc.  

The edges between sets (their elements) represent 
sessions taking place in the system. The information 
we may gather about them are highly dependent on 
actual implementation of the system and may 
comprise contextual information such as time, 
length, routing path, content, etc. 

 
4.1  CONTEXTS IN FPD 

The FPD model only briefly mentions context 
information but does not introduce any definition of 
it. The attacks based on context information do not 
say how to perform them but only defines changes in 

AView when an attack is completed 
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Since the FPD model newly addressed the mobile 
computing environment, as opposed to the old-
fashioned “static” environment, location had a very 
prominent role, as did the device to some extent. We 
have decided to treat these as “ordinary” context 
information, i.e. as any other additional information 
about the system that can link a user and an action 
(or more precisely, their identifiers). 

 
5.  CONEXT REVISITED – BASICS OF 

THE PATS (PRIVACY ACROSS-THE-
STREET1) MODEL 

We propose the following approach, inspired by 
the way location and device (descriptors) are 
represented in FPD. 

We suggest all context information available to 
an attacker to be represented as vertices in a graph, 
where edges are weighed with the probability of the 
two incident vertices (contextual information, user 
and service IDs) to be related/connected. Those 
connections may be  between any two vertices, and a 
path connecting a user ID and a service ID with a 
certain probability value of the path suggests a link 
between the service use and the user ID exists. 

The graph reflects all knowledge of an attacker at 
a given time. Attackers with different knowledge 
will build different graphs for a system as will likely 
do the same attacker over some time. 

What is not clear to us at the moment is the 
question whether pseudonyms should be treated 
differently from other contexts or not. Clearly they 
are more important in the model since their 
connection to users and actions defines level of 
pseudonymity achieved in the system. Yet at the 
moment we suggest all vertices to be treated equally, 
although we suspect that some of them might be 
more equal than others. :-) 
 

5.1  OUTLINE OF THE GRAPH MODEL 

We denote the set of all vertices by V, the set of 
all identifiers of service instances by S, and the set of 
all user IDs by ID. There are no edges between any 
pair of elements of ID, only indirect paths through a 
linking context, and the same applies to elements of 
S. There is also a function maxW  calculating overall 
probability weight for a path in the graph, and 
therefore also a way to determine the highest value 

),(max ba vvW  for a path between av  and bv . The 
value of any path is calculated as a multiplication of 
the weights )(w  of all its individual edges, e.g. for 

                                                 
1 Authors of this proposal work for different institutions 
located across the street.  

the path ivvvP ,,, 21 K=  of i vertices of the graph, 
the value of the path P is 

).,(),(),(),( 132211 iii vvwvvwvvwvvW −××= K  
 

Unobservability (of service is ) – a graph that A can 
build after observing a system at a given time does 
not include is  at all. 
 
Unlinkability (between two nodes 21,vv , at the 
level ∆ ) – a graph that A can build when observing 
the system at a given time has no path connecting 1v  
with 2v with the overall probability greater than ∆ , 
i.e. provides ∆+≤ ||/1),( 21 VvvW , where 

., 21 Vvv ∈  
 

Anonymity (of a user IDuID ∈ , at the level ∆ ) – 
then Vv∈∀ , when A 
1.  knows the set ID, she can only find a path from 

v to IDu  with the weight not greater than 
∆+||/1 ID , such that ||/1),(max IDuvW id ≤  

∆+ ; 
2. does not knot anything about ID (particular 

elements or size), she can only find a path from 
v to IDu  with the weight not greater than ∆ , 
i.e. ∆≤),(max iduvW . 

 

Pseudonymity (of a subject/pseudonym IDPu∈ , at 
the level ∆ ) – there exists a path known to A from 
any Ss∈  to u with a satisfactory value of 

),(max usW , but for A there is no knowledge of an 
edge from u to any IDuID ∈  such that when A 
1.  knows ID, the path from u to any IDu  has 

weight not greater than ∆+||/1 ID , i.e. 
∆+≤ ||/1),(max IDuuW id ; 

2.  does not know anything about ID (particular 
elements or size), the path from u to IDu  has 
weight not greater than ∆ , i.e. ≤),(max iduuW  
∆+ . 

 
There are several proposals for formal framework 

for anonymity [8, 9] and unlinkability [16]. 
Frameworks introduced in these papers define typed 
systems with several defined categories like agents, 
type of agents, messages [9] or an inductive system 
based on modal logic of knowledge [8]. We believe 
that our proposal would be more flexible and would 
cover context information as an inherent part of the 
model thus opening interesting questions. 
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Fig. 6 – An example with a PATS model graph. 

The example: Let us express our example from part 
1.4 in the PATS model. Fig. 6 shows how the 
context information about typical basket contents is 
connected to actual instances of shoppings. As we 
are interested in connections between payment cards 
(pseudonyms), we are looking for paths (and their 
aggregate values) containing pairs of particular 
payment cards. Let us try to find paths between card 
11 and the other two cards: 
 

  Path   Probabilities  Aggregate

  11 – A – l – B – 21   1 * 0.9 * 0.1 * 1  0.09 

  11 – A – l – C – 25   1 * 0.9 * 0.8 * 1  0.72 

  11 – A – m – B – 21   1 * 0.1 * 0.9 * 1  0.09 

  11 – A – m – C – 25   1 * 0.1 * 0.2 * 1  0.02 

K  K  K  

Fig. 7 – Paths connecting payment card 11 with the 
other two cards. 

These are the shortest (and highest value) paths 
only. The attacker may deduce (with a high 
probability) that payment cards 11 and 25 belong to 
the same person, though she does not know who this 
person is. According to our definitions, unlinkable 
pseudonymity is breached. 
 

6.  CONCLUSIONS AND OPEN ISSUES 
This paper points out that contexts provide (or 

perhaps we can even say that they produce) side-
channels that are not covered neither by the 
Common Criteria Privacy Class, nor by the Freiburg 
Privacy Diamond model. We also believe that 
contexts in general are not well reflected in other 
current research attempts to quantify the levels (and 
deterioration) of privacy. A simplistic introduction 
of pseudonyms will not guarantee perfect privacy, 
and we need to have some means to quantify what 
levels of privacy is needed and/or achievable for 
specific scenarios. There are two solutions for 
protection against side-channels: hiding and so-
called anonymizing. Hiding is what anonymizing 
networks utilise – they combine number of messages 

together, thus creating satisfactory anonymity set. 
Anonymizing (or rather more often in practice 
pseudonymizing) requires creation of layers that 
cloak the identity of the protected entity. Common 
Criteria use this concept when defining 
pseudonymity that still enforces accountability of 
users, but hides/shades their identity. 

One particularly interesting issue relates to the 
Common Criteria definition of unlinkability, as 
empirically reviewed by Rannenberg and Iachello 
[13, 14] and more formally specified above in 
section 2.4, is whether the unlinkable “items” in 
question should only be operations (service 
invocations) or whether other kinds of unlinkability 
should also be considered. We have provided a 
supporting evidence for a substantial revision of 
unlinkability specifications, while leaving the actual 
revision as an item for the future research. 

We also provide our basic PATS model that is 
not so limited in the coverage of selected aspects of 
user interactions and therefore allows for better 
quantification/measurement of different aspects of 
privacy. This proposal, unlike the CC or FPD 
models, introduces a computational model (based on 
graph theory). One of the problems we are currently 
examining is atomicity for the vertices, i.e. 
contextual information. We currently review various 
approaches to this problem, being aware that the 
issue of atomicity has a critical impact on the 
possibility of graph normalisation and therefore also 
for the provision of the critical properties of 
completeness and soundness. This work in progress 
includes the issue of edge dependence, for it is clear 
that the edges are not completely independent. We 
can mark sets of nodes from distinct kinds of context 
(e.g., pseudonyms, IP addresses used in connections 
from the same provider) – let us call them domains. 
Then we can address additional graph properties, 
e.g., such that for all pairs of domains 21, DD  all 
sums of probabilities from any node in 1D  to all 
nodes in 2D  are not higher then a given value, 
typically 1. 

The PATS approach allows for two definitions of 
anonymity, a weaker one considering a weight of the 
entire path from IDuID ∈ to is can be added to the 
stronger one above that considers the intermediate 
edges from IDu only (to any other vertex – 
contextual information – that would then be 
identifiable). 

Another interesting issue is the role of time that 
has a two-fold role – firstly, it can be a contextual 
information (time of an action invoked by a certain 
subject, i.e. three mutually connected vertices). 
Secondly, the probabilistic weights of edges in a 
graph change with time, as do the sets of vertices 
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and edges as such. Obviously, the contextual role of 
time may be reflected by the latter view – time of an 
action invoked by a certain subject is denoted by 
existence of vertices describing action and subject 
identifiers, connected by an edge with weight 1, at 
the given time. 
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