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Abstract: We define a community as a set of devices able to communicate permanently or erratically and that share a 
long term trust relation. Small corporate networks or home networks are typical examples of such communities. 
Historically, the devices of the same community communicated over physically isolated wired networks. They are 
currently used over spontaneous networks, the characteristics of which have implications, in terms of their security and 
the mechanisms that can be used to protect such. 
In this article, we present a fully decentralized service of automated configuration of the security mechanisms dedicated 
to communities of devices that communicate over spontaneous networks. This service is located on each device of the 
community and manages information related to the environment of the device and to the security policy. Based on this 
information, it configures dynamically and automatically the security services available on the device to ensure its 
security and that of the community to which it belongs.  
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1. INTRODUCTION 
Networks have become very common. They are 

now available to small companies and private 
individuals, as in SOHO and home networks for 
instance. 

Simultaneously to this wide adoption, ease of use 
has become a major concern in networks 
technologies. Auto-configuration is thus a key 
feature, and devices are programmed to set up their 
network automatically, as soon as they are 
interconnected. 

Consequently, a lot of devices (computers, 
PDAs, home servers, etc.) have now auto-
configuration network capabilities. This allows to 
create transiently networks anywhere anytime with 
any devices, and to exchange information about the 
services each of them propose without the users 
being aware of it [7]. Ad hoc and spontaneous 
networks are very representative of these new kinds 
of networks emphasizing auto-configuration. 

While security is still an issue in automatically 
created networks, classical security mechanisms 
cannot be used to protect them without adaptation 
[12]. Indeed, they require extensive configurations 
that would be detrimental to ease of use. Moreover, 
they allow securing a set of known devices in a 
controlled and clearly defined environment, whereas 

automatically created networks are uncontrolled 
environments with fuzzy boundaries. 

In this article, we focus on the security of 
communities. We define a community as a set of 
devices that are linked by a long term trust relation, 
and that communicate permanently or erratically 
over spontaneous networks. This long term trust 
relation is to be compared to the transient 
connectivity of the networks. The devices that 
belong to the same corporate network or to the same 
home network are examples of such communities. 

We present a fully distributed service for 
automated configuration of security services in 
communities. This service is located on each device 
of the community. It allows managing information 
related to the environment of the device and to the 
security policy. Based on this information, it 
configures dynamically and automatically the locally 
available security services to ensure its security and 
that of the community to which it belongs. 

In chapter 2, we provide a more precise notion of 
devices community. In chapter 3, we introduce the 
properties of spontaneous networks. In chapter 4, we 
describe the security objectives. In chapter 5, we 
present the mechanism we designed to securely 
manage the group of devices that belong to the 
community. Finally, we present the service of 
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automated configuration in chapter 6. 
 

2. DEVICES COMMUNITIES 
In this article, we deal with the automated 

configuration of security services for communities 
of devices in spontaneous networks.  

We herein identify “device” as any entity that can 
work autonomously on the network and that has 
reasonable computation power. Desktop and laptop 
computers, PDAs and mobile phones are typical 
examples of devices. More specifically, a device 
does not require any other device to work and 
communicate on the networks. Consequently, we do 
not consider entities such as wireless keyboards and 
mice, or removable storage (hard drive, passive MP3 
players, etc.) as devices, but consider them as 
peripherals. A peripheral does not communicate on 
the network autonomously: it is connected to another 
given device in a point-to-point manner, even if this 
device may change with time. Several proposals 
have been published on the security of the point-to-
point communications between a device and its 
peripherals when they communicate over insecure 
channels [1,14]. Consequently, these aspects will not 
be studied more extensively in this article.  

We identify “community” as a set of devices that 
share a long term trust relation and that are able to 
communicate permanently or erratically. The trust 
relation between the devices of a given community 
is a long-term trust relation, because when a device 
belongs to a community, it does so for an a priori 
long time. It leaves it a priori definitively when it is 
given, sold, lost, broken or stolen. The set of 
computers and PDAs of a small company is a typical 
example of a devices community. The trust relation 
between the devices of such a network is due to the 
fact that they belong to the same company. 
Similarly, the set of devices that form the home 
network of a family is a devices community.  

In this article, we make the reasonable 
assumption that the users of the devices that belong 
to the same community share the same interest in the 
fact that this community is secure, and have no 
interest in attacking it. Consequently, unless it has 
been compromised and is no more under the control 
of its legitimate user, a device belonging to a 
community behaves legitimately.  
 

3. SPONTANEOUS NETWORKS 
Historically, the devices that shared a trust 

relation (and, according to our terminology, that 
formed a community) were connected to the same 
physically isolated network and thus was considered 
secure. 

 
 

The trust was deduced from the ability to physically 
access the network. Consequently, there was a very 
strong link between the community and the physical 
network within which it existed.  

Devices communities are nowadays used on top 
of spontaneous networks. A spontaneous network 
consists of a set of devices that may not all belong to 
the same community and are networked transiently 
for collaborative activities [6]. This short term 
connectivity is to be considered, relative to the long 
term trust relation that exists between devices in the 
same community. Spontaneous networks are 
intended to be user-friendly: their goal is to enable 
spontaneous collaboration between devices, and 
therefore the establishment of such a network should 
not require lengthy configurations steps. 

Spontaneous networks are similar to ad hoc 
networks [5], with which they share some properties. 
First, a spontaneous network can be created 
anywhere and with any set of devices without 
relying on any infrastructure. Thus, the properties 
and environment of the devices change with time. 
For instance, the IP address of a device that connects 
to various links will change according to the link to 
which it is currently connected and to the addresses 
that are already assigned. Consequently, it is not 
possible to use the transient properties of a device 
(such as its IP address or the link to which it is 
connected for instance) in the definition of the trust 
relation.  

Moreover, due to the dynamic topology of 
spontaneous networks, devices may join and leave a 
given spontaneous network arbitrarily. Thus, a 
spontaneous network may contain devices that 
belong to different communities, and there is no link 
anymore between the fact that a device is connected 
to the network and the fact that it is trustworthy.  

A community can also be physically split in more 
than one partition, possibly as many as there are 
devices: the devices of a given community can be 
connected to different spontaneous networks. As an 
illustration, we can consider the case of a 
community made of 4 laptops (represented in black 
circles on Fig. 1) that belong to a small company. 
When two employees go out with their laptops for a 
meeting outside the company, two partitions appear. 
One is made of the two laptops brought for the 
meeting (this partition may also contain devices 
belonging to the visited company), the other of the 
two laptops that stayed in the head office. From a 
security point of view, this characteristic leads to the 
fact that one cannot suppose an always available 
central entity or any physically controlled network 
link.  
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Fig. 1 – A community partitioned over two 

spontaneous networks. 

 
The above characteristics must be taken into 

account in the design of the security mechanisms 
that will be used to protect devices communities 
communicating over spontaneous networks. 
Moreover, because spontaneous networks must be 
user friendly, priority must be given to automated 
configuration in the context of the security 
mechanisms.  
 

4. SECURITY REQUIREMENTS 
The fortress model is the traditional approach to 

protect a network made of entities linked by a trust 
relation. First, it involves defining the boundary of 
the network, i.e. in marking the difference between 
the “inside” entities that must be protected (in our 
case, the devices that belong to the community) and 
the “outside” entities from which the “inside” 
entities have to be protected. Mechanisms then are 
set up to enforce this boundary. Of course, in the 
perspective of in-depth security, other mechanisms 
may be set up inside the boundary to more finely 
control user access to a particular service.  

As shown in section 3, the medium cannot be 
used to define the boundary of a community in 
spontaneous networks: the fact that two devices can 
physically communicate does not mean that they 
belong to the same community. On Fig. 1 for 
example, devices represented by the white circles on 
the partition on the right are present to the same 
meeting as the ones represented by the black circles 
and are connected to the same link. While all these 
devices do not belong to the same community, they 
can physically communicate. They even have set up 
a spontaneous network intended to exchange 
information and services, and one device may 
collaborate with other devices that are connected to 
the same spontaneous network, but that do not 
belong to its established community. Due to this 
fact, different levels of access should be enforced, 
based upon whether a device communicates with 
another device that belongs to its community or with 
a device that does not belong to its community.  
 

Outside Network

Inside Network

Firewall

 
Fig. 2 – A firewall protecting physically isolated 

private network. 

 
Network firewalls are frequently used to protect 

local area networks connected to the Internet (cf. 
Fig. 2). A network firewall has two main 
functionalities [4]. First, it physically marks the 
boundary between the network it protects (the 
“inside” network) and the uncontrolled network to 
which it is connected (the “outside” network). Then, 
it enforces the inside network security policy by 
filtering the cross-boundary communications. 
Messages that comply with the security policy are 
transmitted, while others are dropped.  

In this respect, we believe that network firewalls 
are representative of the security functionalities that 
should be offered to the devices communities [13]. 
However, network firewalls are not adapted to the 
properties of spontaneous networks. Indeed, they are 
based on the hypothesis that all cross-boundary 
communication goes through them: the inside 
network is supposed to be physically protected, and 
an attacker can neither inject messages on it, nor 
eavesdrop. In the context of spontaneous networks, 
this hypothesis of the physically constrained 
network is not valid anymore, and one has to 
consider that an attacker may fully control the 
communication channels: he or she can eavesdrop, 
inject, or destroy any message on them.  

In order to define a boundary, it is then first 
necessary to design a specific mechanism to allow 
the devices belonging to the same community to 
identify and authenticate one another. This 
mechanism must be user friendly, and user 
implication must be as limited as possible. More 
specifically, the mechanism must enable easy 
evolution of the community through insertion and/or 
removal of devices. It must also comply with the 
properties of spontaneous networks. As such, it must 
neither be based on any supposedly always available 
device, nor on any physically constrained medium. 
When an evolution occurs in the community while it 
is partitioned, devices of the community must get 
aware of this evolution when they can communicate 
again.  
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Once the boundary is defined, the cross-boundary 
exchanges must be controlled. Dealing with the 
example we used earlier (cf. Fig. 1), all the devices 
that take part in the meeting are supposed to interact, 
and some of them can offer some services (for 
instance, access to the local http or ftp services) to 
the other ones, even if they do not belong to the 
same community. However, a device does not have 
the same level of trust with the devices that are in 
the same spontaneous network but do not belong to 
its community than it has with the devices of its own 
community. As we make the hypothesis that the 
devices in the same community behave legitimately 
one with the other, outgoing communications 
initiated by a device that belongs to the community, 
and sent to a device that does not belong to it, are 
considered legitimate and should be authorized. By 
contrast, cross-boundary communications initiated 
from a device that does not belong to the community 
to a device that belong to the community must be 
controlled. While some services considered as 
“public” can be accessed by any device (should it 
belong to the community or not) other “private” 
services should be accessible only to the devices of 
the community. Thus, a communication from the 
outside is authorized only if the requested service is 
public. 

 
In summary, protecting devices communities 

communicating over spontaneous networks requires:  
 a mechanism that defines the boundary of 

the community by enabling the devices of 
the community to authenticate on another 

 a mechanism that enforces the boundary by 
securing the communications between the 
devices of the community and controlling 
the cross-boundary interactions.  

 
Because a community can be split over different 

spontaneous networks, we cannot assume the 
existence of an always available device that would 
act as a network firewall to protect all the devices of 
the community at one time. Consequently, each 
device may have to ensure itself its own security, 
particularly if it is the only device of its community 
on a particular spontaneous network. Due to this 
fact, a fully distributed solution has to be chosen. In 
section 5, we propose a fully distributed mechanism 
that allows definition of the boundary of the 
networks, i.e. to securely manage the group of 
devices belonging to the community and to 
distribute the keys among those devices. In section 
6, we propose a mechanism that enforces this 
boundary.  
 
 

5. SECURE MANAGEMENT OF THE 
COMMUNITY 

In this section, we present the fully distributed 
mechanism we have designed to securely manage 
the group of devices that belong to the community. 
In this mechanism, there is neither central 
information nor central element: each device 
considers itself as the central element of its 
community, around which the whole community 
evolves. Each device manages its own knowledge of 
the current state of its community, and shares 
information with the other devices to keep this 
knowledge accurate.  

Each device has a provable identity that is used 
for authentication with the other devices of the 
community. We call provable identity an identity 
that anyone can check, although being very hard to 
impersonate. For instance, the public key of a 
public/private key pair is a provable identity: a 
device pretending being identified by its public key 
can prove it by signing a challenge with its private 
key. It is also the only one that can decrypt a 
message encrypted with its identity, i.e. its public 
key. SUCV [9] and CAM [10] are other mechanisms 
based on the concept of provable identity. In this 
paper, and without loss of generality, we consider 
that, like in [9,10], the provable identity of a device 
is the hash value of its public key.  

To manage locally the knowledge of its own 
community, each device securely manages the 
provable identities of the other devices that belong 
to it or once belonged to it, but do not anymore. At 
the community level, a device can be unknown, in, 
or removed: a device is unknown while it has never 
been in the community. It becomes in when it is 
inserted in the community. Finally, it becomes 
removed when it is removed from the community. 
By hypothesis, we consider that a device that is 
removed from a community cannot be reinserted 
with the same provable identity. Consequently, these 
states are strictly timely ordered, and a device that 
once have been in will never be unknown again. 
Similarly, a removed device will never be unknown 
or in again.  

Locally, each device maintains a local 
representation of the state of the other devices of its 
community. While a device does not explicitly keep 
information about the devices that are unknown, it 
maintains information about the devices that belongs 
to its community or once belonged to it using three 
mutually exclusive sets: mutual trust, unilateral 
trust, or distrust. For a device a, a device b is in set: 

 mutual trust if a considers b as being in its 
community. Moreover, a has already 
communicated with b and knows that b also 
considers a as being in its community. a 
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locally has the public key of b, and a proof 
that b considers a as being in its community.  

 unilateral trust if a considers that b is in its 
community but a never communicated with 
b. As such, it does not know whether b 
knows that a is in its community. As will be 
shown later, b has been introduced to a by a 
device c that a knows as mutually trusted. a 
has also a proof that will be provided to b to 
prove to it that b should consider that a 
belongs to its community. a considers b as 
being in its community if it knows b in the 
state mutual trust or unilateral trust.  

 distrust when a knows that b was in its 
community but does not belong to it 
anymore because it has been removed from 
it. This state is equivalent to the issue of 
revocation for a certificate: a explicitly 
distrusts  b  and will not accept any proof 
that they belong to the same community.  

Originally, a device a is the only device in its 
community. During the initialization phase, a 
generates or obtains out of band a public/private key 
pair and an provable identity, inserts it in its set 
mutual trust, and sets the two other sets to void. At 
this time, a's knowledge of its community is 
coherent and valid from a security point of view, 
because a only considers devices that really are in its 
own community (here, itself) as so.  

The evolutions of the community are locally 
initiated on a device of the community by the 
authority (i.e., the user). For each evolution, the user 
informs a device a of the community that a new 
device is to be inserted or removed. This is the only 
time the user is involved. After that, the information 
will be forwarded by a to the other devices of the 
community. Requests for evolution being security-
relevant, the device a on which the action is 
performed has to authenticate the authority. This 
authentication is strictly local to each device, and 
devices of the community can use mechanisms that 
are different, and each device can use the best suited 
to itself. Moreover, because the devices of a given 
community do not share a unique representation of 
the authority, our proposal is not centralized around 
such a representation, but is really distributed. 

To insert a device b in the community of a device 
a, a user informs a that b now belongs to its 
community by providing to a the provable identity 
of b as the one of a new device of the community. 
The mechanism being fully decentralized, a and b 
both need to be informed of the insertion, and the 
user have to insert both a in b’s community, and b in 
a’s. As a consequence, the trust relation set up 
between them at the insertion time is symmetric. 
Because both a and b suppose that the user will 

properly insert it in the other one’s community, each 
of them inserts the other as a mutually trusted 
device. Moreover, a and b exchange their public 
keys, and a (resp. b) issues a ticket to b (resp. a) 
using its provable identity that proves that a (resp. b) 
considers that b (resp. a) belongs to its community.  

One may argue that inserting manually the 
provable identity of a device in the other is not a 
user-friendly approach. A first way to solve this 
problem would be to use a secure side channel to 
transmit the provable identities as described in [3]. 
Another mean is to use user-friendly representations 
of provable identities based for instance on random 
art representation [11]. When two devices a and b 
have to insert each other in their respective 
communities, each of them broadcasts its own 
provable identity, and collects all the provable 
identities it receives. After a short time, a and b 
display the random art representation of their 
respective provable identities and of all the provable 
identities they collected. By comparing the displays 
on both devices, the user can easily choose the right 
ones. Because of the interesting properties of 
provable identities, this mechanism can be used on a 
channel where attackers can both eavesdrop and 
insert messages. 

To remove a device b from a community, the user 
simply informs a device a of this community that 
this device is now removed. a then removes the 
provable identity of b from the set unilateral trust or 
from the set mutual trust, and inserts it the set 
distrust. Moreover, a deletes from its unilateral trust 
set each device c for which the chain of tickets that a 
owns contains a ticket emitted by b.  

It would be clearly impractical for the user to 
inform manually all the devices of the evolutions of 
the community. After having considered the 
operations the user have to do to make the 
community evolves, we now present the way the 
devices exchange information to maintain the local 
knowledge of each of them up-to-date. The 
synchronization of local knowledge frees the user 
from this. 

A device trusts the other devices in its 
community to provide information about it. In other 
words, it takes into consideration the information the 
other devices provide about the community, and 
update its own knowledge if another device that it 
knows in state mutual trust  have some that are more 
up-to-date. As presented earlier in this section, the 
three states that a device may have with respect to a 
given community (unkown, in, removed) are strictly 
ordered. Due to this fact, and provided it has not 
been compromised, a device a of a given community 
that knows another device b in its most advanced 
state should be considered to have the most up-to-
date knowledge of the community, and all the other 
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devices of the community should be synchronized 
according to a's knowledge.   

For the community to stay consistent across its 
evolutions, each device a periodically sends to the 
other devices of its community a message containing 
the current knowledge it has of the community. 
More precisely, this message contains:   

 The provable identities of the devices that a 
currently has in its mutual trust set, as well 
as the ticket issued by each of them that 
proves that it considers a as being in its 
community. 

 The provable identities of the devices that a 
currently has in its unilateral trust set, as 
well as the chains of tickets that proves that 
each of them considers a as being in its 
community (the way these chains have been 
obtained are described later in this section). 

 The provable identities of the devices that a 
currently has in its distrust set. 

This message is authenticated by being signed 
with a’s public key.  

When it receives such a message from a device it 
knows in its set mutual trust, a device b follows this 
algorithm: first of all, b checks the authenticity of 
the message. Then, it processes the information 
dealing with the devices contained in the distrusted 
set. For each of these devices c that b does not have 
in its own distrust set, b inserts c in its own distrust 
set and removes c if necessary from the set 
unilateral trust or mutual trust. Moreover, b deletes 
from its unilateral trust set each device d for which 
the chain of tickets that b owns contains a ticket 
emitted by c.  

Then, b processes the information dealing with 
the devices contained in the mutual trust set. For 
each of these devices c that b does not have in its 
mutual trust set, unilateral trust set or distrusted set, 
b inserts c in its unilateral trust set and stores the 
ticket issued by a that proves that a considers that b 
belongs to its community. b will use this ticket 
during the next phase of introduction of self (this 
operation is explained later) to prove to c that a 
(that, by construction, c considers to be in its 
community) considers b as being in its community 
and so that c should then consider b as being in its 
community too. For each device d that b already has 
in its unilateral trust set, b checks if the chain of 
tickets it has for d is longer than one ticket. If it is 
the case, b replaces this chain of tickets, and stores a 
chain of tickets made of the single ticket issued by a 
for b.  

Finally, b processes the information dealing with 
the devices contained in the unilateral trust set. For 
each device c that b does not have in its mutual trust 

set nor in its distrust set, and if b does not have c in 
its unilateral trust set, b checks that the chain of 
tickets contained in the message w.r.t. c is valid and 
does not contain a ticket issued by a device that b 
has in its distrust set. In this case, it stores c in its 
unilateral trust set, appends the ticket issued by a 
for b to the chain of tickets contained in the 
message, and stores the resulting chain as a proof 
that it will use to introduce itself to c.  If b has c in 
its unilateral trust set, it checks whether the chain of 
tickets it currently has for it is longer than the one 
contained in the message. If it is the case, b appends 
the ticket issued by a for b to the chain of tickets 
contained in the message, and replaces by it the one 
he owned before for c.  

When a device b known by a given device a as 
unilaterally trusted becomes reachable, a introduces 
itself to b in order for both of them to insert the other 
one in its own mutual trust set. a knows b as 
unilaterally trusted because, as we showed earlier, 
another device c that a knows as mutually trusted 
informed a during a synchronization of local 
knowledge that b also belongs to a’s community. 
During this synchronization of local knowledge, c 
also provided to a a chain of tickets that a can 
provide to b to prove that they belong to the same 
community. The introduction of self goes as follows: 
a sends to b a message of introduction of self that 
contains it provable identity, its public key, a ticket 
that proves that a considers b to be in its community, 
and the chain of tickets a has that proves to b that it 
should consider a as being in it community. When b 
receives such a message, it first checks that a is not 
in its distrust set, that the chain of tickets is valid, 
that it does not contain any ticket issued by a device 
that it has in its distrust set . In case of success, b 
inserts a in its mutual trust set and stores the ticket 
issued by a for b as well as a’s public key. b also 
generates a message that it sends to a and that 
contains its own public key and a ticket that proves 
that b now considers a as being in its community. 
When receiving this message, a stores both the 
public key of b and the ticket it emitted, removes b 
from its unilateral trust and inserts it in its mutual 
trust set.  

After the operation of introduction of self, a and 
b now have each other in their mutual trust set and 
can then  perform operations of synchronization of 
information.  
 

6. ENFORCING THE BOUNDARY 
After having presented in section 5 a mechanism 

to define and manage the boundary of communities, 
we present in this section a fully decentralized 
approach in which each device enforces this 
boundary in an autonomous way, while 
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collaborating with the other devices to the security 
of the whole community. To that end, each device of 
the community embeds a service that monitors 
continuously the environment. According to it and to 
the security policy, the service dynamically 
configures a local message filter that enforces the 
security policy on the communications it takes part 
to.  

Appl.

Core

Service

Local Policy Base

Key

Manager

IP Communication Layer

Message Filter

EAM

 
Fig. 3 – Architecture of the service. 

 
The service (cf.  Fig. 3) is made of five parts:  

 The Local Policy Base (LPB), that manages 
the information related to the security 
policy. 

 The Environment Awareness Module 
(EAM), that manages the information about 
the environment of the device.  

 The Key Manager, that takes in charge 
authentication and key establishment with 
the other devices.  

 The Message Filter, that enforces the policy 
on the communications in which the local 
device takes part.  

 The Service Core, that generates the 
configuration rules for the message filter 
based on the information provided by the 
LKB, the EAM and the Key Manager.  

The Local Policy Base is dedicated to the 
management of the information dealing with the 
security policy that is relevant to the configuration 
of the message filter. We can deduce the following 
abstract security policy from the security objectives 
we stated earlier:  

 Communications are fully authorized 
between the devices belonging to the 
community. The channels being considered 
unsecure, these communications must be 
protected. If a specific fine-grained access 
control has to be done, we assume it will be 
at a higher layer. 

 The devices of the community being trusted, 
they can access freely to the services that are 
offered by devices that do not belong to it.  

 The access of devices that do not belong to 
the community to the services provided by 
the devices that belong to it must be 
controlled. Only public services are 
authorized.  

Consequently the LPB has to manage at least two 
types of information:  

 The set of the devices that belong to the 
community. This set is managed using the 
mechanism described in section 5, that 
furthermore provides the public key to 
authenticate each of them. 

 The set of the services that are public and 
consequently can be accessed by any device, 
does it belong to the community or not. To 
make a service public, the user simply 
inserts the identifier of the service in the set 
of public services, and removes it from this 
set for the service to be no more public.  

The LPB is the only part of the service that is 
accessible to the user. He or she has to act on it only 
when a modification occurs in the security policy.  

The Environment Awareness Module manages 
information about the environment of the local 
device. To that end, the EAM of each device 
collaborates with the other EAMs available on the 
network, in a way similar to the advertisement and 
discovery mechanisms of  Zeroconf [7]. First, the 
EAM advertises itself on the network by sending 
periodically to a pre-defined multicast IP address the 
link between its provable identity and its current IP 
address. Simultaneously, it listens on the same 
multicast address the advertisement made by the 
other devices that are available on the network, and 
updates the local knowledge of the identities of the 
available devices as well as their current IP address. 
The EAM does not ensure the legitimacy of the 
information it manages and provides. Particularly, 
an attacker may advertise an illegitimate link 
between a long term identity and an IP address, 
leading to an erroneous knowledge of the EAM. It is 
the role of the Key Manager to ensure devices 
authentications.  

Communications channels being unsecure, the 
purpose of the Key Manager is to ensure the 
authentication of the devices and the establishment 
of the shared symmetric keys required to secure the 
communications between the local device and the 
other devices of its community.  

When the EAM of a device a detects a new 
device b that belongs to a’s community on the 
spontaneous network, it informs the Key Manager. If 
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a does not already share a symmetric key with b, the 
Key Manager tries to authenticate b and to establish 
with it a shared key Kab by using the public key 
provided by the LPB. If the Key Manager already 
has a shared key Kab for, it uses it for mutual 
authentication with b. As we show later in this 
document, the symmetric keys established by the 
Key Managers are also used to secure the 
communications between the local device and the 
devices that belong to its community.  

Usually, using point-to-point symmetric keys 
supposes to manage a very important amount of 
keys. In our case, the Key Manager manages and 
stores only the symmetric keys shared between the 
local device and each device it has to have a secure 
relation with. Consequently, the amount of keys 
managed by each device grows linearly with the 
number of devices of the community. This value is 
practically acceptable for the size of the typical 
devices communities we consider.  

The Message Filter is the active part of our 
system. It enforces the security policy on the 
communications the local device takes part to, based 
on the configuration rules provided by the Service 
Core. It handles both incoming and outgoing 
communications. First, it ensures the security of the 
communications with the other devices of the 
community, and therefore creates a virtual private 
network (VPN) with the other devices of the 
community. It also controls the access of the devices 
that do not belong to the community to the locally 
provided services.  

The Message Filter is itself made of two layers 
(cf. Fig. 4):  

 The Cryptographic Layer, which, when 
necessary, checks the authenticity and 
decrypts the incoming messages, and 
encrypts and authenticates the outgoing 
messages.  

 The Packet Filter Layer, which finely 
controls the access to the services provided 
by the local device.  

Outgoing messages are first managed by the 
Packet Filter Layer that transmits them to the 
Cryptographic Layer. The later encrypts and 
authenticates them if required by the configuration 
rules, and sends the messages towards the network 
interface. Incoming messages are first managed by 
the Cryptographic layer that checks if they should be 
cryptographically protected. If they correctly are, or 
if cryptographic protection is not required, the 
messages are transmitted to the Packet Filter Layer. 
When the Packet Filter Layer receives a message 
from the Cryptographic Layer, it checks if this 
communication is in accordance with the rules 
describing   the   security   policy   provided  by   the  

Towards Applications

Towards Network Interface

Cryptographic Layer

Packet Filter Layer

 
Fig. 4 – Architecture of the Message Filter. 

 
Service Core, in which case it transfers it to the 
upper layers. 

In addition to the dynamically generated 
configuration rules presented later in this document, 
the Cryptographic Layer and the Packet Filter Layer 
follows these given default rules. First, the incoming 
and outgoing messages are by default accepted 
unencrypted by the Cryptographic Layer. Second, by 
default, the incoming communications are rejected 
by the Packet Filter Layer, while the outgoing 
communications are accepted by it.  

The Message Filter is also dynamically and 
automatically configured by the Service Core that 
generates the configuration rules for it using the 
information provided by the LPB, the EAM and the 
Key Manager. The configuration rules generation is 
triggered under two conditions. First, the LPB 
triggers it when the security policy is modified. 
Second, the EAM triggers it when the environment 
is modified, i.e. when a device that belongs to the 
community appears on the network or disappears 
from it, or when the IP address of such a device is 
modified.  

The Service Core first generates the rules that 
deals with the communications that must be 
explicitly exchanged unencrypted. Indeed, some 
communications (and specially the communications 
used between the LPB, the EAM, and the Key 
Manager) must be exchanged without being 
encrypted, even between the devices that belong to 
the same community, since encrypting those 
communications either is impossible or would 
prevent the related services from working. Yet, those 
messages being exchanged between devices of the 
same community, the rules generated later by the 
Service Core would make the Cryptographic Layer 
to encrypt them automatically. For each such 
service, a rule is generated that states that the 
outgoing communication to these services have to be 
sent without being encrypted.  
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Then, the Service Core deals with the 
communications with the other devices of the 
community. On this topic, the abstract security 
policy states that the communications between 
devices of the community are authorized and must 
be secured. The Service Core knows the devices that 
belong to the community thanks to the LPB. It also 
knows the current IP address of the devices locally 
available in the spontaneous network thanks to the 
EAM. Finally, the Key Manager provides the 
symmetric keys that are currently shared with the 
devices of the community (if they have been 
established) and will be used to protect the 
communications.  For each device a of the 
community for which the EAM has currently a valid 
address, the Service Core generates two rules 
dedicated to the Cryptographic Layer. The first one 
states that, in order to be accepted, the 
communications that supposedly come from a (i.e., 
that source address is the one provided by the EAM 
as being a’s) must be encrypted and authenticated 
using the key provided by the Key Manager. The 
second rule states that the outgoing communications 
to a have to be encrypted and authenticated using the 
key provided by the Key Manager. For each device 
a of the community for which the EAM has 
currently a valid address, the Service Core also 
generates a rule dedicated to the Packet Filter Layer 
that states that any incoming communication from a 
have to be accepted.  

Finally, the Service Core generates the rules that 
deal with the public services. For each public 
service, it generates a rule dedicated to the Packet 
Filter Layer that states that any incoming 
communication for this service has to be accepted.  

By dynamically and automatically configuring 
the Message Filter, the mechanism presented here 
takes into account the evolutions of the security 
policy and of the topology of the spontaneous 
network. At any time, the Message Filter is then 
properly configured to interact with the other 
available devices. It ensures the security of the 
communications with the devices of the community, 
and checks the legitimacy of the communications 
initiated by the devices that do not belong to the 
community but try to access to services offered by 
devices of the community.  
 

7. CONCLUSION 
In this article, we have proposed a fully 

decentralized service of automated configuration of 
the security services dedicated to communities of 
devices that communicate over spontaneous 
networks. Each device ensures itself the security of 
its interactions with the other devices. To that end, it 
manages its local knowledge of its community and 

of its security policy. Then, it uses a local message 
filter to enforce the security of the communications 
in which the local device takes part: communications 
with the devices that belong to the same community 
are encrypted and authenticated. Simultaneously, 
legitimacy of cross-boundary interactions is 
checked. This message filter is dynamically and 
automatically configured when the security policy 
and/or the environment is modified. Because this 
service does not rely on any infrastructure, it makes 
neither hypothesis on the network topology nor on 
the availability of a specific device. As such, it 
complies with the constraints induced by 
spontaneous networks. 

We have developed a proof of concept of our 
approach over Linux. Each device has a 1024 bits 
RSA key pair, the provable identity being the SHA-1 
hash value of the public key. IPsec is used to 
implement the Cryptographic Layer, while the 
Packet Filter Layer is based on NetFilter.  

For our future works, we plan to focus on the 
expressiveness of the local security policy. The case 
of devices that, while not being in the community 
have privileged access to some services offered by 
some devices in the community should particularly 
be studied with more interest. We also think about 
studying the possibility of integrating mechanisms 
of automated management of short-term trust such 
as [2,8] in our approach. 
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