
Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 36

SECURING DEVICES COMMUNITIES IN SPONTANEOUS NETWORKS

Nicolas Prigent 1), Christophe Bidan 2)

1) Thomson R&D France, 1, avenue de belle fontaine, BP 19,
35511 Cesson-Sévigné Cedex, France, nicolas.prigent@thomson.net

2) Supélec, Avenue de la Boulaie, BP 81127,
35511 Cesson-Sévigné Cedex, France, christophe.bidan@supelec.fr

Abstract: We define a community as a set of devices able to communicate permanently or erratically and that share a
long term trust relation. Small corporate networks or home networks are typical examples of such communities.
Historically, the devices of the same community communicated over physically isolated wired networks. They are
currently used over spontaneous networks, the characteristics of which have implications, in terms of their security and
the mechanisms that can be used to protect such.
In this article, we present a fully decentralized service of automated configuration of the security mechanisms dedicated
to communities of devices that communicate over spontaneous networks. This service is located on each device of the
community and manages information related to the environment of the device and to the security policy. Based on this
information, it configures dynamically and automatically the security services available on the device to ensure its
security and that of the community to which it belongs.

Keywords: – Security, ad hoc networks, spontaneous networks, communities of devices, ubiquitous computing.

1. INTRODUCTION
Networks have become very common. They are

now available to small companies and private
individuals, as in SOHO and home networks for
instance.

Simultaneously to this wide adoption, ease of use
has become a major concern in networks
technologies. Auto-configuration is thus a key
feature, and devices are programmed to set up their
network automatically, as soon as they are
interconnected.

Consequently, a lot of devices (computers,
PDAs, home servers, etc.) have now auto-
configuration network capabilities. This allows to
create transiently networks anywhere anytime with
any devices, and to exchange information about the
services each of them propose without the users
being aware of it [7]. Ad hoc and spontaneous
networks are very representative of these new kinds
of networks emphasizing auto-configuration.

While security is still an issue in automatically
created networks, classical security mechanisms
cannot be used to protect them without adaptation
[12]. Indeed, they require extensive configurations
that would be detrimental to ease of use. Moreover,
they allow securing a set of known devices in a
controlled and clearly defined environment, whereas

automatically created networks are uncontrolled
environments with fuzzy boundaries.

In this article, we focus on the security of
communities. We define a community as a set of
devices that are linked by a long term trust relation,
and that communicate permanently or erratically
over spontaneous networks. This long term trust
relation is to be compared to the transient
connectivity of the networks. The devices that
belong to the same corporate network or to the same
home network are examples of such communities.

We present a fully distributed service for
automated configuration of security services in
communities. This service is located on each device
of the community. It allows managing information
related to the environment of the device and to the
security policy. Based on this information, it
configures dynamically and automatically the locally
available security services to ensure its security and
that of the community to which it belongs.

In chapter 2, we provide a more precise notion of
devices community. In chapter 3, we introduce the
properties of spontaneous networks. In chapter 4, we
describe the security objectives. In chapter 5, we
present the mechanism we designed to securely
manage the group of devices that belong to the
community. Finally, we present the service of

computing@tanet.edu.te.ua

www.tanet.edu.te.ua/computing

ISSN 1727-6209

International Scientific
Journal of Computing

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 37

automated configuration in chapter 6.

2. DEVICES COMMUNITIES
In this article, we deal with the automated

configuration of security services for communities
of devices in spontaneous networks.

We herein identify “device” as any entity that can
work autonomously on the network and that has
reasonable computation power. Desktop and laptop
computers, PDAs and mobile phones are typical
examples of devices. More specifically, a device
does not require any other device to work and
communicate on the networks. Consequently, we do
not consider entities such as wireless keyboards and
mice, or removable storage (hard drive, passive MP3
players, etc.) as devices, but consider them as
peripherals. A peripheral does not communicate on
the network autonomously: it is connected to another
given device in a point-to-point manner, even if this
device may change with time. Several proposals
have been published on the security of the point-to-
point communications between a device and its
peripherals when they communicate over insecure
channels [1,14]. Consequently, these aspects will not
be studied more extensively in this article.

We identify “community” as a set of devices that
share a long term trust relation and that are able to
communicate permanently or erratically. The trust
relation between the devices of a given community
is a long-term trust relation, because when a device
belongs to a community, it does so for an a priori
long time. It leaves it a priori definitively when it is
given, sold, lost, broken or stolen. The set of
computers and PDAs of a small company is a typical
example of a devices community. The trust relation
between the devices of such a network is due to the
fact that they belong to the same company.
Similarly, the set of devices that form the home
network of a family is a devices community.

In this article, we make the reasonable
assumption that the users of the devices that belong
to the same community share the same interest in the
fact that this community is secure, and have no
interest in attacking it. Consequently, unless it has
been compromised and is no more under the control
of its legitimate user, a device belonging to a
community behaves legitimately.

3. SPONTANEOUS NETWORKS
Historically, the devices that shared a trust

relation (and, according to our terminology, that
formed a community) were connected to the same
physically isolated network and thus was considered
secure.

The trust was deduced from the ability to physically
access the network. Consequently, there was a very
strong link between the community and the physical
network within which it existed.

Devices communities are nowadays used on top
of spontaneous networks. A spontaneous network
consists of a set of devices that may not all belong to
the same community and are networked transiently
for collaborative activities [6]. This short term
connectivity is to be considered, relative to the long
term trust relation that exists between devices in the
same community. Spontaneous networks are
intended to be user-friendly: their goal is to enable
spontaneous collaboration between devices, and
therefore the establishment of such a network should
not require lengthy configurations steps.

Spontaneous networks are similar to ad hoc
networks [5], with which they share some properties.
First, a spontaneous network can be created
anywhere and with any set of devices without
relying on any infrastructure. Thus, the properties
and environment of the devices change with time.
For instance, the IP address of a device that connects
to various links will change according to the link to
which it is currently connected and to the addresses
that are already assigned. Consequently, it is not
possible to use the transient properties of a device
(such as its IP address or the link to which it is
connected for instance) in the definition of the trust
relation.

Moreover, due to the dynamic topology of
spontaneous networks, devices may join and leave a
given spontaneous network arbitrarily. Thus, a
spontaneous network may contain devices that
belong to different communities, and there is no link
anymore between the fact that a device is connected
to the network and the fact that it is trustworthy.

A community can also be physically split in more
than one partition, possibly as many as there are
devices: the devices of a given community can be
connected to different spontaneous networks. As an
illustration, we can consider the case of a
community made of 4 laptops (represented in black
circles on Fig. 1) that belong to a small company.
When two employees go out with their laptops for a
meeting outside the company, two partitions appear.
One is made of the two laptops brought for the
meeting (this partition may also contain devices
belonging to the visited company), the other of the
two laptops that stayed in the head office. From a
security point of view, this characteristic leads to the
fact that one cannot suppose an always available
central entity or any physically controlled network
link.

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 38

Fig. 1 – A community partitioned over two

spontaneous networks.

The above characteristics must be taken into

account in the design of the security mechanisms
that will be used to protect devices communities
communicating over spontaneous networks.
Moreover, because spontaneous networks must be
user friendly, priority must be given to automated
configuration in the context of the security
mechanisms.

4. SECURITY REQUIREMENTS
The fortress model is the traditional approach to

protect a network made of entities linked by a trust
relation. First, it involves defining the boundary of
the network, i.e. in marking the difference between
the “inside” entities that must be protected (in our
case, the devices that belong to the community) and
the “outside” entities from which the “inside”
entities have to be protected. Mechanisms then are
set up to enforce this boundary. Of course, in the
perspective of in-depth security, other mechanisms
may be set up inside the boundary to more finely
control user access to a particular service.

As shown in section 3, the medium cannot be
used to define the boundary of a community in
spontaneous networks: the fact that two devices can
physically communicate does not mean that they
belong to the same community. On Fig. 1 for
example, devices represented by the white circles on
the partition on the right are present to the same
meeting as the ones represented by the black circles
and are connected to the same link. While all these
devices do not belong to the same community, they
can physically communicate. They even have set up
a spontaneous network intended to exchange
information and services, and one device may
collaborate with other devices that are connected to
the same spontaneous network, but that do not
belong to its established community. Due to this
fact, different levels of access should be enforced,
based upon whether a device communicates with
another device that belongs to its community or with
a device that does not belong to its community.

Outside Network

Inside Network

Firewall

Fig. 2 – A firewall protecting physically isolated

private network.

Network firewalls are frequently used to protect

local area networks connected to the Internet (cf.
Fig. 2). A network firewall has two main
functionalities [4]. First, it physically marks the
boundary between the network it protects (the
“inside” network) and the uncontrolled network to
which it is connected (the “outside” network). Then,
it enforces the inside network security policy by
filtering the cross-boundary communications.
Messages that comply with the security policy are
transmitted, while others are dropped.

In this respect, we believe that network firewalls
are representative of the security functionalities that
should be offered to the devices communities [13].
However, network firewalls are not adapted to the
properties of spontaneous networks. Indeed, they are
based on the hypothesis that all cross-boundary
communication goes through them: the inside
network is supposed to be physically protected, and
an attacker can neither inject messages on it, nor
eavesdrop. In the context of spontaneous networks,
this hypothesis of the physically constrained
network is not valid anymore, and one has to
consider that an attacker may fully control the
communication channels: he or she can eavesdrop,
inject, or destroy any message on them.

In order to define a boundary, it is then first
necessary to design a specific mechanism to allow
the devices belonging to the same community to
identify and authenticate one another. This
mechanism must be user friendly, and user
implication must be as limited as possible. More
specifically, the mechanism must enable easy
evolution of the community through insertion and/or
removal of devices. It must also comply with the
properties of spontaneous networks. As such, it must
neither be based on any supposedly always available
device, nor on any physically constrained medium.
When an evolution occurs in the community while it
is partitioned, devices of the community must get
aware of this evolution when they can communicate
again.

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 39

Once the boundary is defined, the cross-boundary
exchanges must be controlled. Dealing with the
example we used earlier (cf. Fig. 1), all the devices
that take part in the meeting are supposed to interact,
and some of them can offer some services (for
instance, access to the local http or ftp services) to
the other ones, even if they do not belong to the
same community. However, a device does not have
the same level of trust with the devices that are in
the same spontaneous network but do not belong to
its community than it has with the devices of its own
community. As we make the hypothesis that the
devices in the same community behave legitimately
one with the other, outgoing communications
initiated by a device that belongs to the community,
and sent to a device that does not belong to it, are
considered legitimate and should be authorized. By
contrast, cross-boundary communications initiated
from a device that does not belong to the community
to a device that belong to the community must be
controlled. While some services considered as
“public” can be accessed by any device (should it
belong to the community or not) other “private”
services should be accessible only to the devices of
the community. Thus, a communication from the
outside is authorized only if the requested service is
public.

In summary, protecting devices communities

communicating over spontaneous networks requires:
 a mechanism that defines the boundary of

the community by enabling the devices of
the community to authenticate on another

 a mechanism that enforces the boundary by
securing the communications between the
devices of the community and controlling
the cross-boundary interactions.

Because a community can be split over different

spontaneous networks, we cannot assume the
existence of an always available device that would
act as a network firewall to protect all the devices of
the community at one time. Consequently, each
device may have to ensure itself its own security,
particularly if it is the only device of its community
on a particular spontaneous network. Due to this
fact, a fully distributed solution has to be chosen. In
section 5, we propose a fully distributed mechanism
that allows definition of the boundary of the
networks, i.e. to securely manage the group of
devices belonging to the community and to
distribute the keys among those devices. In section
6, we propose a mechanism that enforces this
boundary.

5. SECURE MANAGEMENT OF THE
COMMUNITY

In this section, we present the fully distributed
mechanism we have designed to securely manage
the group of devices that belong to the community.
In this mechanism, there is neither central
information nor central element: each device
considers itself as the central element of its
community, around which the whole community
evolves. Each device manages its own knowledge of
the current state of its community, and shares
information with the other devices to keep this
knowledge accurate.

Each device has a provable identity that is used
for authentication with the other devices of the
community. We call provable identity an identity
that anyone can check, although being very hard to
impersonate. For instance, the public key of a
public/private key pair is a provable identity: a
device pretending being identified by its public key
can prove it by signing a challenge with its private
key. It is also the only one that can decrypt a
message encrypted with its identity, i.e. its public
key. SUCV [9] and CAM [10] are other mechanisms
based on the concept of provable identity. In this
paper, and without loss of generality, we consider
that, like in [9,10], the provable identity of a device
is the hash value of its public key.

To manage locally the knowledge of its own
community, each device securely manages the
provable identities of the other devices that belong
to it or once belonged to it, but do not anymore. At
the community level, a device can be unknown, in,
or removed: a device is unknown while it has never
been in the community. It becomes in when it is
inserted in the community. Finally, it becomes
removed when it is removed from the community.
By hypothesis, we consider that a device that is
removed from a community cannot be reinserted
with the same provable identity. Consequently, these
states are strictly timely ordered, and a device that
once have been in will never be unknown again.
Similarly, a removed device will never be unknown
or in again.

Locally, each device maintains a local
representation of the state of the other devices of its
community. While a device does not explicitly keep
information about the devices that are unknown, it
maintains information about the devices that belongs
to its community or once belonged to it using three
mutually exclusive sets: mutual trust, unilateral
trust, or distrust. For a device a, a device b is in set:

 mutual trust if a considers b as being in its
community. Moreover, a has already
communicated with b and knows that b also
considers a as being in its community. a

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 40

locally has the public key of b, and a proof
that b considers a as being in its community.

 unilateral trust if a considers that b is in its
community but a never communicated with
b. As such, it does not know whether b
knows that a is in its community. As will be
shown later, b has been introduced to a by a
device c that a knows as mutually trusted. a
has also a proof that will be provided to b to
prove to it that b should consider that a
belongs to its community. a considers b as
being in its community if it knows b in the
state mutual trust or unilateral trust.

 distrust when a knows that b was in its
community but does not belong to it
anymore because it has been removed from
it. This state is equivalent to the issue of
revocation for a certificate: a explicitly
distrusts b and will not accept any proof
that they belong to the same community.

Originally, a device a is the only device in its
community. During the initialization phase, a
generates or obtains out of band a public/private key
pair and an provable identity, inserts it in its set
mutual trust, and sets the two other sets to void. At
this time, a's knowledge of its community is
coherent and valid from a security point of view,
because a only considers devices that really are in its
own community (here, itself) as so.

The evolutions of the community are locally
initiated on a device of the community by the
authority (i.e., the user). For each evolution, the user
informs a device a of the community that a new
device is to be inserted or removed. This is the only
time the user is involved. After that, the information
will be forwarded by a to the other devices of the
community. Requests for evolution being security-
relevant, the device a on which the action is
performed has to authenticate the authority. This
authentication is strictly local to each device, and
devices of the community can use mechanisms that
are different, and each device can use the best suited
to itself. Moreover, because the devices of a given
community do not share a unique representation of
the authority, our proposal is not centralized around
such a representation, but is really distributed.

To insert a device b in the community of a device
a, a user informs a that b now belongs to its
community by providing to a the provable identity
of b as the one of a new device of the community.
The mechanism being fully decentralized, a and b
both need to be informed of the insertion, and the
user have to insert both a in b’s community, and b in
a’s. As a consequence, the trust relation set up
between them at the insertion time is symmetric.
Because both a and b suppose that the user will

properly insert it in the other one’s community, each
of them inserts the other as a mutually trusted
device. Moreover, a and b exchange their public
keys, and a (resp. b) issues a ticket to b (resp. a)
using its provable identity that proves that a (resp. b)
considers that b (resp. a) belongs to its community.

One may argue that inserting manually the
provable identity of a device in the other is not a
user-friendly approach. A first way to solve this
problem would be to use a secure side channel to
transmit the provable identities as described in [3].
Another mean is to use user-friendly representations
of provable identities based for instance on random
art representation [11]. When two devices a and b
have to insert each other in their respective
communities, each of them broadcasts its own
provable identity, and collects all the provable
identities it receives. After a short time, a and b
display the random art representation of their
respective provable identities and of all the provable
identities they collected. By comparing the displays
on both devices, the user can easily choose the right
ones. Because of the interesting properties of
provable identities, this mechanism can be used on a
channel where attackers can both eavesdrop and
insert messages.

To remove a device b from a community, the user
simply informs a device a of this community that
this device is now removed. a then removes the
provable identity of b from the set unilateral trust or
from the set mutual trust, and inserts it the set
distrust. Moreover, a deletes from its unilateral trust
set each device c for which the chain of tickets that a
owns contains a ticket emitted by b.

It would be clearly impractical for the user to
inform manually all the devices of the evolutions of
the community. After having considered the
operations the user have to do to make the
community evolves, we now present the way the
devices exchange information to maintain the local
knowledge of each of them up-to-date. The
synchronization of local knowledge frees the user
from this.

A device trusts the other devices in its
community to provide information about it. In other
words, it takes into consideration the information the
other devices provide about the community, and
update its own knowledge if another device that it
knows in state mutual trust have some that are more
up-to-date. As presented earlier in this section, the
three states that a device may have with respect to a
given community (unkown, in, removed) are strictly
ordered. Due to this fact, and provided it has not
been compromised, a device a of a given community
that knows another device b in its most advanced
state should be considered to have the most up-to-
date knowledge of the community, and all the other

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 41

devices of the community should be synchronized
according to a's knowledge.

For the community to stay consistent across its
evolutions, each device a periodically sends to the
other devices of its community a message containing
the current knowledge it has of the community.
More precisely, this message contains:

 The provable identities of the devices that a
currently has in its mutual trust set, as well
as the ticket issued by each of them that
proves that it considers a as being in its
community.

 The provable identities of the devices that a
currently has in its unilateral trust set, as
well as the chains of tickets that proves that
each of them considers a as being in its
community (the way these chains have been
obtained are described later in this section).

 The provable identities of the devices that a
currently has in its distrust set.

This message is authenticated by being signed
with a’s public key.

When it receives such a message from a device it
knows in its set mutual trust, a device b follows this
algorithm: first of all, b checks the authenticity of
the message. Then, it processes the information
dealing with the devices contained in the distrusted
set. For each of these devices c that b does not have
in its own distrust set, b inserts c in its own distrust
set and removes c if necessary from the set
unilateral trust or mutual trust. Moreover, b deletes
from its unilateral trust set each device d for which
the chain of tickets that b owns contains a ticket
emitted by c.

Then, b processes the information dealing with
the devices contained in the mutual trust set. For
each of these devices c that b does not have in its
mutual trust set, unilateral trust set or distrusted set,
b inserts c in its unilateral trust set and stores the
ticket issued by a that proves that a considers that b
belongs to its community. b will use this ticket
during the next phase of introduction of self (this
operation is explained later) to prove to c that a
(that, by construction, c considers to be in its
community) considers b as being in its community
and so that c should then consider b as being in its
community too. For each device d that b already has
in its unilateral trust set, b checks if the chain of
tickets it has for d is longer than one ticket. If it is
the case, b replaces this chain of tickets, and stores a
chain of tickets made of the single ticket issued by a
for b.

Finally, b processes the information dealing with
the devices contained in the unilateral trust set. For
each device c that b does not have in its mutual trust

set nor in its distrust set, and if b does not have c in
its unilateral trust set, b checks that the chain of
tickets contained in the message w.r.t. c is valid and
does not contain a ticket issued by a device that b
has in its distrust set. In this case, it stores c in its
unilateral trust set, appends the ticket issued by a
for b to the chain of tickets contained in the
message, and stores the resulting chain as a proof
that it will use to introduce itself to c. If b has c in
its unilateral trust set, it checks whether the chain of
tickets it currently has for it is longer than the one
contained in the message. If it is the case, b appends
the ticket issued by a for b to the chain of tickets
contained in the message, and replaces by it the one
he owned before for c.

When a device b known by a given device a as
unilaterally trusted becomes reachable, a introduces
itself to b in order for both of them to insert the other
one in its own mutual trust set. a knows b as
unilaterally trusted because, as we showed earlier,
another device c that a knows as mutually trusted
informed a during a synchronization of local
knowledge that b also belongs to a’s community.
During this synchronization of local knowledge, c
also provided to a a chain of tickets that a can
provide to b to prove that they belong to the same
community. The introduction of self goes as follows:
a sends to b a message of introduction of self that
contains it provable identity, its public key, a ticket
that proves that a considers b to be in its community,
and the chain of tickets a has that proves to b that it
should consider a as being in it community. When b
receives such a message, it first checks that a is not
in its distrust set, that the chain of tickets is valid,
that it does not contain any ticket issued by a device
that it has in its distrust set . In case of success, b
inserts a in its mutual trust set and stores the ticket
issued by a for b as well as a’s public key. b also
generates a message that it sends to a and that
contains its own public key and a ticket that proves
that b now considers a as being in its community.
When receiving this message, a stores both the
public key of b and the ticket it emitted, removes b
from its unilateral trust and inserts it in its mutual
trust set.

After the operation of introduction of self, a and
b now have each other in their mutual trust set and
can then perform operations of synchronization of
information.

6. ENFORCING THE BOUNDARY
After having presented in section 5 a mechanism

to define and manage the boundary of communities,
we present in this section a fully decentralized
approach in which each device enforces this
boundary in an autonomous way, while

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 42

collaborating with the other devices to the security
of the whole community. To that end, each device of
the community embeds a service that monitors
continuously the environment. According to it and to
the security policy, the service dynamically
configures a local message filter that enforces the
security policy on the communications it takes part
to.

Appl.

Core

Service

Local Policy Base

Key

Manager

IP Communication Layer

Message Filter

EAM

Fig. 3 – Architecture of the service.

The service (cf. Fig. 3) is made of five parts:

 The Local Policy Base (LPB), that manages
the information related to the security
policy.

 The Environment Awareness Module
(EAM), that manages the information about
the environment of the device.

 The Key Manager, that takes in charge
authentication and key establishment with
the other devices.

 The Message Filter, that enforces the policy
on the communications in which the local
device takes part.

 The Service Core, that generates the
configuration rules for the message filter
based on the information provided by the
LKB, the EAM and the Key Manager.

The Local Policy Base is dedicated to the
management of the information dealing with the
security policy that is relevant to the configuration
of the message filter. We can deduce the following
abstract security policy from the security objectives
we stated earlier:

 Communications are fully authorized
between the devices belonging to the
community. The channels being considered
unsecure, these communications must be
protected. If a specific fine-grained access
control has to be done, we assume it will be
at a higher layer.

 The devices of the community being trusted,
they can access freely to the services that are
offered by devices that do not belong to it.

 The access of devices that do not belong to
the community to the services provided by
the devices that belong to it must be
controlled. Only public services are
authorized.

Consequently the LPB has to manage at least two
types of information:

 The set of the devices that belong to the
community. This set is managed using the
mechanism described in section 5, that
furthermore provides the public key to
authenticate each of them.

 The set of the services that are public and
consequently can be accessed by any device,
does it belong to the community or not. To
make a service public, the user simply
inserts the identifier of the service in the set
of public services, and removes it from this
set for the service to be no more public.

The LPB is the only part of the service that is
accessible to the user. He or she has to act on it only
when a modification occurs in the security policy.

The Environment Awareness Module manages
information about the environment of the local
device. To that end, the EAM of each device
collaborates with the other EAMs available on the
network, in a way similar to the advertisement and
discovery mechanisms of Zeroconf [7]. First, the
EAM advertises itself on the network by sending
periodically to a pre-defined multicast IP address the
link between its provable identity and its current IP
address. Simultaneously, it listens on the same
multicast address the advertisement made by the
other devices that are available on the network, and
updates the local knowledge of the identities of the
available devices as well as their current IP address.
The EAM does not ensure the legitimacy of the
information it manages and provides. Particularly,
an attacker may advertise an illegitimate link
between a long term identity and an IP address,
leading to an erroneous knowledge of the EAM. It is
the role of the Key Manager to ensure devices
authentications.

Communications channels being unsecure, the
purpose of the Key Manager is to ensure the
authentication of the devices and the establishment
of the shared symmetric keys required to secure the
communications between the local device and the
other devices of its community.

When the EAM of a device a detects a new
device b that belongs to a’s community on the
spontaneous network, it informs the Key Manager. If

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 43

a does not already share a symmetric key with b, the
Key Manager tries to authenticate b and to establish
with it a shared key Kab by using the public key
provided by the LPB. If the Key Manager already
has a shared key Kab for, it uses it for mutual
authentication with b. As we show later in this
document, the symmetric keys established by the
Key Managers are also used to secure the
communications between the local device and the
devices that belong to its community.

Usually, using point-to-point symmetric keys
supposes to manage a very important amount of
keys. In our case, the Key Manager manages and
stores only the symmetric keys shared between the
local device and each device it has to have a secure
relation with. Consequently, the amount of keys
managed by each device grows linearly with the
number of devices of the community. This value is
practically acceptable for the size of the typical
devices communities we consider.

The Message Filter is the active part of our
system. It enforces the security policy on the
communications the local device takes part to, based
on the configuration rules provided by the Service
Core. It handles both incoming and outgoing
communications. First, it ensures the security of the
communications with the other devices of the
community, and therefore creates a virtual private
network (VPN) with the other devices of the
community. It also controls the access of the devices
that do not belong to the community to the locally
provided services.

The Message Filter is itself made of two layers
(cf. Fig. 4):

 The Cryptographic Layer, which, when
necessary, checks the authenticity and
decrypts the incoming messages, and
encrypts and authenticates the outgoing
messages.

 The Packet Filter Layer, which finely
controls the access to the services provided
by the local device.

Outgoing messages are first managed by the
Packet Filter Layer that transmits them to the
Cryptographic Layer. The later encrypts and
authenticates them if required by the configuration
rules, and sends the messages towards the network
interface. Incoming messages are first managed by
the Cryptographic layer that checks if they should be
cryptographically protected. If they correctly are, or
if cryptographic protection is not required, the
messages are transmitted to the Packet Filter Layer.
When the Packet Filter Layer receives a message
from the Cryptographic Layer, it checks if this
communication is in accordance with the rules
describing the security policy provided by the

Towards Applications

Towards Network Interface

Cryptographic Layer

Packet Filter Layer

Fig. 4 – Architecture of the Message Filter.

Service Core, in which case it transfers it to the
upper layers.

In addition to the dynamically generated
configuration rules presented later in this document,
the Cryptographic Layer and the Packet Filter Layer
follows these given default rules. First, the incoming
and outgoing messages are by default accepted
unencrypted by the Cryptographic Layer. Second, by
default, the incoming communications are rejected
by the Packet Filter Layer, while the outgoing
communications are accepted by it.

The Message Filter is also dynamically and
automatically configured by the Service Core that
generates the configuration rules for it using the
information provided by the LPB, the EAM and the
Key Manager. The configuration rules generation is
triggered under two conditions. First, the LPB
triggers it when the security policy is modified.
Second, the EAM triggers it when the environment
is modified, i.e. when a device that belongs to the
community appears on the network or disappears
from it, or when the IP address of such a device is
modified.

The Service Core first generates the rules that
deals with the communications that must be
explicitly exchanged unencrypted. Indeed, some
communications (and specially the communications
used between the LPB, the EAM, and the Key
Manager) must be exchanged without being
encrypted, even between the devices that belong to
the same community, since encrypting those
communications either is impossible or would
prevent the related services from working. Yet, those
messages being exchanged between devices of the
same community, the rules generated later by the
Service Core would make the Cryptographic Layer
to encrypt them automatically. For each such
service, a rule is generated that states that the
outgoing communication to these services have to be
sent without being encrypted.

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 44

Then, the Service Core deals with the
communications with the other devices of the
community. On this topic, the abstract security
policy states that the communications between
devices of the community are authorized and must
be secured. The Service Core knows the devices that
belong to the community thanks to the LPB. It also
knows the current IP address of the devices locally
available in the spontaneous network thanks to the
EAM. Finally, the Key Manager provides the
symmetric keys that are currently shared with the
devices of the community (if they have been
established) and will be used to protect the
communications. For each device a of the
community for which the EAM has currently a valid
address, the Service Core generates two rules
dedicated to the Cryptographic Layer. The first one
states that, in order to be accepted, the
communications that supposedly come from a (i.e.,
that source address is the one provided by the EAM
as being a’s) must be encrypted and authenticated
using the key provided by the Key Manager. The
second rule states that the outgoing communications
to a have to be encrypted and authenticated using the
key provided by the Key Manager. For each device
a of the community for which the EAM has
currently a valid address, the Service Core also
generates a rule dedicated to the Packet Filter Layer
that states that any incoming communication from a
have to be accepted.

Finally, the Service Core generates the rules that
deal with the public services. For each public
service, it generates a rule dedicated to the Packet
Filter Layer that states that any incoming
communication for this service has to be accepted.

By dynamically and automatically configuring
the Message Filter, the mechanism presented here
takes into account the evolutions of the security
policy and of the topology of the spontaneous
network. At any time, the Message Filter is then
properly configured to interact with the other
available devices. It ensures the security of the
communications with the devices of the community,
and checks the legitimacy of the communications
initiated by the devices that do not belong to the
community but try to access to services offered by
devices of the community.

7. CONCLUSION
In this article, we have proposed a fully

decentralized service of automated configuration of
the security services dedicated to communities of
devices that communicate over spontaneous
networks. Each device ensures itself the security of
its interactions with the other devices. To that end, it
manages its local knowledge of its community and

of its security policy. Then, it uses a local message
filter to enforce the security of the communications
in which the local device takes part: communications
with the devices that belong to the same community
are encrypted and authenticated. Simultaneously,
legitimacy of cross-boundary interactions is
checked. This message filter is dynamically and
automatically configured when the security policy
and/or the environment is modified. Because this
service does not rely on any infrastructure, it makes
neither hypothesis on the network topology nor on
the availability of a specific device. As such, it
complies with the constraints induced by
spontaneous networks.

We have developed a proof of concept of our
approach over Linux. Each device has a 1024 bits
RSA key pair, the provable identity being the SHA-1
hash value of the public key. IPsec is used to
implement the Cryptographic Layer, while the
Packet Filter Layer is based on NetFilter.

For our future works, we plan to focus on the
expressiveness of the local security policy. The case
of devices that, while not being in the community
have privileged access to some services offered by
some devices in the community should particularly
be studied with more interest. We also think about
studying the possibility of integrating mechanisms
of automated management of short-term trust such
as [2,8] in our approach.

8. REFERENCES
[1] Balfanz, D.; Smetters, D.; Stewart, P. & Wong,

H. (2002), Talking to strangers: Authentication
in ad hoc wireless networks, in 'Proceedings of
the ISOC Network and Distributed Systems
Security Symposium'.

[2] Cahill, V.; Gray, E.; Seigneur, J.; Jensen, C.;
Chen, Y.; Shand, B.; Dimmock, N.; Twigg, A.;
Bacon, J.; English, C.; Wagealla, W.; Terzis, S.;
Nixon, P.; Segurendo, G.d.M.; Bryce, C.;
Carbone, M.; Krukow, K. & Nielsen, M. (2003),
'Using Trust for Secure Collaboration in
Uncertain Environment', Pervasive Computing
2(3).

[3] Capkun, S.; Hubaux, J.P. & Buttyan, L. (2003),
Mobility helps Security in Ad Hoc Networks, in
'Proceedings of the Fourth International
Symposium on Mobile Ad Hoc Networking and
Computing'.

[4] Cheswick, W.R.; Bellovin, S.M. & Rubin, A.D.,
Firewalls and Internet Security: Repelling the
Wily Hacker, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA. (2003)

[5] Corson, S. & Macker, J. (1999),'RFC 2501:
Mobile Ad hoc Networking (MANET): Routing

Nicolas Prigent, Christophe Bidan / Computing, 2005, Vol. 4, Issue 2, 36-45

 45

Protocol Performance Issues and Evaluation
Considerations'.

[6] Feeney, L.; Ahlgren, B. & Westerlund, A.
(2001), 'Spontaneous networking: an
application-oriented approach to ad hoc
networking', IEEE Communications Magazine.

[7] Guttman, E., Autoconfiguration for IP
Networking: Enabling Local Communication,
IEEE Internet Computing 5(3), 81--86. (2001)

[8] Legrand, V.; Galice, S.; Ubéda, S. & Neuville, J.
(2005), Identification pour les réseaux
spontanés, in 'Actes de la quatrième conférence
sur la Sécurité et Architectures Réseaux (SAR
2005)'.

[9] Montenegro, C. & Castelluccia, C. (2002),
Statistically Unique and Cryptographically
Verifiable (SUCV) identifiers and addresses, in
'NDSS'02'.

[10] O'Shea, G. & Roe, M. (2001), 'Child-proof
authentication MIPv6 (CAM)', ACM SIGCOMM
Computer Communication Review 31(2), 4--8.

[11] Perrig, A. & Song, D. (1999),Hash
Visualization: a New Technique to improve
Real-World Security, in 'International Workshop
on Cryptographic Techniques and E-Commerce
(CrypTEC '99)', pp. 131--138.

[12] Prigent, N.; Bidan, C.; Andreaux, J. & Heen,
O. (2003),Secure Long Term Communities in
Ad Hoc Networks, in 'Proceedings of the First
ACM Workshop on Security in Ad Hoc and
Sensor Networks (SASN), held in association
with the Tenth ACM Conference on Computer
and Communication Security (CCS)'.

[13] Prigent, N.; Bidan, C.; Heen, O. & Courtay,
O. (2005), Configuration automatisée des
services de sécurité de communautés d'appareils
dans les réseaux spontanés, in 'Actes de la
quatrième conférence sur la Sécurité des
Architectures Réseaux (SAR 2005)'.

[14] Stajano, F. (2001), 'The Resurrecting
Duckling -- What Next?', Lecture Notes in
Computer Science 2133, 204--211.

Christophe Bidan obtained
his PhD in Computer Science
from the Université de Rennes
1, France, in May 1998, in the
information systems security
field. After his PhD, he spent a
one year postdoc at the
Imperial College of London.
Then, he has worked as
security expert for Gemplus
from 1999 until 2000. Since 2000, he is a research
assistant at Supélec Rennes, France, in the Network
and Information Systems Security Group, where he
investigates security solutions in next generation

networks (wireless and ad hoc networks, home
networks).

Nicolas Prigent is a research
engineer in the Security
Laboratory of Thomson R&D
Rennes, France, where he
prepares a PhD dealing with the
security of dynamic and self-
configurable networks. He holds
a M. Sc. in Computer Science
from the University of Rennes 1.
His research interests include computer science,
networks, and secure systems.

