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Abstract: Efficient generation of random numbers plays significant role in cryptographic applications. Such a 
generator has to produce unpredictable and un-correlated random bits. Random number generators are classified as 
pseudo-random number generators (PRNGs) and true random number generators (TRNGs). The first ones have the 
disadvantage that they can be proven predictable, while the latter ones can produce true random bits but it is not easy 
to re-produce specific sequences or implement them in constrained environments and there may exist correlations and 
biases of produced sequences. A third class of random number generators has been introduced, called hybrid-random 
number generators (h-RNGs), where there is a combination of a cryptographically strong PRNGs or TRNGs which are 
seeded, and possibly re-seeded, through a source of randomness with high entropy. In this paper, we present an 
overview of various sources of randomness that can be used either as direct random number generators or as seed 
sources in h-RNGs, for application in embedded systems. 
 
Keywords: – Random Number Generators, randomness, embedded systems, RNGs, true RNGs, hybrid RNGs, 
cryptographic RNGs. 
 

1. INTRODUCTION 

Nowadays, more and more applications, such as 
e-commerce, e-banking, military services and, in 
general, applications that involve handling of 
sensitive data that might be compromised by an 
adversary, use unsafe media, like the Internet, to 
interchange these data. Protection of data can be 
achieved using various cryptographic methods and 
protocols. Use of cryptography can achieve basic 
security requirements, such as privacy, 
confidentiality and integrity of user data. Efficient 
generation of random numbers plays significant role 
in cryptography. Various cryptographic primitives 
require generation of cryptographically strong 
random numbers, i.e. digital signature schemes, 
public-key algorithms like RSA and ECC, and 
symmetric encryption and decryption algorithms. 
The one-time pad is considered the perfect 
cryptosystem, under the assumption that it is 
provided with a truly random bit stream. 
Furthermore, various cryptographic protocols like 
SSL are based on generation of cryptographically 
strong random numbers; Netscape’s SSL 
implementation was hacked due to failure to 
generate strongly random bits [33]. In general, 
random number generators (RNGs) are classified as 

pseudo-random number generators (P-RNGs) and as 
true random number generators (T-RNGs). In the 
first class, the sequence is produced by a computer 
using a deterministic algorithm which takes an initial 
value –seed— and produces random numbers. The 
entropy of the produced sequence is always smaller 
or equal to the entropy of the seed, so it is necessary 
to use as seed, data with high entropy. In the second 
class, the sequence is produced by a physical source 
of randomness, like radioactive decay, noise, etc. 
There is also a third class of random number 
generators, called hybrid-RNGs, which use a T-RNG 
as seed generator and expand it. Clearly, the 
requirements of the different generators are varying; 
thus, it is necessary to identify sources of 
randomness that can be used for deployment of 
random number generators in various application 
areas. Our interest is to identify appropriate RNGs 
for adoption in embedded, constrained 
environments, such as mobile appliances, PDAs, etc. 

In this paper we present an overview of various 
sources of randomness which can be used in direct 
random number generators or as seed in hybrid 
random number generators. The paper is organized 
as follows. Section 2 presents a definition of 
randomness. Section 3 briefly presents the properties 
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of cryptographic random number generators and also 
describes various statistical tests and methods for 
evaluation of randomness. Section 4 describes 
briefly various methods (de-skewing techniques) 
that have been proposed in order to eliminate biases 
and correlations that may appear in raw data 
obtained from a source. Section 5 describes the 
sources of randomness, indicating the application 
areas (embedded or general-purpose), where each 
source is suitable. 
 

2. DEFINITION OF RANDOMNESS 
Randomness constitutes a fundamental, but at the 

same time a not well defined, notion in mathematics 
and physics. In 1919, von Mises [1] defined a 
random sequence as an infinite sequence of binary 
digits, in which, asymptotically, the number of 0s is 
a finite fraction of the total bits and when the same 
fraction is found for every infinite subsequence that 
can be chosen independently. That claim proved to 
be inadequate and to have various problems [2]. 
Wolfram [3] defined randomness through the notion 
of redundancy, i.e. we can consider a sequence of 
numbers random, if we cannot identify the existence 
of patterns, at least with conventional technology 
and methods of recognition. The key for defining 
randomness is the notion of non-compressibility of 
an object, which in turn means that we cannot 
provide a more compact representation of the object. 
In our effort to generate random numbers for 
practical purposes, we use computers which are 
deterministic finite state machines with quite 
predicted output for given input. Chaitin [4, 5] gave 
an algorithmic definition of randomness, based on 
the capabilities and constraints of computing 
systems. A sequence of bits can be considered 
random, if the minimal algorithm that can produce 
the sequence has the same bits of information with 
the sequence itself. We may define the complexity 

( )sAC  of a sequence s of binary digits, as the length 
(in bits) of the minimal program p that will output 
the sequence s when it is executed on computer C, 
i.e. 

 

( ) ( ) ( )psA spCC 2logmin ==  (1)

 
A binary sequence s can be considered random, 

when its complexity is almost equal with its length 
(in bits), i.e. 

 
( ) ( )ssA 2log≈  (2)

 
Claude Shannon, a pioneer in information theory, 

defined randomness of a binary sequence through 
the amount of information that is contained in the 
sequence [6, 7]. Considering a random variable X 
that takes values on a finite set  nxxx ,......,, 21  , we 
define the entropy H(X) of X, as 
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The entropy quantifies the amount of information 
that is contained in an observation of the random 
variable X. Consider, for example, a source that 
generates binary sequences of length s, i.e. 

{ }ns 1,0∈ . If the source is random, then each 
sequence should be generated with the same 
probability n

ip 21= , where [ ]ii sSp == Pr . The 
entropy of random variable X can be calculated by 
(3), giving 
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Thus, the entropy of a truly random binary 
sequence equals with its size in bits. 

 
3. EVALUATING RANDOMNESS 

In our work, we want to identify some sources of 
randomness that can be used to produce 
cryptographically strong random bit sequences. The 
properties that should be fulfilled by a random 
number generator depend on their use, e.g. random 
numbers for stochastic processes like Monte Carlo 
simulation and cryptographic random numbers have 
different objectives and need to have different 
properties. The main property that should 
characterize a cryptographic random number 
generator is the computational unpredictability of 
successive bits of the sequence. This means that, for 
such a generator if one knows at a specific time the 
sequence { }ibbb ,......,, 21 , then one must not be able 
to identify the next bit 1+ib  of the sequence with 
probability different than 21 . Besides 
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unpredictability of next bit, a random binary 
sequence should be characterized by independency 
of bits (unbiased bits), i.e. each produced bit should 
not be affected by a previous bit. 

Randomness can be evaluated with the 
application of various statistical tests on a binary 
sequence. Numerous statistical tests have been 
proposed to test randomness; a detailed list of 
statistical tests and suites is provided by Soto [17]. 
Knuth [20] proposed three statistical tests, named (i) 
Frequency test, (ii) Run test, and (iii) Combination 
test. Menezes [14] presented five tests that may 
provide strong indication of randomness: (i) monobit 
test, (ii) two-bit test, (iii) poker test, (iv) runs test, 
and (v) autocorrelation test. Moreover, various test 
suites have been developed, independently, that 
perform a variety of statistical tests (battery of tests). 
The ENT test suite [12] calculates entropy, chi-
square metric, arithmetic mean, approximation of pi-
value and serial correlation coefficient for any given 
binary sequence. Marsaglia [28] has implemented 
another battery of statistical tests, named 
DIEHARD, which implements more that 15 
statistical tests. The Computer Security Division 
(CSRC1) of NIST2 in accordance with FIPS 140-1 
[30] and FIPS 140-2 [23] recommendations, 
implemented a statistical test suite that performs a 
variety of tests for evaluation of random number 
generators [29]. 

 
4. DE-SKEWING TECHNIQUES 

As mentioned previously, a sequence of bits that 
is obtained by a source might present (i) biases, i.e. 
the probability of occurrence of 0s is greater than 
that of 1s or vice versa, and (ii) correlations, i.e. the 
occurrence of bit values depends on previous bits. In 
order to avoid such phenomena, various techniques 
have been proposed which, when applied to such 
sequences, eliminate biases and correlations, 
producing uniformly distributed sequences. 

The first and one of the simplest techniques for 
de-skewing has been proposed by von Neumann 
[22]. Considering successive pairs of bits{ }1, +ii bb , 
the result of application of von Neumann’s function 
(transition mapping) to such a pair can be seen at the 
following equations, 

( ) { } { }Λ→ ,1,01,0: 2Neu  

                                                 
1 http://csrc.nist.gov/  
2 www.nist.gov/  
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where Λ means that nothing is produced as result. 

Eastlake et al [34] describe other techniques like 
parity, Fourier transforms (FFT) and compression 
that can be used for de-skewing bit sequences. 

 
5. SOURCES OF RANDOMNESS 

There exist various sources that can be used to 
generate true random bit streams. In the following, 
we describe each source briefly and for each case, 
we present the source of randomness and how this 
source can be used for random number generation. 
Moreover, we refer to the statistical tests that each 
source is applied to in order to determine the level of 
randomness.  

In general, the scheme to obtain possible random 
bit streams from a source is shown in Figure 1. 

 

 
Fig.1 – Obtaining random data from a physical source 
of randomness.  The data collector module collects 
raw data from the source and feeds them to the 
deskewing module, which produces possibly unbiased 
and uncorrelated random bit streams. The de-skewing 
module is drawn dashed, because its existence is not 
always necessary. 

Basically, the sources that can be used to 
generate random bit streams with application to 
embedded systems can be categorized, according to 
Soohoo [33], as (i) sampling and amplification of 
noise sources, (ii) dynamical systems, exploiting the 
chaotic behavior that small electronic circuits 
exhibit, and (iii) oscillator-sampling. 

 
5.1 Rand 1 

Stefanov et al. [8] propose a true random number 
generator utilizing the intrinsic characteristics of 
quantum mechanics. In their scheme, photons are 
generated by an optical LED and are forced to 
follow two different paths. Upon arrival of each 
photon, at the end of the path, we can identify which 
path it has followed and we label one path as ‘0’ and 
one as ‘1’. As a result, we get a binary sequence of 
possibly random bits. The sequence of data has been 
tested and the source appears to behave like a true 
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random source. 
 
5.2 Rand 2 

Jakobsson et al. [9] propose a physical random 
bit generator based on randomness that is exhibited 
in measurements of access times of various storage 
devices like hard disks, CD-ROMs, magnetic tapes, 
etc. Their original work focused on hard disks. They 
observed that the time needed to read data from a 
block in a sector of a hard disk cannot be calculated 
accurately, when we try to access the same block, 
repeatedly. The response times for repetitive 
readings of the same block present significant 
variations and this phenomenon can be used as a 
source of randomness. Basically, there is evidence 
that these variations are ought to disk rotational 
latency caused by air turbulence phenomena that 
appear into the rotating platters of the hard disk [10]. 

 
5.3 Rand 3 

Montville [11] conducted research on sources of 
randomness that can be used in handheld devices, 
like PDAs, mobile phones, etc. He studied two 
possible sources: (a) touch-screen data collection 
and (b) audio data collection. Considering 
touchscreen data collection, each point’s coordinate 
in a touch-screen is represented by a 32-bit word, 
(16 lower bits represent the x coordinate and 16 
higher bits represent the y coordinate). The x, y 
coordinates are XOR-ed between them and the 8 
least significant bits of the result are kept. So, each 
touch-screen point is represented by a byte. 
Regarding the audio data collection, he used various 
entropy pools that may produce audio data, like 
dining in a noisy place, attending a lecture, etc. 
Those sources are sampled periodically and an 8-bit 
data sample is kept. In both cases, the random binary 
sequence is generated by keeping the least 
significant bit of every produced byte. Then, the raw 
binary data are de-skewed and submitted to ENT test 
suite [12], passing successfully the entire statistical 
test for randomness.  

 
5.4 Rand 4 

Fujita et al [15] propose a novel hardware 
random number generator using as source of 
randomness the current of a nano-electron channel. 
They exploit the fact that the current of such a 
channel can present very big fluctuations, due to the 
presence of “trap” electrons near the channel, which 
may drag electrons from the channel making the 
current fluctuating very quickly. The authors 
implemented such a nano-device using a single-
electron-transistor (SET) with a single trap. They 
derived possibly random binary sequences from the 

device and passed them from the standard statistical 
tests for checking randomness that are proposed by 
NIST [16, 17]. Their results indicate high 
randomness. Another similar hardware random 
number generator, which uses as source of 
randomness the fluctuating current of MOS 
transistors after soft breakdown has been proposed 
by Yasuda et al [18]. Generated sequences passed 
through the same statistical suite, showing high-level 
of randomness. 

 
5.5 Rand 5 

Saitoh et al [19] proposed a physical random 
number generator based on a variable parametric 
oscillator (parametron). Considering an unexcited – 
no RF power excites the circuit - digital parametric 
circuit, the oscillation phase of the parametron 
depends on the intrinsic noise that resides into the 
circuit. Because that noise is statistically random, the 
oscillation phase presents high fluctuation and 
cannot be predicted accurately. In their proposed 
scheme, that unpredictable oscillation phase of such 
a circuit comprises the source of randomness. The 
collected random data passed successfully three 
statistical tests for randomness, specifically (i) 
Frequency test, (ii) Run test, and (iii) Combination 
test (details on the test methodologies are provided 
in [20]). 

 
5.6 Rand 6 

Jun and Kocher [21] reviewed and tested the Intel 
random number generator. The Intel RNG utilizes 
the thermal noise (Johnson noise), which is present 
in all resistors as a result of physical and mechanical 
behavior of materials. The source of randomness 
comes from two free-running oscillators, one having 
high frequency and one quite slower. The noise is 
sampled and amplified and modulates the frequency 
of the slower oscillator. The fastest oscillator is 
sampled using the noise-modulated clock, giving 
random measurements. In turn, those measurements 
are de-skewed using von Neumann’s technique [22] 
for removing possible biases. The derived binary 
sequences have been tested for randomness using the 
DIEHARD test suite, Knuth’s tests [20] and FIPS 
140-1 recommendation [23], providing strong 
results. Another similar random number generator 
has been proposed by Bagini and Bucci [24], who 
designed a true RNG that can be used for 
cryptographic purposes, using as source of 
randomness Gaussian white noise which is amplified 
and sampled, deriving random binary data. Another 
commercial true random number generator that uses 
as source of randomness thermal noise of 
semiconductors is Random Master [31]; however, it 
is intended for usage in general-purpose computing 
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systems. 
 
5.7 Rand 7 

Yalcin et al [25] proposed a true RNG using a 
chaotic oscillator which exhibits a double scroll 
attractor, as randomness source [26, 27]. The output 
of the oscillator is a continuous-time chaotic signal 
and in order to generate sequences of random bits, 
the authors used two threshold functions, since the 
state space is sub-divided into three independent 
regions. Each random bit is generated using the 
result of the threshold functions as input and finally 
the produced random sequence is de-skewed for 
removal of bias and possible bit correlations. The 
sequences have been extensively statistically tested 
for randomness using FIPS 140-1 and DIEHARD 
tests, passing all of them successfully. 

Table 1 summarizes the tests under which each 
source was submitted. For some of the sources, the 
derived raw binary data have been de-skewed for 
removal of possible biases and correlations; all 
schemes have passed successfully all the tests, 
which they were subjected to. 

 
Table 1 - Testing and Results for each source of 

randomness 

Source Test Deskewing Passed 
or not 

Rand 1 Knuth, entropy, 
autocorrelation Yes Yes 

Rand 2 Knuth, 
DIEHARD Yes Yes 

Rand 3 ENT Yes Yes 

Rand 4 Spectral test, 
NIST No Yes 

Rand 5 Knuth No Yes 

Rand 6 3 
Subset of Knuth, 
NIST and 
DIEHARD tests 

Yes Yes 

Rand 7 NIST, Diehard Yes Yes 

Rand 8 Menezes Yes Yes 

Rand 
9 

ENT, 
DIEHARD No Yes 

 

 

                                                 
3 We mention the tests that were applied to Intel 

random number generator, only. 

5.8 Rand 8 

Nève et al [13] utilize the intrinsic noise of 
transistors as a source of randomness, developing a 
System-On-Insulator random signal generator. The 
noise is used to generate a random signal, which is 
sampled producing sequences of random bits. These 
sequences are subjected to de-skewing techniques 
and they pass successfully the statistical tests for 
checking randomness, which have been proposed by 
Menezes [14]. 

 
5.9 Rand 9 

Rohe [35] proposes a cryptographic random 
number generator which uses as source of 
randomness the radioactive decay produced by an 
ionization-type household smoke detector. The 
random bit stream is obtained by measuring the time 
interval between successive decay impulses. 
Furthermore, he proposes three additional methods 
to extract randomness from such sources. The 
obtained random bit streams present uniform 
distribution (no necessity for de-skewing) and 
passed successfully the ENT and DIEHARD 
batteries of statistical tests. 

 
5.10 Comparison 

Embedded systems, the systems we focus on, are 
constrained systems with limited processing 
capabilities and storage capacity, and most 
importantly, power limitations. As strong random 
number generators are necessary for a wide range of 
applications and services, it is necessary to identify 
those sources that are effective in embedded systems 
environments, because several generators have high 
requirements in terms of processing, power and 
extra hardware. For example, some sources, such as 
Rand 3 and Rand 4, take advantage of characteristics 
of system components, i.e. touch-screen and intrinsic 
characteristics of transistors, respectively. Thus, 
such generators can be used in embedded systems, 
while others are clearly inappropriate, such as Rand 
2 that uses accesses to hard disc sectors as the source 
of randomness. 

Table 2 summarizes the application areas of each 
of the reviewed source of randomness. Clearly, 
generators appropriate for embedded systems are 
effective in general-purpose environments as well. 
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Table 2 – Application area per source 

Source Application Area 

Rand 1 General-purpose systems 

Rand 2 General-purpose systems 

Rand 3 Embedded Systems 

Rand 4 Embedded Systems 

Rand 5 General-purpose systems & 
Embedded Systems 

Rand 6 General-purpose systems & 
Embedded Systems 

Rand 7 General-purpose systems & 
Embedded Systems 

Rand 8 Embedded Systems 

Rand 9 General-purpose systems 

 

5. CONCLUSIONS 
Generation of cryptographically strong random 

numbers is crucial for conventional and emerging 
applications. It is necessary to identify appropriate 
sources of randomness that can be used for efficient 
random number generation.  

In this paper, we have identified various sources 
of randomness, like optical quantum sources, air 
turbulence in disk accesses, touch-screen and audio 
data collection using a PDA, noise and intrinsic 
phenomena of transistors, parametric oscillators, 
thermal and white noise and chaotic behavior of 
electronic circuits. Several of these sources appear to 
provide strong random bit sequences and are 
appropriate for use in embedded systems that are 
characterized by constrained resources. 
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