
Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 95

MODERN APPROACHES OF SECURING COMPUTER NETWORKS
FROM DENIAL OF SERVICE ATTACKS

Andrian Piskozub

National University “Lviv Politechnic”, Ukraine, piskozub@polynet.lviv.ua

Abstract: The aim of this paper is to understand reasons why denial of service (DoS) attacks are happening; to find
ways how to avoid these attacks or lessen their influence; to work out strategy of detecting and preventing these attacks.

Keywords: denial of service attack, distributed attack, flooding attack, network security, firewall, intrusion detection
system, traffic shaping, application level defense, TCP Interception, IP hopping, scanner.

1. INTRODUCTION
DoS attacks first appeared in the early nineties

and up to 2000 became one of the most dangerous
attacks in internet. From 2000 up to now thousands
of DoS attacks have been taking place every week
and their complexity is growing all over the time.
The reasons of this phenomenon are: plenty of
vulnerabilities in software; time to exploit now is
measured in days or even hours; automated attack
tools have been rapidly improving.

There are 3 main reasons for automation of
attacks detection and prevention:

• as the number and frequency of attacks are
multiplied all the time, it is very important
to identify the attacks on the early stage of
their execution and react on them in time;

• in the critical case interference with the
attack must be realized faster, than a man is
able to react;

• automated attack tools are used more often.

2. DOS BASICS
The aim of this paper is to understand reasons

why DoS attacks happen; to find ways how to avoid
these attacks or lessen their influence; to work out
strategy of detecting and preventing these attacks.

2.1. DOS VARIANTS

The DoS attacks classification is presented on
Figure1:

Figure 1. DoS Attacks Classification

Software vulnerability attacks are based on

imperfect software. A lot of programs use stack for
their operation. This is a prerequisite for the so-
called buffer overflow exploits, which make stack
("smashing"). In case of success the hacker gains
access on victim computer with the privilege of the
service that was compromised.

In case of an unsuccessful buffer overflow attack,
the targeted process on victim computer may simply
stop responding and in this case we consider it a
DoS attack.

We may suggest the following solutions for this
case:

• use the newest operating system (OS)
version, apply the latest service packs and
patches. Use the latest version of application
software packages;

• to prevent buffer overflow attacks:
- for compiling programs it is necessary

to use a special compiler such as
StackGuard [1], which does not allow
to change the return address in stack

computing@tanet.edu.te.ua

www.tanet.edu.te.ua/computing

ISSN 1727-6209

International Scientific
Journal of Computing

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 96

(due to usage of the so-called canary
word, which is placed just after the
return address during function call. If
this canary word differs from its
original value after finishing the
function operation, a buffer overflow
attempt has been taking place);

- use Immunix [2] – version of Linux,
fully compiled using StackGuard;

- use the Openwall patch [3] for Linux
kernel – it does not allow to execute
code from the stack.

Sometimes computer criminals try to attack
systems by exhausting all system resources of victim
computers, e.g., using CPU or memory resources,
flooding hard disk space with unnecessary
information, etc. The following solutions for this
case are:

• restrict system resources by using ulimit (e.g.,
memory, CPU, maximum number of open file
descriptors etc.);

• use quota to restrict utilization of hard disk
space;

• use other application specific restrictions.
The attacks on routing are based on records

manipulation of routing tables that can result in the
termination of service to legitimate systems and
networks. Most routing protocols, such as RIPv1 or
BGP, generally use no or weak authentication
algorithms. As a result of such attacks, the traffic of
victim network is routed through attacker's network

or to nowhere. To avoid this, we should use routing
protocols with strong authentication.

Attacks on DNS are happening more often lately
as soon as current DNS version uses both UDP and
TCP protocols. This fact allows under certain
conditions to spoof DNS records which gives the
attacker the possibility to redirect users traffic to
attacker’s machine or to nowhere. There is no
universal solution for current version of DNS against
this kind of attacks for the time being.

Lately the most devastating kind of attacks
became the so-called flooding DoS attacks. To
consider their nature and elaborate strategies and
solutions against them we have to consider models
and stages of attacks.

2.2 MODELS AND STAGES OF ATTACKS

The traditional attack models are built on
principle "one to one" connection (Figure 2) or "one
to many" connection (Figure 3), i.e. attack comes
from one source. Developers of network defense
facilities (firewalls, intrusion detection systems
(IDS), etc) were oriented exactly to these traditional
attack models. However such models do not manage
with the relatively recently (in 1998) discovered
threat - distributed attacks. In the models of the
distributed or coordinated attack other principles are
used - “many to one” connection (Figure 4) and
“many to many” connection (Figure 5) [4].

The distributed attacks are based on the classic

buffer overflow attacks, or rather on their subset,
also known as flood or storm attacks. The principle
of these attacks consists in sending a storm of

packets directed at the victim system, so that the
targeted system will “choke” and it will cause a
denial of service attack. However for an attacker to
succeed in a flood attack, it is important to have a

Figure 5. Connection “many to many” Figure 4. Connection “many to one”

Figure 2. Connection “one to one”

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 97

channel with a higher bandwidth that the one of the
targeted system. This is not always possible if the
classical attack model is used, but in case of
distributed attack model the situation cardinally
changes.

It is important to understand that every attack has
its three stages – information gathering, exploitation
and wiping out tracks (Figure 6) [4].

Figure 6. Stages of attacks realization

Traditional security tools, such as firewalls,
operate on the second stage, "forgetting" about the
first and the third stages. That is why it is very
difficult to stop attack even using powerful and
expensive security tools. Besides, traditional
perimeter security technologies such as firewalls and
IDS do not provide adequate distributed DoS
(DDoS) protection, since filtering solutions such as
router–based access control lists (ACLs) simply
can't separate good traffic from bad for most attacks,
resulting in legitimate transactions being blocked.

Some well known DoS flood attacks are
presented in table 1 [5].

Basic model of DDoS tools is shown on Figure 7.
For realization of DDoS attack to be successful

and to involve as many computers as possible
intruder has to compromise (zombify) them:

• •he (she) scans internet for finding known
vulnerabilities;

• •compromises vulnerable hosts for gaining
access;

• •installs DDoS tool on every compromised
machine;

• •uses compromised hosts for subsequent
scanning and compromise other hosts.

Some well known DDoS tools are presented in
table 2 [6].

3. DEFENSE AGAINST DOS AND DDOS

FLOOD ATTACKS
The defense methods against DoS and DDoS

attacks are as follows: OS modification, firewalling,
IDS, traffic shaping, application level defense, TCP
Interception and IP hopping.

3.1 OS Modification
It is necessary to use hardened operation systems
(OS) and platforms - now OS can reduce DoS'ing
ability (e.g., stand against SYN flood attacks) due to
increase of queue size for TCP-connections
establishment and reducing timeouts. Advantages
here are as follows: simple to implement, the fastest
possible solution. Drawbacks: it is not the best way
of problem solution, it should be used only together
with other solutions.

Table 1. Some well known DoS flood attacks

Name of
Attack

Flooding
Capabilities

Short Description

SYN TCP Sending large numbers of TCP connection initiation requests to the target. The
target system must consume resources to keep track of these partially opened
connections.

ICMP flood ICMP Sending large numbers of ICMP Echo Request packets to the target system, thus
tying up network resources.

Smurf ICMP ICMP (Internet Control Message Protocol) ping requests to a directed broadcast
address. The forged source address of the request is the target of the attack. The
recipients of the directed broadcast ping request respond to the request and flood
the target's network.

Fraggle UDP Same as Smurf, but rather than ICMP uses UDP to broadcast address for
amplification.

UDP flood UDP Sending large numbers of UDP (User Datagram Protocol) packets to the target
system, thus tying up network resources.

TCP flood TCP NUL,
TCP RST,
TCP ACK

When TCPs communicate, each TCP allocates some resources to each
connection. By repeatedly establishing a TCP connection and then abandoning it,
a malicious host can tie up significant resources on a server.

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 98

Figure 7. Basic model of DDoS tools

Table 2. Some well known DDoS tools.

3.2 FIREWALLING
By using firewalls we can: block ports and

protocols used by DoS and DDoS tools; do ingress
and egress filtering against spoofed IP packets [7].
Advantages: ingress and egress filtering is
considered the best solution against spoofing attacks.
Drawbacks: firewall does simply block
communication from a specific IP address or port
and has no ability to drop the packets that contain
the attack and allow normal traffic to go through; the
blocking ports technique is useless for DDoS tools
that use arbitrary ports.

3.3 INTRUSION DETECTION SYSTEMS
Not so long ago, a good practice for network

security was to use IDS with DoS and DDoS attack
detection. Now we should consider using IDS with
DoS and DDoS attack prevention – so called inline
IDS. Whereas intrusion detection is designed to
make the security administrator aware of potential
attacks, intrusion prevention goes one step farther
and works actively to prevent the intrusion. E.g.,
SNORT, which is a well-known IDS, can be
compiled in both modes – as a normal or inline IDS.
Advantages: in order to prevent attack inline IDS are
closely integrated with firewalls so they together
have ability to drop the packets that contain the

Name of Tool Flooding
Capabilities

Short Description

TFN UDP, ICMP Echo,
TCP SYN, Smurf

Uses IP spoofing. Uses ICMP Echo reply packets to communicate between
zombie and master.

Trinoo UDP Only initiates UDP attacks to random ports. Communication between master
and slave is via unencrypted TCP and UDP. No IP spoofing. Uses UDP ports
27444 and 31335.

Stacheldracht
v2.666

UDP, ICMP, TCP
SYN, Smurf, TCP
ACK, TCP NUL

Uses encryption for communications (but not for ICMP heartbeat packets that
zombie sends to master) and has an auto-update feature (via rcp). Has ability to
test (via ICMP Echo) if it can use spoofed IP addresses.

TFN 2K UDP, ICMP Echo,
TCP SYN, Smurf

Same as TFN - but the slave is silent so difficult to spot. No return info from
slave. Zombie to master communication is encrypted.

Targa ANY Works by sending malformed IP packets known to slow down or hangup many
TCP/IP network stacks.

NAPTHA TCP Naptha attacks exploit weaknesses in the way some TCP stacks and
applications handle large numbers of connections in states other than "SYN
RECVD," including "ESTABLISHED" and "FIN WAIT-1."

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 99

attack and allow normal traffic to go through.
Drawbacks: in case of misconfiguration or

malfunctioning of inline IDS the possibility of “false
positives” could interrupt normal network
functionality.

3.4 TRAFFIC SHAPING
Traffic shaping is relatively new solution which

successfully complements all other solutions
mentioned here. We will consider two solutions of
traffic shaping on the base of Linux border router to
reduce the influence of DoS flood attack originating
from Internet (Figure 8) and from inside of our
network (Figure 9).

In case of DoS flood attack originating from
Internet it is necessary to implement ingress shaping.
It can be done in 2 ways - using ingress queuing
discipline (qdisc) or intermediate queuing device
(IMQ).

LAN

border router

ISP
storm

shaping

Figure 8. Border router on Linux platform with
ingress shaping

Another example of border router on Linux

platform with egress shaping is shown on Figure 9.
Its purpose is to reduce the influence of DoS flood
attack originating from our network (from zombified
hosts) to Internet. But this is not the primary solution
– we should better avoid zombifying our hosts
completely and use for this purpose other mentioned
here preventive recommendations. Egress shaping
here results only in reduction of DoS attack
influence. For realization of egress shaping it is
necessary to use whatever egress qdisc, preferably
classful one like class based queueing (CBQ) or
hierarchical token bucket (HTB) qdiscs.
Advantages: this is the

LAN

border router

ISP
storm

shaping

Figure 9. Border router on Linux platform with egress
shaping

most powerful solution if we need to supply some
public legitimate services, limiting at the same time
the influence of DoS and DDoS flooding attacks.

Drawbacks: not known for traffic shaping. The
examples of scripts that perform ingress and egress
shaping are presented later in this paper.

3.5 APPLICATION LEVEL DEFENSE.
EXAMPLES
We present here some examples which can be

applied on application level. First of all we can use
features in daemons of limiting simultaneous
sessions per source IP address. Certainly, not all
daemons have such features.

Second, if start daemons from xinetd daemon, we
can use some its features, e.g., cps, instances,
max_load, and per_source keywords. Here is
example of xinetd configuration file, situated in
/etc/xinetd.conf or /etc/xinetd.d/someservice (if this
configuration is special only for this someservice):

Example 1. xinetd configuration file

service myservice {
Limit to 10 connections per second. If the limit is
exceeded, sleep for
#30 seconds.
cps = 10 30
Limit to 8 concurrent instances of myservice.
instances = 8
Limit to 5 simultaneous sessions per source IP
address. Specify
UNLIMITED for no limit, the default.
per_source = 5
Reject new requests if the one-minute system load
average exceeds 3.0.
max_load = 3.0
}

Another example of application level defense is

the mod_dosevasive [8] module for the Apache web
server, that provides evasive action in the case of an
HTTP DoS or DDoS attack or brute force attack.
This is done by denying any single IP address from
any if the following events take place: requesting the
same page more than a few times per second;
making more than 50 concurrent requests on the
same child per second; making any requests while
temporarily blacklisted (on a blocking list).

One more example of application level defense
software – so-called DNS Flood Detector [9], which
detects abusive usage levels on high traffic name
servers and makes quick response in halting the use
of one's name server to facilitate spam.

3.6 TCP INTERCEPT
TCP Intercept software, implemented in

particular by Cisco products [10], intercepts TCP

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 100

SYN packets and establishes a connection with the
client on behalf of the destination server, and if
successful, establishes the connection with the server
on behalf of the client and knits the two half-
connections together transparently.

3.7 IP HOPPING
IP hopping [11] is very interesting DoS and

DDoS attacks avoiding technique. If attack tools
target a specific IP address or addresses and do not
perform DNS lookups to resolve an IP address from
a name, it may be possible to avert an attack by
changing the IP address used to access the target.

If the attacker monitors the attack, then repeated
and automated IP address changes may be
performed to avert or mitigate the effects of the
attack. Two approaches can be taken: to have the
mechanisms for IP address changing in place and
only enable them if attacked, or conduct regular and
frequent IP address changes as a matter of course,
even if an attack is not present.

4. DEFENSE STRATEGY AGAINST
DDOS ATTACKS

The best defense strategy against DDoS attacks
is:

• to defend our system or network against
being attacked;

• to defend our system or network against
being zombified and not be used as an
amplifying unit for further DDoS attacks;

• to scan our system or network and detect
already zombified hosts.

4.1. DEFENSE OF SYSTEM OR
NETWORK AGAINST BEING
ATTACKED
We suggest the following solutions:
• general solutions in all cases:

1.Use ingress and egress filtering on routers
and other filtering devices.

2.Routers and other filtering devices can drop
packets to non-required TCP and UDP ports.

3.We should contact our ISP.
• SYN Flood attack:

1.Use OS modification - increase of queue
size for TCP-connections establishment and
reducing timeouts.

2.Use TCP SYN-cookie support (in Linux).
3.Use TCP intercept.
4.Use traffic shaping of TCP SYN-packets.
5.Use inline IDS (if possible).

• ICMP Flood attack:

1.Block ICMP Echo Request packets on
firewall.

2.If You can not block these packets – use
traffic shaping to make some reasonable rate
on them.

3.Use inline IDS (if possible).
• UDP Flood attack:

1.Use traffic shaping of necessary UDP-
packets (e.g., UDP port 53).

2.Use inline IDS (if possible).SMURF attack:
1.Completely block ICMP Echo Reply

packets or block ICMP Echo Reply packets
without corresponding ICMP Echo Request
packets(using stateful inspection firewalls).

• Fraggle attack:
1.Block UDP/TCP Echo (and Chargen and

Discard) packets on firewall.

4.2 DEFENSE OF SYSTEM OR
NETWORK AGAINST BEING
ZOMBIFIED
We suggest the following solutions in order not

to be zombified with the clients, handlers or agents
installed, and not to be used as an amplification
system in further DDoS attacks and to minimize
consequences:
• general recommendations in all cases of DDoS

tools:
1.As soon as all DDoS tools use mentioned above

DoS flood attacks, all corresponding security
considerations are correct and needed to be taken.

2.To prevent exploitation of our hosts at the initial
stage of attack we should: use only necessary
services; install the latest patches and service
packs for operating systems and applications; set
the adequate access rights on directories and
files; regularly audit our systems; perform
cryptography check of our every system –
configuration, system files, installed software,
etc.(e.g., use Tripwire).

3.On our border routers we should allow only
necessary TCP and UDP traffic.

4.Use IDS (if possible, use inline IDS).
5.Contact our ISP and ask him to use ingress and

egress filtering on his border router.
• TFN [12]:

1.To prevent the operation all ICMP Echo Reply
traffic should be blocked on the border router. If
ICMP cannot be blocked, disallow unsolicited
ICMP Echo Reply packets.

• Stacheldraht [13]:
1.All ICMP Echo Reply traffic should be blocked

on the border router. If ICMP cannot be blocked,
disallow unsolicited ICMP Echo Reply packets.

• Trinoo [14]:

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 101

1.All unnecessary UDP traffic should be blocked
on the border router (e.g., only legitimate DNS
traffic should be allowed).

• TFN2K [15]:
1.Use a firewall that exclusively employs

application proxies. This should effectively block
all TFN2K traffic. Exclusive use of application
proxies is often impractical, in which case the
allowed non-proxy services should be kept to a
minimum.

2.Disallow unnecessary ICMP, TCP, and UDP
traffic. Typically only ICMP type 3 (destination
unreachable) packets should be allowed.

3.If ICMP cannot be blocked, disallow unsolicited
(or all) ICMP Echo Reply packets.

4.Disallow UDP and TCP, except on a specific list
of ports.

• NAPTHA [16]:
1.Limit the amount of services running on any

system You suspect that might become victim to
a Naptha attack, especially public systems.

2.Limit access as to who can connect to exposed
TCP ports on a system via firewalling techniques.
On public systems this may be impractical, but it
should be limited just the same if possible.

3.On Unix systems, use xinetd (inetd) or possibly
Dan Bernstein's tcpserver [17] to limit spawned
daemon processes. While this will not prevent
that particular daemon's resources from being
over utilized, it is possible to prevent daemons
from crashing the server. This may allow the
server to recover.

4.OS modification - adjustments for TCP timeouts
and keepalives to potentially allow for quicker
recovery (assuming that the Naptha attack did not
crash the system). For example, the TCP
keepalive settings for Linux might help recovery
time: Example 2. Linux kernel configuration file

#!/bin/sh
keepalive time is adjusted from 2 hours to 30
seconds
echo 30 > /proc/sys/net/ipv4/tcp_keepalive_time

the number of keepalive probes is adjusted from 9
to 2
echo 2 > /proc/sys/net/ipv4/tcp_keepalive_probes

the maximum number of probes sent out to be 100
instead of just 5
echo 100 > /proc/sys/net/ipv4/tcp_max_ka_probes

The suggested zombification prevention
solutions sometimes are not 100% feasible due to
drawbacks such as blocking legitimate traffic,
etc. In this case, some compromise in company

security policy should be taken and legitimate
traffic should be allowed.

4.3. SCANNING SYSTEMS TO FIND
ALREADY ZOMBIFIED HOSTS
We may suggest some well known scanning and

other useful tools to find already zombified hosts:
• Robin Keir’s scanner DDoSPing v2.0 [18]
• Razor’s Zombie Zapper utility [19] (works

against Trinoo, TFN, Stacheldraht,
Troj_Trinoo and Shaft assuming that the
default passwords have not been changed.
That is why this software will not work
against TFN2K)

• NIPC’s scanner find_ddos [20]
• David Brumley’s RID [21]
• David Dittrich’s dds

(trinoo/TFN/stacheldraht agent detector)
[22]

• David Dittrich’s gag (stacheldraht agent
detector) [22]

• Simple Nomad’s tfn2kpass (tfn2k password
recovery tool. from a td or tfn binary) [23].

5. EXAMPLE OF REALIZATION OF

LINUX ADVANCED ROUTER WITH ANTI-
DOS FEATURES

We suggest some scripts written for Linux OS to
perform some modifications that where explained in
this material. The first example script (Example 3) is
kernel modification script.

Example 3. Linux kernel configuration file

#!/bin/sh
#Disabling IP Spoofing attacks.
echo "2" > /proc/sys/net/ipv4/conf/all/rp_filter
#Don't respond to broadcast pings (Smurf-amplifier-
protection)
echo "1" >
/proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
#Block source routing
echo "0" >
/proc/sys/net/ipv4/conf/all/accept_source_route
#Kill timestamps
echo "0" > /proc/sys/net/ipv4/tcp_timestamps
#Enable TCP SYN Cookies
echo "1" > /proc/sys/net/ipv4/tcp_syncookies
#Kill redirects
echo "0" >
/proc/sys/net/ipv4/conf/all/accept_redirects
#Enable bad error message protection

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 102

echo "1" >
/proc/sys/net/ipv4/icmp_ignore_bogus_error_respon
ses
#Log martians (packets with impossible addresses)
echo "1" > /proc/sys/net/ipv4/conf/all/log_martians
#Reduce DoS'ing ability by reducing timeouts
echo "30" > /proc/sys/net/ipv4/tcp_fin_timeout
echo "2400" >
/proc/sys/net/ipv4/tcp_keepalive_time
echo "0" > /proc/sys/net/ipv4/tcp_window_scaling
echo "0" > /proc/sys/net/ipv4/tcp_sack

The second example script (Example 4) is part of
iptables firewall script with TCP SYN flood
protection.

Example 4. Part of iptables firewall script with TCP
SYN flood protection

#!/bin/sh
#…
#TCPACCEPT - Check for SYN-Floods before
letting TCP-Packets in
Overall Limit for TCP-SYN-Flood detection
TCPSYNLIMIT="5/s"
Burst Limit for TCP-SYN-Flood detection
TCPSYNLIMITBURST="10"
Creating chain for TCP protocol with TCP SYN
flood protection
$IPTABLES -N TCPACCEPT
Accepting to this chain only allowed limit of TCP
SYN packets
$IPTABLES -A TCPACCEPT -p tcp --syn -m limit
--limit $TCPSYNLIMIT \
--limit-burst $TCPSYNLIMITBURST -j ACCEPT
All other TCP packet beyond the settled threshold
– drop
$IPTABLES -A TCPACCEPT -p tcp --syn -j DROP
Accept all other TCP (not TCP SYN) packets
$IPTABLES -A TCPACCEPT -p tcp ! --syn -j
ACCEPT

The third example script (Example 5) is part of
script from LARTC maillist which uses Ingress
qdisc for SYN Flood protection [24].

Example 5. Script which uses Ingress qdisc for TCP
SYN flood protection

#!/bin/sh
tag all incoming SYN packets through $INDEV as
mark value 1
$iptables -A PREROUTING -i $INDEV -t mangle -
p tcp --syn -j MARK \
--set-mark 1

install the ingress qdisc on the ingress interface
$TC qdisc add dev $INDEV handle ffff: ingress
SYN packets are 40 bytes (320 bits) so three SYNs
equals
960 bits (approximately 1kbit); so we rate limit
below
the incoming SYNs to 3/sec (not very useful
really)
$TC filter add dev $INDEV parent ffff: protocol ip
prio 50 handle 1 fw police rate \ 1kbit burst 40 mtu
9k drop flowid :1

The fourth example script (Example 6) is part of
script which uses intermediate queueing device
(IMQ) for UDP flood protection of DNS server.

Example 6. Part of script which uses intermediate
queueing device (IMQ) for UDP flood protection of
DNS server
#!/bin/sh
#…
 $IPTABLES -t mangle -N MYSHAPER-IN
 $IPTABLES -t mangle -I PREROUTING -i eth0 -j
MYSHAPER-IN
 /sbin/modprobe imq numdevs=1
 $IP link set imq0 up
 $TC qdisc add dev imq0 root handle 10: htb default
17 r2q 1
 $TC class add dev imq0 parent 10: classid 10:1 htb
rate 1700kbit \
quantum 3030
let's consider UDP traffic to our public DNS server
to be no more
100kbit/s
 $TC class add dev imq0 parent 10:1 classid 10:12
htb rate 100kbit prio 2
 $TC qdisc add dev imq0 parent 10:12 handle 12:
sfq perturb 10
 $TC filter add dev imq0 parent 10:0 prio 0 protocol
ip handle 12 fw \
flowid 10:12
 $IPTABLES -t mangle -A MYSHAPER-IN -p udp
--dport 53 -j MARK \
--set-mark 12
DEFAULT class with the lowest prio
 $TC class add dev imq0 parent 10:1 classid 10:17
htb rate 30kbit ceil 128kbit \
prio 5
 $TC qdisc add dev imq0 parent 10:17 handle 17:
sfq perturb 10
finally, instruct these packets to go through the
imq0
 $IPTABLES -t mangle -A MYSHAPER-IN -j IMQ
--todev 0

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 103

6. SOME COMMERCIAL ANTIDOS
FEATURES

Although the task of our paper was to suggest
some solutions against DoS and DDoS attacks on
noncommercial platforms like Linux, we have to
mention that there are a lot of powerful commercial
solutions from such famous IT companies as Cisco,
Captus Networks, Foundry Networks, Mazu
Networks, Radware, Reactive Network Solutions,
Top Layer Networks and many others. For example,
Cisco, one of the world’s networking solutions
leaders, has some valuable solutions against DoS
flooding attacks [25], which are as follows:

• against IP source address spoofing:
 -Unicast Reverse Path Forwarding (Unicast

RPF)
• against SYN Flood attack:
 -TCP Intercept
• against SMURF attack:
 -“no ip directed-broadcast”
• against any flooding attack:
 -Committed Access Rate (CAR)

7. CONCLUSIONS

DDoS attacks are already among the most
difficult to defend against. There is no 100-percent
protection from DoS and DDoS attacks. But, what
can be done, is limitation of their influence over the
important parts of networks.

DDoS attacks should not be considered
separately from other types of attacks since they use
the whole arsenal of different kind of attacks in
them.

Responding to and defeating these attacks in a
timely and effective manner is the primary challenge
confronting Internet–dependent organizations today.

8. REFERENCES

[1] Compiler StackGuard. http://immunix.org
[2] Immunix Project. http://www.immunix.com
[3] Openwall Linux Kernel Patch.

http://www.openwall.com/linux/
[4] Lukatskyj A.V. Attacks Detection. –SPb.:

BHV-Petersburg, 2001.
[5] Riverhead Networks: DDoS Attacks.

http://www.riverhead.com/re/generic_ddos.h
tml

[6] Riverhead Networks: DDoS Tools.
http://www.riverhead.com/re/known_ddos_t
ools.html

[7] P. Ferguson, D. Senie. Network Ingress
Filtering: Defeating Denial of Service
Attacks Which Employ IP Source Address
Spoofing. RFC2827, May 2000.

[8] Nuclear Elephant: evasive maneuvers
module for Apache mod_dosevasive.
http://www.nuclearelephant.com/projects/do
sevasive/

[9] DNS Flood Detector.
http://www.adotout.com/dnsflood.html

[10] Cisco: Configuring TCP Intercept .
http://www.cisco.com/univercd/cc/td/doc/pr
oduct/software/ios113ed/113ed_cr/secur_c/s
cprt3/scdenial.htm

[11] Federal Computer Incident Response
Center. Defense Tactics for Distributed
Denial of Service Attacks.
http://www.fedcirc.gov/docs/DDOS-
defense.PDF

[12] D. Dittrich. "The Tribe Flood
Network" Distributed Denial of Service
Attack Tool.
http://staff.washington.edu/dittrich/misc/
tfn.analysis

[13] D. Dittrich. "The stacheldraht"
Distributed Denial of Service Attack
Tool.
http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis

[14] D. Dittrich. "The DoS Project's trinoo"
Distributed Denial of Service Attack
Tool.
http://staff.washington.edu/dittrich/misc/
trinoo.analysis

[15] J. Barlow, W. Thrower. TFN2K - An
Analysis. AXENT Security Team.
March 7, 2000.
http://packetstorm.decepticons.org/distri
buted/tfn.analysis.txt

[16] R. Keyes. The Naptha DoS
Vulnerabilities. Razor: Security
Advisories and Publications. November
30, 2000.
http://razor.bindview.com/publish/advis
ories/adv_NAPTHA.html

[17] Dan Bernstein's tcpserver.
http://cr.yp.to/ucspi-tcp.html

[18] Robin Keir’s DDoSPing Scanner.
http://www.keir.net

[19] Razor’s Zombie Zapper Utility.
http://razor.bindview.com

[20] NIPC’s scanner find_ddos.
http://www.nipc.gov

[21] David Brumley’s RID.
http://www.theorygroup.com/Software/
RID

Andrian Piskozub / Computing, 2005, Vol. 4, Issue 2, 95-104

 104

[22] David Dittrich’s DDoS detectors.
http://staff.washington.edu/dittrich/misc/
ddos_scan.tar

[23] Simple Nomad’s tfn2kpass (tfn2k
password recovery tool).
http://razor.bindview.com/

[24] Linux Advanced Routing & Traffic
Control HOWTO. Protecting your host
from SYN floods.
http://en.tldp.org/HOWTO/Adv-
Routing-HOWTO/lartc.cookbook.html

[25] Cisco. IOS Essential Features.
http://www.cisco.com/public/cons/isp

Andrian Piskozub
graduated from Lviv Polytechnic
Institute in 1993 on the speciality
“Automation and
Telemechanics”. In 1997 has
defended a candidate thesis on
the subject “High accuracy
logarithmic analog-to-digital
converters” and received PhD
degree. In 2002 has got

academic status of associate professor. In 2004 has
got a position of chief of Information Support
Center of National University "Lviv Polytechnic".
Author of 28 scientific articles.
Areas of interests: computer network security,
firewalls, intrusion detection systems, scanners,
vulnerability assessment tools, penetration testing,
computer network and system administration,
technical information security

