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Abstract: The main feature of neural network using for accuracy improvement of physical quantities (for example, 
temperature, humidity, pressure etc.) measurement by data acquisition systems is insufficient volume of input data for 
predicting neural network training at an initial exploitation period of sensors. The authors have proposed the technique 
of data volume increasing for predicting neural network training using integration of historical data method. In this 
paper we have proposed enhanced integration historical data method with its simulation results on mathematical 
models of sensor drift using single-layer and multi-layer perceptrons. We also considered a parallelization technique of 
enhanced integration historical data method in order to decrease its working time. A modified coarse-grain parallel 
algorithm with dynamic mapping on processors of parallel computing system using neural network training time as 
mapping criterion is considered. Fulfilled experiments have showed that modified parallel algorithm is more efficient 
than basic parallel algorithm with dynamic mapping, which does not use any mapping criterion. 
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1. INTRODUCTION 
The authors have shown in [1-2], that the error of 

modern sensor data acquisition systems is much less 
than sensor’s error in many cases. The accuracy 
improvement of physical quantity measurement is 
provided by (i) sensor calibration using special 
calibrator or (ii) sensor’s periodic testing by 
reference sensor directly on exploitation place [3]. 
The frequency of calibration/testing procedure is 
called as inter-testing interval. However operations 
implementing calibration/testing procedures are 
rather laborious. Sensor drift prediction during inter-
testing interval can reduce the laboriousness 
tremendously [1]. However, well known prediction 
methods, for example 5-degree polynomial, 
curvilinear alignment and cubic splines do not 
provide satisfactory results [2, 4]. Using artificial 
intelligence methods, in particularly, neural 
networks are more effective in this case [5-7].  

Prediction using neural networks is used very 
widely and in the same time improvement of 
prediction accuracy traditionally is reached by 
improvement of neural network structure, using 
different neurons’ activation functions, training 
algorithms, etc [8]. However mentioned approaches 
often do not provide satisfactory results and 

therefore it is necessary to use methods of special 
forming of neural network training set. Two such 
methods, additional approximating neural network 
and integration of historical data using set of 
Integrating Historical Data Neural Networks 
(IHDNNs), have been proposed and experimentally 
investigated in [2, 7, 9-10]. These methods allow 
considerably decreasing number of sensor 
calibration/testing by artificial increasing of the 
training set of predicting neural network. 
Experimental results of these methods showed [2, 4] 
that they allow increasing an accuracy of sensor drift 
prediction in 3-5 times at simultaneous increasing of 
inter-testing interval in 6-12 times. The enhanced 
method of integration historical data and its 
simulation modelling on mathematical models of 
sensor drift in comparison with the basis method of 
data integration are considered below. 

The works [7, 9] show, that the method of 
integration historical data could require considerable 
computational recourses and time for its execution. 
In the previous works Turchenko has developed 
coarse-grain parallelization algorithms for set of 
Integrating Historical Data Neural Networks with 
static [11] and dynamic [12] mapping onto 
processors of parallel computer. The goal of this 
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paper is to estimate an accuracy of enhanced 
integration historical data method in comparison 
with the basic method and to investigate an 
efficiency of its parallelization on the parallel 
computer systems. The parallelization allows 
reducing total execution time of the method in order 
to be used in real-time intelligent data acquisition 
systems.  

This paper is organised as follows. The basic 
integration historical data method is described in 
Section II, the difference of the enhanced integration 
historical data method is outlined in Section III, the 
architecture of multi-layer perceptron used as 
IHDNN model is considered in Section IV, the 
experimental researches of enhanced algorithm are 
compared with the basic method in Section V, an 
approach to enhanced integration historical data 
method parallelization is considered in Section VI, 
parallelization experiments are presented in Section 
VII, summary of the results concludes this paper in 
Section VIII. 
 

2. BASIC INTEGRATION HISTORICAL 
DATA METHOD 

It is proposed to use three groups of data of 
sensor drift in [7]: real, historical and hypothetical 
data. The real data are not available at the beginning 
of sensor exploitation. Using historical data, 
obtained as result of calibration or testing of the 
same type sensors in the similar operation conditions 
in the same data acquisition channel, can 
compensate this disadvantage.  

The historical data should be integrated in order 
to account individual properties of drift of each 
sensor, those data are used as historical [13]. It is 
proposed to use a set of Integrating Historical Data 
Neural Networks for such integration. Let us 
consider the historical data of sensor drift as curves 

xnx ...1  (Fig. 1), which are equal to values 
xfixbixai ,...,, , ni ,1=  into calibration points 

fba ,...,, , where n  is the number of available 
historical sensor drift curves. The first calibration of 
the new sensor allows correcting initial sensor error 
at 0 moment of time. The second calibration of the 
new sensor allows receiving the first real value xak  
of sensor drift in calibration point a . The goal of the 
IHDNN is to predict value xbk  on the basis of xak  
and xai , ni ,1= , to predict next value xck  on the 
basis of xbk  and xbi , ni ,1=  etc. It is necessary to 
form training and prediction sets of IHDNN for 
fulfilling this task in special way [13].  
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Fig. 1 - Historical data about sensor drift. 

Thus, the values that should be used to form the 
training set of the IHDNN in order to predict each 
value xfkxckxbk ,...,,  can be described by following 
expressions: 

{ } nixaixakxbk ,1,, =⇐ ,  (2.1) 

{ } nixbixbkxck ,1,, =⇐ ,  (2.2) 

{ } nixcixckxdk ,1,, =⇐ ,  (2.3) 

{ } nixdixdkxek ,1,, =⇐ ,  (2.4) 

{ } nixeixekxfk ,1,, =⇐ .  (2.5) 

The general algorithm of IHDNNs training and 
prediction sets forming [13] can be described by the 
following steps (see Fig. 1):  
1. To choose the input data described by (2.1). 
2. To form IHDNN training set in order to predict 

xbk  value by the following: 
2.1. To choose one curve of sensor drift xi  

which will describe real data about sensor 
drift, all other curves xj , 1,1 −= ij , 

nij ,1+=  will describe historical data; 
2.2. To calculate absolute deviation of xai  

values from all other xaj  values according 
to xajxaiij −=∆ , where ni ,1= , 1,1 −= ij , 

nij ,1+= ; 
2.3. To sort all absolute deviations ij∆ , 

calculated in the previous step 2.2, in 
decreasing order; to calculate maximum 

ijij ∆=∆ maxmax  and minimum ijij ∆=∆ minmin  
values of the absolute deviations; 

2.4. To generate i  training vector as the set of 
values xbi , xai , xaj , where xaj , 1,1 −= ij , 

nij ,1+=  values must be putted into 
training vector according to sorted (in 
decreasing order) values of absolute 
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deviations xaj  from value xai  according to 
the expression (2.6); 

2.5. To repeat the steps 2.1-2.4 for all ni ,1= . 
3. To form IHDNN prediction set in order to 

predict xbk  value by the expression (2.7). 
4. To choose the input data described by the next 

expression from the expressions (2.2)-(2.5). 
5. To execute steps 2-4 above in order to form the 

training and prediction sets for all IHDNNs, 
which will predict the next values of sensor 
drift xfkxekxdkxck ,,, . 

 

{ } xbixaixajxajxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,...,1, minmaxmax     (2.6) 

{ } xbkxakxajxajxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,...,1, minmaxmax    (2.7) 

 

It is necessary to note, that the length of 
prediction vector (2.7) should be equal to the length 
of the training vector (2.6) for appropriate 
functioning of the integration historical data method. 
The data set (2.1) for forming the training and 
prediction sets (2.6)-(2.7) can be considered as 
“window” of historical data. Execution of step 5 of 
the algorithm above requires (i) shifting this window 
on one position to the right and choosing the input 
data according to (2.2) for xck  value prediction, (ii) 
shifting this window on two positions to the right 
and choosing the input data according to (2.3) for 
xdk  value prediction, (iii) shifting this window on 
three positions to the right and choosing the input 
data according to (2.4) for xek  value prediction, (iii) 
shifting this window on four positions to the right 
and choosing the input data according to (2.5) for 
xfk  value prediction. These shifts are noted in 
relation to the current position of the “window” 
described by (2.1). Thus, according to the basic 
algorithm of integration historical data, the training 
and prediction sets of each IHDNN is forming 
separately and therefore each IHDNN 
implementation does not relate to any other IHDNN 
implementation by input data. 

 
3. ENHANCED INTEGRATION 
HISTORICAL DATA METHOD 

The basic method takes into account the values of 
sensor drift, which are placed in the "window" only 
and it is a disadvantage of this method. For example, 
these values are xai  and xbi , ni ,1=  for the 
calibration point b . At the same time the character 
of each available sensor drift curve is not accounting 
in relation to the investigated sensor. The main idea 
of enhanced integration historical data method is the 
necessity to take into account all the values of sensor 
drift located on all available historical sensor drift 

curves [10]. Thus, the goal of IHDNN is to predict 
value xbk  on the basis of xak  and historical values 
xai , ni ,1= , to predict next value xck  on the basis 
of { }xakxbk,  and historical values { }xaixbi, , ni ,1= , 
etc (see Fig. 1). The values that should be used to 
form the training set of the IHDNN according to 
enhanced method can be described by expressions 
(3.1)-(3.5). 

The general algorithm of IHDNNs training and 
prediction sets forming within enhanced method can 
be described by the following steps (see Fig.1):  
1. To choose the input data described by (3.1). 
2. To form the training and prediction sets of 

IHDNN which will predict value xbk  
analogously to steps 2 and 3 of the basic method 
from Section II.  

3. To choose the input data described by (3.2). 
4. To form IHDNN training set in order to predict 

xck  value by the following: 
4.1. To choose one curve of sensor drift xi  

which will describe real data about sensor 
drift, all other curves xj , 1,1 −= ij , 

nij ,1+=  will describe historical data; 
4.2. To calculate absolute deviation of xbi  

values from all other xbj  values according 

to xbjxbiij −=∆ , where ni ,1= , 1,1 −= ij , 
nij ,1+= ; 

{ } nixaixakxbk ,1,, =⇐  (3.1) 

{ } { }{ } nixaixbixakxbkxck ,1,,,, =⇐  (3.2) 

{ } { }{ } nixaixbixcixakxbkxckxdk ,1,,,,,, =⇐  (3.3) 

{ } { }{ } nixaixbixcixdixakxbkxckxdkxek ,1,,,,,,,, =⇐     (3.4) 

{ } { }{ } nixaixbixcixdixeixakxbkxckxdkxekxfk ,1,,,,,,,,,, =⇐     (3.5) 
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4.3. To sort all absolute deviations ij∆ , 

calculated in the previous step 4.2, in 
decreasing order; to calculate maximum 

ijij ∆=∆ maxmax  and minimum ijij ∆=∆ minmin  
values of the absolute deviations; 

4.4. To generate i  training vector placing the 
values { }xajxbj,  in decreasing order 
according to the values of absolute 
deviations ij∆  from value xbi  by expression 
(3.6); 

4.5. To repeat steps 4.1-4.4 for all ni ,1= . 

5. To form IHDNN prediction set in order to 
predict xck  value by the following expression 
(3.7). 

6. To choose the input data described by the next 
expression from the expressions (3.3)-(3.5). 

7. To execute steps 4-6 above in order to form the 
training and prediction sets for all IHDNNs, 
which will predict the next values of sensor drift 

xfkxekxdk ,, . The training and prediction sets 
should be formed by (3.8)-(3.9) for the xdk  
value, by (3.10)-(3.11) for the xek  value and by 
(3.12)-(3.13) for the xfk  value.  

 
{ } { } { } { }{ } xcixbixaixbjxajxbjxajxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,...,1,,, minmaxmax   (3.6) 

 
{ } { } { } { }{ } xckxbkxakxbjxajxbjxajxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,...,1,,, minmaxmax   (3.7) 

 
{ } { } { } { }{ } xdixcixbixaixcjxbjxajxcjxbjxajxcjxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,,,...,1,,,,, minmaxmax      (3.8) 

 
{ } { } { } { }{ } xdkxckxbkxakxcjxbjxajxcjxbjxajxcjxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,,,...,1,,,,, minmaxmax      (3.9) 

 
{ } { } { }{ } xeixdixcixbixaixdjxcjxbjxajxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,...,,,, minmax   (3.10) 

 
{ } { } { }{ } xekxdkxckxbkxakxdjxcjxbjxajxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,...,,,, minmax   (3.11) 

 
{ } { } { }{ } xfixeixdixcixbixaixejxdjxcjxbjxajxejxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,,,...,,,,, minmax   (3.12) 

 
{ } { } { }{ } xfkxekxdkxckxbkxakxejxdjxcjxbjxajxejxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,,,...,,,,, minmax  (3.13) 

 
As in the case of basic method, the length of 

training and prediction sets for any value 
xfkxckxbk ,...,,  should be the same. The training set 

for each predicted sensor drift value is forming 
independently, therefore each IHDNN 
implementation does not relate to any other IHDNN 
implementation by input data. The models of single-
layer perceptron described in details in [4, 7-9] and 
multi-layer perceptrons described below are used as 
IHDNNs. 

 
4. MATHEMATICAL MODEL OF IHDNNS 

IHDNNs should provide a non-linear transfer 
function because the drift of the majority of modern 
sensors is non-linear. Therefore the multi-layer 
perceptron should be used as a model for the 
IHDNN with a nonlinear activation function, such us 
the logistic function. This kind of neural networks 
has the advantage of being simple and to provide 
nice generalized properties [8]. 

The output value of three-layer perceptron (Fig. 
2) can be formulated as:  

⎟
⎠

⎞
⎜
⎝

⎛ −= ∑
=

ThwFy i

N

i
i

1
33 ,  (4.1) 

where N  is the number of neurons in the hidden 
layer, 3iw  is the weight of the synapse from neuron 
i  in the hidden layer to the output neuron, ih  is the 
output of neuron i , T  is the threshold of the output 
neuron and 3F  is the activation function of the 
output neuron.  

The output value of neuron j  in the hidden layer 
is given by: 

⎟
⎠

⎞
⎜
⎝

⎛ −= ∑
=

j

M

i
iijj TxwFh

1
2 ,  (4.2) 

where ijw  are the weights from the input neurons to 
neuron j  in the hidden layer, ix  are the input values 
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and jT  is the threshold of neuron j . The logistic 
activation function is used for the neurons of the 
hidden layer and the linear activation function, 
having a coefficient k , is used for the output neuron.  
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Fig. 2. The structure of IHDNN 

 
The back propagation error algorithm [4] is used 

for the training algorithm. It is based on the gradient 
descent method and provides an iterative procedure 
for the weights and thresholds updating for each 
training vector p  of the training sample: 

)(
)()(

tw
tEtw

ij

p

ij ∂
∂α−=∆ , 

)(
)()(

tT
tEtT

j

p

j ∂
∂α−=∆ ,   (4.3) 

where α  is the learning rate, 
)(
)(

tw
tE

ij

p

∂
∂  and 

)(
)(

tT
tE

j

p

∂
∂  are 

the gradients of the error function on each iteration 
t  for the training vector p  with },...,1{ Pp∈ , where 
P  is the size of the training set. 

The Sum-Squared Error (SSE), for training 
iteration t , is calculated as: 

( )2)()(
2
1)( tdtytE ppp −= ,  (4.4) 

where for the training vector p , )(ty p  is the output 
value on iteration t  and )(td p  is the target output 
value. 

During training, the total error is calculated as: 

∑
=

=
P

p

p tEtE
1

)()( .  (4.5) 

The steepest descent method for calculating the 
learning rate [8] is used for removing the classical 
disadvantages of the back propagation error 
algorithm. Thus, the adaptive learning rate for the 
logistic and linear activation functions are given, 
respectively, by: 
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i

p
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2 1))((

1)(α   (4.6) 

where, for the training vector p  and iteration t , 
)(tp

jγ  is the error of neuron j  and )(th p
i  is the input 

signal of the linear neuron. 
The error of neuron i  with logistic activation 

function can be determined by the relation: 

∑ −=
=

N

j

p
j

p
ji

pp
i ththtwtt

1
33 ))(1)(()()()( γγ , (4.7) 

where )()()(3 tdtyt ppp −=γ  is the error of the output 
neuron, )(3 twi  is the weight of the synapses between 
the neurons of the hidden layer and the output 
neuron. 

A slight modification of the back propagation 
error algorithm, called multiple propagation error, 
has been implemented in order to stabilize the 
training process [4]. This approach consists in 
modifying the weights of only one layer of the 
neural network during a single training iteration. 
This algorithm includes thus the following steps: 

1. Set the desired value of SSE to minE ; 
2. Initialize the weights and the thresholds of the 

neurons by values in the range (0-0.5); 
3. Set a counter for the number of neural network 

layers, LAYERS ; 
4. If 2=LAYERS  then calculate the output value 

)(ty p  using expression (4.2) for the training 
vector p  and perform the steps 5 and 6; 

5. Calculate the error of the output neuron: 
)()()(3 tdtyt ppp −=γ ; 

6. Update the weights and the thresholds of the 
output neuron by (4.3) using the adaptive 
learning rate given by (4.6); 

7. Decrease the number of current layer LAYERS  
by one unit; 

8. If 1=LAYERS  then calculate the error )(tp
jγ  of 

the neurons of the hidden layer by (4.7);  
9. Update the weights and the thresholds of the 

neurons of the hidden layer by (4.3) using the 
adaptive learning rate (4.6) for the logistic 
activation function; 

10. Calculate the SSE for the training iteration t  
using (4.4); 

11. Repeat the steps from 3 to 10 for all the other 
vectors in the training set; 

12. Calculate the total SSE, )(tE  of the neural 
network using (4.5); 
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13. If )(tE  is still greater than the desired error minE  
then go to step 3, otherwise stop the training 
process. 

 
5. EXPERIMENTAL RESEARCHES OF 
BASIC AND ENHANCED METHODS 
As discussed in Sections II and III, it is necessary 

to have f  copies of the IHDNN to predict f  drift 
values of the new sensor k  (Fig. 1). In [4], 
Turchenko has shown that 6 values on the drift curve 
of the new sensor k  are enough to provide a 
prediction in the future moments of time. Therefore 
we set f =6. However, for more complex intelligent 
data acquisition systems and next generation sensors 
it may worth investigating innovative solutions with 
multiple data acquisition channels. Scientific 
investigations with larger number of sensor drift 
curves help to discover the limitation conditions of 
the enhanced data integration method, its potential 
abilities, how to form training vectors, and to 
determine the optimal number of hidden neurons, 
etc. In our case the historical data integration was 
conducted by using 10 sensor drift curves [4], 
therefore n  is assumed to be 10.  

The use of real data of the sensor calibration is 
not expedient for IHDNNs investigation because 
real data do not fully describe the behavior of a 
sensor drift. Thus, mathematical models of sensor 
drift are usually developed for experimental 
researches [14]. The results of industrial sensors 
calibrations in real environment are the basis of 
these mathematical models. The real data about the 
drift are supplemented by additional components 
that model non-stationarity and the non-uniformity 
of the drift, systematic and random errors of 
standard sensors, methodical errors, noises and other 
errors. As a result the model “with saturation” (Fig. 
3) corresponds to the drift of the thermo-resistor 
30К5А1 at a working temperature of 150°C has 
been used for the experiments. 

The total number of IHDNNs used in this study 
of basic and enhanced integration historical data 
methods is equal 50=×= fnN . The expressions 
(2.6)-(2.7) are used to form the training and 
prediction sets for all predicting values according to 
the basic method.  

The expressions (2.6)-(2.7) for the xbk  value, 
(3.6)-(3.7) for the xck  value, (3.8)-(3.9) for the xdk  
value, (3.10)-(3.11) for the xek  value and (3.12)-
(3.13) for the xfk  value are used to form the training 
and prediction sets according to the enhanced 
method of integration historical data. We have 
considered several scenarios in training of each 
IHDNN when sum-squared error (SSE) has been set 
to SSE=10-3, 10-4, 10-5 and 10-7.  
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Fig. 3. Mathematical model of sensor drift 

"with saturation". 

In a case of basic integration historical data 
method single-layer perceptron has 9 inputs. Multi-
layer perceptron has 9 input neurons, 7 neurons in 
the hidden layer with logistic activation function and 
one output neuron. The number of input neurons can 
be justified by the fact that in the case of 10 sensor 
drift curves one of them should play the role of an 
investigated curve and the other curves are used to 
form the training vector of the IHDNN according to 
(2.6). The number of the hidden neurons should be 
less than the number of the input data 
(corresponding in our case to 7 neurons) in order to 
ensure good generalization properties of the IHDNN 
and to avoid transforming it to an associative 
memory [8]. The output neuron provides the 
predicted value of the sensor drift for future 
calibration moments fedcb ,,,,  which is the only 
result expected from each IHDNN. 

In a case of enhanced integration historical data 
method we have used the same number of neurons 
of hidden and output layers of multi-layer 
perceptron. The difference in the neural network 
structure is relating to number of input neurons of 
single-layer and multi-layer perceptrons used for 
prediction the sensor drift values in different 
calibrations fedcb ,,,, . In particular, IHDNN had 9 
inputs for the xbk  value prediction, 18 inputs for the 
xck  value prediction, 27 inputs for the xdk  value 
prediction, 36 inputs for the xek  value prediction 
and 45 inputs for the xfk  value prediction.  

The experimental results, comparing an accuracy 
of the basic and enhanced methods of integration 
historical data, have showed in Fig. 4. The averaged 
relative error of data integration within basic method 
is equal to 14-57% at using single-layer perceptron 
and 12-20% at using multi-layer perceptron. The 
averaged relative error of data integration within 
enhanced method is equal to 5-9%. Taking this 
result we have got together the best results provided 
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as single-layer as well as multi-layer perceptrons. 
Thus, enhanced method of integration historical data 
improves accuracy in two times in comparison with 
the basic method. 
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Fig. 4. Accuracy comparison of basic and enhanced 

integration historical data (IHD) method. 

However, experiments have shown that enhanced 
integration historical data method requires 
considerable computational and time recourses for 
its execution. The distribution of IHDNN (multilayer 
perceptron) training times among all calibration 
points at mentioned scenarios of SSE=10-3, 10-4, 10-5 
and 10-7 is presented in Fig. 5. In particular, training 
time is equal to 36 seconds approximately at 
IHDNN training till SSE=10-7 for all calibration 
points xfkxekxdkxckxbk ,,,,  at usage of personal 
computer with Intel Celeron 1,8 GHz processor, 256 
Mb RAM and Windows® operation system. Taking 
into account additional time needed for 
approximation of these values and prediction of the 
sensor drift in the future moments of time, the time 
of enhanced integration historical data method 
execution considerably decreasing an efficiency of 
its application in the real-time intelligent data 
acquisition systems. In a case of scientific research 
using 10 curves of sensor drift increases the 
computational time in 10 times at least. Therefore let 
us consider parallelization approaches of the 
enhanced integration historical data algorithm in the 
Section V below. 

 
6. PARALLELIZATION OF ENHANCED 

INTEGRATION HISTORICAL DATA 
METHOD  

Several approaches to parallelize neural networks 
have been proposed in the literature: according to 
the architecture of the network [15], taking 
advantage of the matrix learning rule calculations 
[16], or parallelizing the presentation of examples 
[17]. In [18], three nested levels of parallelism in 

neural algorithms have been considered: connection 
parallelism (parallel execution on sets of weights), 
node parallelism (parallel execution of operations on 
sets of neurons), and example (modular) parallelism 
(parallel execution of examples on replicated 
networks). 
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Fig. 5. Distribution of the training times of enhanced 
IHD method among calibration points. 

The first two levels are a fine-grain parallelism 
and the third level is a coarse-grain parallelism. 
Fine-grain parallel algorithms require a lot of low-
level communications, for example to combine the 
results of the parallel calculation of weights of each 
neuron. Their use is, thus, more effective on 
processors arrays or network of transputers [19-20]. 
Vice versa coarse-grain algorithms are useful when 
big independent computation tasks should be 
processed and communications are rarely required. 
The use of high-performance computers with 
powerful of the parallel processors is recommended 
for the implementation of such parallel algorithms 
[15].  

Turchenko in [11-12] has proposed to use coarse-
grain approach to parallelize the basic method of 
integration historical data and developed two coarse-
grain parallel algorithms with static and dynamic 
mapping of IHDNNs onto processors of parallel 
computer. The experimental results, achieved on 
parallel computers SGI Origin 300 and NEC TX-7, 
showed that parallel algorithm with dynamic 
mapping has better efficiency on 13% in comparison 
with parallel algorithm with static mapping for 
mathematical model of sensor drift “with 
saturation”. Therefore we will use coarse-grain 
parallel algorithm with dynamic mapping for 
parallelization of the set of Integrating Historical 
Data Neural Networks according to enhanced 
integration historical data method.  

Parallel algorithm with dynamic mapping [12] is 
developed by using a “centralized” planning 
approach with only one processor Master having the 



V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19 
 

 16 

role of task planner and each of the other processors 
(called Slaves) will train the IHDNNs assigned by 
the Master. The Master starts with assigning the first 
M  IHDNNs to the M  available processors and then 
continues the execution of the mapping procedure 
consisting in assigning dynamically the tasks to the 
Slaves as soon as they become idle. Once a Slave has 
finished its task, it asks the Master for a new one till 
no tasks are left. We note here that, besides the role 
of planner, the Master does not fulfill any further 
calculation. The communications between the 
Master and the Slaves are ensured by using the 
standard MPI sending/receiving functions 
MPI_Send() and MPI_Recv(). More details about 
this algorithm can be founded in [12]. 

It was shown in [12] that reducing of the 
efficiency of this parallel algorithm is caused by a 
non-uniform training time of the IHDNNs. As a 
possible solution it was proposed to estimate a priori 
the training time of each IHDNN module. In this 
case it will be possible to use the information 
produced by such a pre-processing procedure in 
order to improve the load balance among the 
different Slaves. The analysis of the IHDNNs 
training time distribution according to enhanced 
integration historical data (Fig. 5) shown, that the 
IHDNNs, which predict sensor drift values in b  
calibration, have biggest training time at SSE value 
increasing. For example, the average training time is 
equal to 15 and 25 seconds at SSE=10-5 and 
SSE=10-7 respectively. We propose to use this 
training time as mapping criteria and modify 
therefore basic parallel IHDNN parallelization 
algorithm with dynamic mapping. Thus, the most 
“long” tasks, i.e. IHDNNs predicting sensor drift in 
calibration b  for all curves, should be mapped first. 
All other IHDNNs can be mapped after since all of 
them have practically equal training time (see Fig. 
5). The modification of the parallel algorithm 
consists in calculation of the IHDNN reference 
number taking into account the training time of this 
IHDNN module. 

 
7. PARALLELIZATION EXPERIMENTAL 

RESULTS 
The experimental results have been collected by 

using the computational grid with Globus 
middleware [21-22]. The computational grid 
consists in 4 dual-processor personal computers 
Compaq ML350T01 with Pentium III 933 MHZ 
processors, 128 Mb PC133 MHz RAM, integrated 
L2 cash 256 Kb, system bus clock rate 133 MHz, 9.1 
Gb SCSI HDD, Fast Ethernet 100 Mbit/s network 
connection to 24-port 3Com Switch 100Mbit/s. 
Operation system of each computer is RedHat Linux 
9 with Globus toolkit v.3.2.1.  

Since the architecture of the computational grid is 
scalable by n2  processors we trained the 50 
IHDNNs on 2, 4 and 8 processors in order to avoid 
any eventual overhead due to the architectural 
characteristics of the system. The sequential and 
parallel routines have been developed by using C as 
programming language, standard MPI v.1.2 [23] and 
grid-enabled MPICH-G2 v.1.2.6 [24] as message 
passing libraries and MPE v.1.9.2. as performance 
visualization package. 

The execution time of 50 IHDNNs parallelization 
according to enhanced integration historical data 
method is reported in Table 1 by using the basic 
dynamic mapping algorithm and in Table 2 by using 
the modified dynamic mapping algorithm. Speedup 
and efficiency of the basic mapping algorithm are 
depicted in Figs. 6-7. Speedup and efficiency of the 
modified mapping algorithm are depicted in Figs. 8-
9. An efficiency comparison of both algorithms is 
reported in Table 3. As it is seen, the modified 
mapping algorithm, which uses IHDNN training 
time as mapping criterion, shows 5% better 
efficiency in average in comparison with the basic 
mapping algorithm and 13-16% better efficiency 
within two scenarios of IHDNNs training till 
SSE=10-5 and SSE=10-7, which had low efficiency in 
the basic mapping case. 

 
Table 1. Training Time (Seconds) of 50 IHDNNs by 

Basic Dynamic Mapping Algorithm 
CPU(s) 1 2 4 8 
SSE=10-3 12.39 6.20 3.10 1.66 
SSE=10-4 43.49 21.75 10.99 5.69 
SSE=10-5 177.09 88.83 68.28 57.46 
SSE=10-7 339.48 170.64 100.35 74.31 

 

Table 2. Training Time (Seconds) of 50 IHDNNs by 
Modified Dynamic Mapping Algorithm  

CPU(s) 1 2 4 8 
SSE=10-3 12.39 6.26 3.20 1.62 
SSE=10-4 43.49 22.20 10.99 5.62 
SSE=10-5 177.09 89.48 54.77 52.48 
SSE=10-7 339.48 172.15 86.48 69.91 

 

Table 3. Efficiency Comparison Between Basic and 
Modified Dynamic Mapping Algorithms 

Efficiency 2 4 8 
SSE=10-3 0.00 -0.02 0.03 
SSE=10-4 -0.01 0.00 0.02 
SSE=10-5 0.00 0.16 0.03 
SSE=10-7 0.00 0.13 0.04 
Average: 0.05 
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Fig. 6. Speedup vs number of processors using basic 
dynamic mapping algorithm.  
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Fig. 7. Efficiency vs number of processors using basic 
dynamic mapping algorithm. 
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Fig. 8. Speedup vs number of processors using 
modified dynamic mapping algorithm.  
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Fig. 9. Efficiency vs number of processors using 
modified dynamic mapping algorithm. 
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8. CONCLUSIONS 

The enhanced integration historical data method 
using the set of Integrating Historical Data Neural 
Networks is described in this paper. The main idea 
of enhanced method is to account all available data 
on all historical curves of the sensor drift. 
Experiments showed that enhanced method has 
better accuracy in two times in comparison with 
basic integration historical data method. However 
the enhanced method requires considerable time and 
computational resources for its execution. The 
parallelization of the enhanced method has been 
done using coarse-grain approach with dynamic 
mapping of IHDNNs onto processors of parallel 
computer system. We have used a modified mapping 
strategy which uses the training time of the IHDNN 
as mapping criterion. Parallelization experiments 
done on computation grid under Globus middleware 
have showed that the modified mapping algorithm is 
more efficient on 5-16% in comparison with the 
basic mapping algorithm, which does not use any 
mapping criterion.  
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