
V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 9

EFFICIENCY ESTIMATION OF PARALLEL ALGORITHM OF ENHANCED
HISTORICAL DATA INTEGRATION ON COMPUTATIONAL GRID

V. Turchenko 1-2), C. Triki 3), L. Grandinetti 1) and A. Sachenko 2)

1) Center of Excellence of High Performance Computing, University of Calabria,

Via P. Bucci 22B, 87036, Rende (CS), ITALY
2) Research Institute of Intelligent Computer Systems, Ternopil State Economic University,

Peremoga Square 3, 46004, Ternopil, UKRAINE
3) Department of Mathematics, University of Lecce, 73100, Lecce, ITALY

Abstract: The main feature of neural network using for accuracy improvement of physical quantities (for example,
temperature, humidity, pressure etc.) measurement by data acquisition systems is insufficient volume of input data for
predicting neural network training at an initial exploitation period of sensors. The authors have proposed the technique
of data volume increasing for predicting neural network training using integration of historical data method. In this
paper we have proposed enhanced integration historical data method with its simulation results on mathematical
models of sensor drift using single-layer and multi-layer perceptrons. We also considered a parallelization technique of
enhanced integration historical data method in order to decrease its working time. A modified coarse-grain parallel
algorithm with dynamic mapping on processors of parallel computing system using neural network training time as
mapping criterion is considered. Fulfilled experiments have showed that modified parallel algorithm is more efficient
than basic parallel algorithm with dynamic mapping, which does not use any mapping criterion.

Keywords: sensor drift, integration historical data, neural networks, coarse-grain parallel algorithm, dynamic
mapping, computational grids.

1. INTRODUCTION
The authors have shown in [1-2], that the error of

modern sensor data acquisition systems is much less
than sensor’s error in many cases. The accuracy
improvement of physical quantity measurement is
provided by (i) sensor calibration using special
calibrator or (ii) sensor’s periodic testing by
reference sensor directly on exploitation place [3].
The frequency of calibration/testing procedure is
called as inter-testing interval. However operations
implementing calibration/testing procedures are
rather laborious. Sensor drift prediction during inter-
testing interval can reduce the laboriousness
tremendously [1]. However, well known prediction
methods, for example 5-degree polynomial,
curvilinear alignment and cubic splines do not
provide satisfactory results [2, 4]. Using artificial
intelligence methods, in particularly, neural
networks are more effective in this case [5-7].

Prediction using neural networks is used very
widely and in the same time improvement of
prediction accuracy traditionally is reached by
improvement of neural network structure, using
different neurons’ activation functions, training
algorithms, etc [8]. However mentioned approaches
often do not provide satisfactory results and

therefore it is necessary to use methods of special
forming of neural network training set. Two such
methods, additional approximating neural network
and integration of historical data using set of
Integrating Historical Data Neural Networks
(IHDNNs), have been proposed and experimentally
investigated in [2, 7, 9-10]. These methods allow
considerably decreasing number of sensor
calibration/testing by artificial increasing of the
training set of predicting neural network.
Experimental results of these methods showed [2, 4]
that they allow increasing an accuracy of sensor drift
prediction in 3-5 times at simultaneous increasing of
inter-testing interval in 6-12 times. The enhanced
method of integration historical data and its
simulation modelling on mathematical models of
sensor drift in comparison with the basis method of
data integration are considered below.

The works [7, 9] show, that the method of
integration historical data could require considerable
computational recourses and time for its execution.
In the previous works Turchenko has developed
coarse-grain parallelization algorithms for set of
Integrating Historical Data Neural Networks with
static [11] and dynamic [12] mapping onto
processors of parallel computer. The goal of this

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 10

paper is to estimate an accuracy of enhanced
integration historical data method in comparison
with the basic method and to investigate an
efficiency of its parallelization on the parallel
computer systems. The parallelization allows
reducing total execution time of the method in order
to be used in real-time intelligent data acquisition
systems.

This paper is organised as follows. The basic
integration historical data method is described in
Section II, the difference of the enhanced integration
historical data method is outlined in Section III, the
architecture of multi-layer perceptron used as
IHDNN model is considered in Section IV, the
experimental researches of enhanced algorithm are
compared with the basic method in Section V, an
approach to enhanced integration historical data
method parallelization is considered in Section VI,
parallelization experiments are presented in Section
VII, summary of the results concludes this paper in
Section VIII.

2. BASIC INTEGRATION HISTORICAL
DATA METHOD

It is proposed to use three groups of data of
sensor drift in [7]: real, historical and hypothetical
data. The real data are not available at the beginning
of sensor exploitation. Using historical data,
obtained as result of calibration or testing of the
same type sensors in the similar operation conditions
in the same data acquisition channel, can
compensate this disadvantage.

The historical data should be integrated in order
to account individual properties of drift of each
sensor, those data are used as historical [13]. It is
proposed to use a set of Integrating Historical Data
Neural Networks for such integration. Let us
consider the historical data of sensor drift as curves

xnx ...1 (Fig. 1), which are equal to values
xfixbixai ,...,, , ni ,1= into calibration points

fba ,...,, , where n is the number of available
historical sensor drift curves. The first calibration of
the new sensor allows correcting initial sensor error
at 0 moment of time. The second calibration of the
new sensor allows receiving the first real value xak
of sensor drift in calibration point a . The goal of the
IHDNN is to predict value xbk on the basis of xak
and xai , ni ,1= , to predict next value xck on the
basis of xbk and xbi , ni ,1= etc. It is necessary to
form training and prediction sets of IHDNN for
fulfilling this task in special way [13].

0 a b c d e f 0

0.5

1

1.5

2

2.5

3

xak xbk xck xdk xek xfkxa1
xb1 xc1 xd1 xe1 xf1

x1xai
xbi

xci
xdi

xei
xfi xi

xai+1

xbi+1
xci+1

xdi+1
xei+1

xfi+1 xi+1

xan

xbn

xcn

xdn
xen

xfn xn

...

Calibration points

Se
ns

or
 d

rif
t,

co
nv

er
si

on
al

 u
ni

ts

Fig. 1 - Historical data about sensor drift.

Thus, the values that should be used to form the
training set of the IHDNN in order to predict each
value xfkxckxbk ,...,, can be described by following
expressions:

{ } nixaixakxbk ,1,, =⇐ , (2.1)

{ } nixbixbkxck ,1,, =⇐ , (2.2)

{ } nixcixckxdk ,1,, =⇐ , (2.3)

{ } nixdixdkxek ,1,, =⇐ , (2.4)

{ } nixeixekxfk ,1,, =⇐ . (2.5)

The general algorithm of IHDNNs training and
prediction sets forming [13] can be described by the
following steps (see Fig. 1):
1. To choose the input data described by (2.1).
2. To form IHDNN training set in order to predict

xbk value by the following:
2.1. To choose one curve of sensor drift xi

which will describe real data about sensor
drift, all other curves xj , 1,1 −= ij ,

nij ,1+= will describe historical data;
2.2. To calculate absolute deviation of xai

values from all other xaj values according
to xajxaiij −=∆ , where ni ,1= , 1,1 −= ij ,

nij ,1+= ;
2.3. To sort all absolute deviations ij∆ ,

calculated in the previous step 2.2, in
decreasing order; to calculate maximum

ijij ∆=∆ maxmax and minimum ijij ∆=∆ minmin
values of the absolute deviations;

2.4. To generate i training vector as the set of
values xbi , xai , xaj , where xaj , 1,1 −= ij ,

nij ,1+= values must be putted into
training vector according to sorted (in
decreasing order) values of absolute

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 11

deviations xaj from value xai according to
the expression (2.6);

2.5. To repeat the steps 2.1-2.4 for all ni ,1= .
3. To form IHDNN prediction set in order to

predict xbk value by the expression (2.7).
4. To choose the input data described by the next

expression from the expressions (2.2)-(2.5).
5. To execute steps 2-4 above in order to form the

training and prediction sets for all IHDNNs,
which will predict the next values of sensor
drift xfkxekxdkxck ,,, .

{ } xbixaixajxajxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,...,1, minmaxmax (2.6)

{ } xbkxakxajxajxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,...,1, minmaxmax (2.7)

It is necessary to note, that the length of
prediction vector (2.7) should be equal to the length
of the training vector (2.6) for appropriate
functioning of the integration historical data method.
The data set (2.1) for forming the training and
prediction sets (2.6)-(2.7) can be considered as
“window” of historical data. Execution of step 5 of
the algorithm above requires (i) shifting this window
on one position to the right and choosing the input
data according to (2.2) for xck value prediction, (ii)
shifting this window on two positions to the right
and choosing the input data according to (2.3) for
xdk value prediction, (iii) shifting this window on
three positions to the right and choosing the input
data according to (2.4) for xek value prediction, (iii)
shifting this window on four positions to the right
and choosing the input data according to (2.5) for
xfk value prediction. These shifts are noted in
relation to the current position of the “window”
described by (2.1). Thus, according to the basic
algorithm of integration historical data, the training
and prediction sets of each IHDNN is forming
separately and therefore each IHDNN
implementation does not relate to any other IHDNN
implementation by input data.

3. ENHANCED INTEGRATION
HISTORICAL DATA METHOD

The basic method takes into account the values of
sensor drift, which are placed in the "window" only
and it is a disadvantage of this method. For example,
these values are xai and xbi , ni ,1= for the
calibration point b . At the same time the character
of each available sensor drift curve is not accounting
in relation to the investigated sensor. The main idea
of enhanced integration historical data method is the
necessity to take into account all the values of sensor
drift located on all available historical sensor drift

curves [10]. Thus, the goal of IHDNN is to predict
value xbk on the basis of xak and historical values
xai , ni ,1= , to predict next value xck on the basis
of { }xakxbk, and historical values { }xaixbi, , ni ,1= ,
etc (see Fig. 1). The values that should be used to
form the training set of the IHDNN according to
enhanced method can be described by expressions
(3.1)-(3.5).

The general algorithm of IHDNNs training and
prediction sets forming within enhanced method can
be described by the following steps (see Fig.1):
1. To choose the input data described by (3.1).
2. To form the training and prediction sets of

IHDNN which will predict value xbk
analogously to steps 2 and 3 of the basic method
from Section II.

3. To choose the input data described by (3.2).
4. To form IHDNN training set in order to predict

xck value by the following:
4.1. To choose one curve of sensor drift xi

which will describe real data about sensor
drift, all other curves xj , 1,1 −= ij ,

nij ,1+= will describe historical data;
4.2. To calculate absolute deviation of xbi

values from all other xbj values according

to xbjxbiij −=∆ , where ni ,1= , 1,1 −= ij ,
nij ,1+= ;

{ } nixaixakxbk ,1,, =⇐ (3.1)

{ } { }{ } nixaixbixakxbkxck ,1,,,, =⇐ (3.2)

{ } { }{ } nixaixbixcixakxbkxckxdk ,1,,,,,, =⇐ (3.3)

{ } { }{ } nixaixbixcixdixakxbkxckxdkxek ,1,,,,,,,, =⇐ (3.4)

{ } { }{ } nixaixbixcixdixeixakxbkxckxdkxekxfk ,1,,,,,,,,,, =⇐ (3.5)

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 12

4.3. To sort all absolute deviations ij∆ ,

calculated in the previous step 4.2, in
decreasing order; to calculate maximum

ijij ∆=∆ maxmax and minimum ijij ∆=∆ minmin
values of the absolute deviations;

4.4. To generate i training vector placing the
values { }xajxbj, in decreasing order
according to the values of absolute
deviations ij∆ from value xbi by expression
(3.6);

4.5. To repeat steps 4.1-4.4 for all ni ,1= .

5. To form IHDNN prediction set in order to
predict xck value by the following expression
(3.7).

6. To choose the input data described by the next
expression from the expressions (3.3)-(3.5).

7. To execute steps 4-6 above in order to form the
training and prediction sets for all IHDNNs,
which will predict the next values of sensor drift

xfkxekxdk ,, . The training and prediction sets
should be formed by (3.8)-(3.9) for the xdk
value, by (3.10)-(3.11) for the xek value and by
(3.12)-(3.13) for the xfk value.

{ } { } { } { }{ } xcixbixaixbjxajxbjxajxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,...,1,,, minmaxmax (3.6)

{ } { } { } { }{ } xckxbkxakxbjxajxbjxajxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,...,1,,, minmaxmax (3.7)

{ } { } { } { }{ } xdixcixbixaixcjxbjxajxcjxbjxajxcjxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,,,...,1,,,,, minmaxmax (3.8)

{ } { } { } { }{ } xdkxckxbkxakxcjxbjxajxcjxbjxajxcjxbjxaj ijijijijijij ⇒∆=∆−∆=∆∆=∆ ,,,,,,...,1,,,,, minmaxmax (3.9)

{ } { } { }{ } xeixdixcixbixaixdjxcjxbjxajxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,...,,,, minmax (3.10)

{ } { } { }{ } xekxdkxckxbkxakxdjxcjxbjxajxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,...,,,, minmax (3.11)

{ } { } { }{ } xfixeixdixcixbixaixejxdjxcjxbjxajxejxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,,,...,,,,, minmax (3.12)

{ } { } { }{ } xfkxekxdkxckxbkxakxejxdjxcjxbjxajxejxdjxcjxbjxaj ijijijij ⇒∆=∆∆=∆ ,,,,,,,,,,...,,,,, minmax (3.13)

As in the case of basic method, the length of

training and prediction sets for any value
xfkxckxbk ,...,, should be the same. The training set

for each predicted sensor drift value is forming
independently, therefore each IHDNN
implementation does not relate to any other IHDNN
implementation by input data. The models of single-
layer perceptron described in details in [4, 7-9] and
multi-layer perceptrons described below are used as
IHDNNs.

4. MATHEMATICAL MODEL OF IHDNNS

IHDNNs should provide a non-linear transfer
function because the drift of the majority of modern
sensors is non-linear. Therefore the multi-layer
perceptron should be used as a model for the
IHDNN with a nonlinear activation function, such us
the logistic function. This kind of neural networks
has the advantage of being simple and to provide
nice generalized properties [8].

The output value of three-layer perceptron (Fig.
2) can be formulated as:

⎟
⎠

⎞
⎜
⎝

⎛ −= ∑
=

ThwFy i

N

i
i

1
33 , (4.1)

where N is the number of neurons in the hidden
layer, 3iw is the weight of the synapse from neuron
i in the hidden layer to the output neuron, ih is the
output of neuron i , T is the threshold of the output
neuron and 3F is the activation function of the
output neuron.

The output value of neuron j in the hidden layer
is given by:

⎟
⎠

⎞
⎜
⎝

⎛ −= ∑
=

j

M

i
iijj TxwFh

1
2 , (4.2)

where ijw are the weights from the input neurons to
neuron j in the hidden layer, ix are the input values

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 13

and jT is the threshold of neuron j . The logistic
activation function is used for the neurons of the
hidden layer and the linear activation function,
having a coefficient k , is used for the output neuron.

13w

23w

3Nw T

ijw

jT

y

Nh

2h

1h

2x

Mx

1x

Fig. 2. The structure of IHDNN

The back propagation error algorithm [4] is used

for the training algorithm. It is based on the gradient
descent method and provides an iterative procedure
for the weights and thresholds updating for each
training vector p of the training sample:

)(
)()(

tw
tEtw

ij

p

ij ∂
∂α−=∆ ,

)(
)()(

tT
tEtT

j

p

j ∂
∂α−=∆ , (4.3)

where α is the learning rate,
)(
)(

tw
tE

ij

p

∂
∂ and

)(
)(

tT
tE

j

p

∂
∂ are

the gradients of the error function on each iteration
t for the training vector p with },...,1{ Pp∈ , where
P is the size of the training set.

The Sum-Squared Error (SSE), for training
iteration t , is calculated as:

()2)()(
2
1)(tdtytE ppp −= , (4.4)

where for the training vector p ,)(ty p is the output
value on iteration t and)(td p is the target output
value.

During training, the total error is calculated as:

∑
=

=
P

p

p tEtE
1

)()(. (4.5)

The steepest descent method for calculating the
learning rate [8] is used for removing the classical
disadvantages of the back propagation error
algorithm. Thus, the adaptive learning rate for the
logistic and linear activation functions are given,
respectively, by:

() ⎟
⎠
⎞⎜

⎝
⎛∑ −

∑ −
×

+
=

=

=

N

i

p
j

p
j

p
j

N

j

p
j

p
j

p
j

t
p
i ththt

ththt

x
t

1

222

1

2

2
)())(1())(())((

))(1)(())((

)(1
4)(

γ

γ
α ,

∑ +

=

=

N

i

p
i th

t

1

2 1))((

1)(α (4.6)

where, for the training vector p and iteration t ,
)(tp

jγ is the error of neuron j and)(th p
i is the input

signal of the linear neuron.
The error of neuron i with logistic activation

function can be determined by the relation:

∑ −=
=

N

j

p
j

p
ji

pp
i ththtwtt

1
33))(1)(()()()(γγ , (4.7)

where)()()(3 tdtyt ppp −=γ is the error of the output
neuron,)(3 twi is the weight of the synapses between
the neurons of the hidden layer and the output
neuron.

A slight modification of the back propagation
error algorithm, called multiple propagation error,
has been implemented in order to stabilize the
training process [4]. This approach consists in
modifying the weights of only one layer of the
neural network during a single training iteration.
This algorithm includes thus the following steps:

1. Set the desired value of SSE to minE ;
2. Initialize the weights and the thresholds of the

neurons by values in the range (0-0.5);
3. Set a counter for the number of neural network

layers, LAYERS ;
4. If 2=LAYERS then calculate the output value

)(ty p using expression (4.2) for the training
vector p and perform the steps 5 and 6;

5. Calculate the error of the output neuron:
)()()(3 tdtyt ppp −=γ ;

6. Update the weights and the thresholds of the
output neuron by (4.3) using the adaptive
learning rate given by (4.6);

7. Decrease the number of current layer LAYERS
by one unit;

8. If 1=LAYERS then calculate the error)(tp
jγ of

the neurons of the hidden layer by (4.7);
9. Update the weights and the thresholds of the

neurons of the hidden layer by (4.3) using the
adaptive learning rate (4.6) for the logistic
activation function;

10. Calculate the SSE for the training iteration t
using (4.4);

11. Repeat the steps from 3 to 10 for all the other
vectors in the training set;

12. Calculate the total SSE,)(tE of the neural
network using (4.5);

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 14

13. If)(tE is still greater than the desired error minE
then go to step 3, otherwise stop the training
process.

5. EXPERIMENTAL RESEARCHES OF
BASIC AND ENHANCED METHODS
As discussed in Sections II and III, it is necessary

to have f copies of the IHDNN to predict f drift
values of the new sensor k (Fig. 1). In [4],
Turchenko has shown that 6 values on the drift curve
of the new sensor k are enough to provide a
prediction in the future moments of time. Therefore
we set f =6. However, for more complex intelligent
data acquisition systems and next generation sensors
it may worth investigating innovative solutions with
multiple data acquisition channels. Scientific
investigations with larger number of sensor drift
curves help to discover the limitation conditions of
the enhanced data integration method, its potential
abilities, how to form training vectors, and to
determine the optimal number of hidden neurons,
etc. In our case the historical data integration was
conducted by using 10 sensor drift curves [4],
therefore n is assumed to be 10.

The use of real data of the sensor calibration is
not expedient for IHDNNs investigation because
real data do not fully describe the behavior of a
sensor drift. Thus, mathematical models of sensor
drift are usually developed for experimental
researches [14]. The results of industrial sensors
calibrations in real environment are the basis of
these mathematical models. The real data about the
drift are supplemented by additional components
that model non-stationarity and the non-uniformity
of the drift, systematic and random errors of
standard sensors, methodical errors, noises and other
errors. As a result the model “with saturation” (Fig.
3) corresponds to the drift of the thermo-resistor
30К5А1 at a working temperature of 150°C has
been used for the experiments.

The total number of IHDNNs used in this study
of basic and enhanced integration historical data
methods is equal 50=×= fnN . The expressions
(2.6)-(2.7) are used to form the training and
prediction sets for all predicting values according to
the basic method.

The expressions (2.6)-(2.7) for the xbk value,
(3.6)-(3.7) for the xck value, (3.8)-(3.9) for the xdk
value, (3.10)-(3.11) for the xek value and (3.12)-
(3.13) for the xfk value are used to form the training
and prediction sets according to the enhanced
method of integration historical data. We have
considered several scenarios in training of each
IHDNN when sum-squared error (SSE) has been set
to SSE=10-3, 10-4, 10-5 and 10-7.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20 Integration and
approximation interval

Prediction interval

Calibration points, conventional values

S
en

so
r d

rif
t,

co
nv

en
tio

na
l v

al
ue

s

Fig. 3. Mathematical model of sensor drift

"with saturation".

In a case of basic integration historical data
method single-layer perceptron has 9 inputs. Multi-
layer perceptron has 9 input neurons, 7 neurons in
the hidden layer with logistic activation function and
one output neuron. The number of input neurons can
be justified by the fact that in the case of 10 sensor
drift curves one of them should play the role of an
investigated curve and the other curves are used to
form the training vector of the IHDNN according to
(2.6). The number of the hidden neurons should be
less than the number of the input data
(corresponding in our case to 7 neurons) in order to
ensure good generalization properties of the IHDNN
and to avoid transforming it to an associative
memory [8]. The output neuron provides the
predicted value of the sensor drift for future
calibration moments fedcb ,,,, which is the only
result expected from each IHDNN.

In a case of enhanced integration historical data
method we have used the same number of neurons
of hidden and output layers of multi-layer
perceptron. The difference in the neural network
structure is relating to number of input neurons of
single-layer and multi-layer perceptrons used for
prediction the sensor drift values in different
calibrations fedcb ,,,, . In particular, IHDNN had 9
inputs for the xbk value prediction, 18 inputs for the
xck value prediction, 27 inputs for the xdk value
prediction, 36 inputs for the xek value prediction
and 45 inputs for the xfk value prediction.

The experimental results, comparing an accuracy
of the basic and enhanced methods of integration
historical data, have showed in Fig. 4. The averaged
relative error of data integration within basic method
is equal to 14-57% at using single-layer perceptron
and 12-20% at using multi-layer perceptron. The
averaged relative error of data integration within
enhanced method is equal to 5-9%. Taking this
result we have got together the best results provided

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 15

as single-layer as well as multi-layer perceptrons.
Thus, enhanced method of integration historical data
improves accuracy in two times in comparison with
the basic method.

b c d e f0

10

20

30

40

50

60

Calibration points

Basic IHD by SLP
Basic IHD by MLP
Enhanced IHD by SLP/MLP

R
el

at
iv

e
er

ro
r o

f d
at

a
in

te
gr

at
io

n,
 %

Fig. 4. Accuracy comparison of basic and enhanced

integration historical data (IHD) method.

However, experiments have shown that enhanced
integration historical data method requires
considerable computational and time recourses for
its execution. The distribution of IHDNN (multilayer
perceptron) training times among all calibration
points at mentioned scenarios of SSE=10-3, 10-4, 10-5
and 10-7 is presented in Fig. 5. In particular, training
time is equal to 36 seconds approximately at
IHDNN training till SSE=10-7 for all calibration
points xfkxekxdkxckxbk ,,,, at usage of personal
computer with Intel Celeron 1,8 GHz processor, 256
Mb RAM and Windows® operation system. Taking
into account additional time needed for
approximation of these values and prediction of the
sensor drift in the future moments of time, the time
of enhanced integration historical data method
execution considerably decreasing an efficiency of
its application in the real-time intelligent data
acquisition systems. In a case of scientific research
using 10 curves of sensor drift increases the
computational time in 10 times at least. Therefore let
us consider parallelization approaches of the
enhanced integration historical data algorithm in the
Section V below.

6. PARALLELIZATION OF ENHANCED

INTEGRATION HISTORICAL DATA
METHOD

Several approaches to parallelize neural networks
have been proposed in the literature: according to
the architecture of the network [15], taking
advantage of the matrix learning rule calculations
[16], or parallelizing the presentation of examples
[17]. In [18], three nested levels of parallelism in

neural algorithms have been considered: connection
parallelism (parallel execution on sets of weights),
node parallelism (parallel execution of operations on
sets of neurons), and example (modular) parallelism
(parallel execution of examples on replicated
networks).

b c d e f0

5

10

15

20

25

Calibration points
A

ve
ra

ge
d

tra
in

in
g

tim
e

of
 e

nh
an

ce
d

IH
D

m

et
ho

d,
 s

ec
on

ds

SSE=10-3

SSE=10-4

SSE=10-5

SSE=10-7

Fig. 5. Distribution of the training times of enhanced
IHD method among calibration points.

The first two levels are a fine-grain parallelism
and the third level is a coarse-grain parallelism.
Fine-grain parallel algorithms require a lot of low-
level communications, for example to combine the
results of the parallel calculation of weights of each
neuron. Their use is, thus, more effective on
processors arrays or network of transputers [19-20].
Vice versa coarse-grain algorithms are useful when
big independent computation tasks should be
processed and communications are rarely required.
The use of high-performance computers with
powerful of the parallel processors is recommended
for the implementation of such parallel algorithms
[15].

Turchenko in [11-12] has proposed to use coarse-
grain approach to parallelize the basic method of
integration historical data and developed two coarse-
grain parallel algorithms with static and dynamic
mapping of IHDNNs onto processors of parallel
computer. The experimental results, achieved on
parallel computers SGI Origin 300 and NEC TX-7,
showed that parallel algorithm with dynamic
mapping has better efficiency on 13% in comparison
with parallel algorithm with static mapping for
mathematical model of sensor drift “with
saturation”. Therefore we will use coarse-grain
parallel algorithm with dynamic mapping for
parallelization of the set of Integrating Historical
Data Neural Networks according to enhanced
integration historical data method.

Parallel algorithm with dynamic mapping [12] is
developed by using a “centralized” planning
approach with only one processor Master having the

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 16

role of task planner and each of the other processors
(called Slaves) will train the IHDNNs assigned by
the Master. The Master starts with assigning the first
M IHDNNs to the M available processors and then
continues the execution of the mapping procedure
consisting in assigning dynamically the tasks to the
Slaves as soon as they become idle. Once a Slave has
finished its task, it asks the Master for a new one till
no tasks are left. We note here that, besides the role
of planner, the Master does not fulfill any further
calculation. The communications between the
Master and the Slaves are ensured by using the
standard MPI sending/receiving functions
MPI_Send() and MPI_Recv(). More details about
this algorithm can be founded in [12].

It was shown in [12] that reducing of the
efficiency of this parallel algorithm is caused by a
non-uniform training time of the IHDNNs. As a
possible solution it was proposed to estimate a priori
the training time of each IHDNN module. In this
case it will be possible to use the information
produced by such a pre-processing procedure in
order to improve the load balance among the
different Slaves. The analysis of the IHDNNs
training time distribution according to enhanced
integration historical data (Fig. 5) shown, that the
IHDNNs, which predict sensor drift values in b
calibration, have biggest training time at SSE value
increasing. For example, the average training time is
equal to 15 and 25 seconds at SSE=10-5 and
SSE=10-7 respectively. We propose to use this
training time as mapping criteria and modify
therefore basic parallel IHDNN parallelization
algorithm with dynamic mapping. Thus, the most
“long” tasks, i.e. IHDNNs predicting sensor drift in
calibration b for all curves, should be mapped first.
All other IHDNNs can be mapped after since all of
them have practically equal training time (see Fig.
5). The modification of the parallel algorithm
consists in calculation of the IHDNN reference
number taking into account the training time of this
IHDNN module.

7. PARALLELIZATION EXPERIMENTAL

RESULTS
The experimental results have been collected by

using the computational grid with Globus
middleware [21-22]. The computational grid
consists in 4 dual-processor personal computers
Compaq ML350T01 with Pentium III 933 MHZ
processors, 128 Mb PC133 MHz RAM, integrated
L2 cash 256 Kb, system bus clock rate 133 MHz, 9.1
Gb SCSI HDD, Fast Ethernet 100 Mbit/s network
connection to 24-port 3Com Switch 100Mbit/s.
Operation system of each computer is RedHat Linux
9 with Globus toolkit v.3.2.1.

Since the architecture of the computational grid is
scalable by n2 processors we trained the 50
IHDNNs on 2, 4 and 8 processors in order to avoid
any eventual overhead due to the architectural
characteristics of the system. The sequential and
parallel routines have been developed by using C as
programming language, standard MPI v.1.2 [23] and
grid-enabled MPICH-G2 v.1.2.6 [24] as message
passing libraries and MPE v.1.9.2. as performance
visualization package.

The execution time of 50 IHDNNs parallelization
according to enhanced integration historical data
method is reported in Table 1 by using the basic
dynamic mapping algorithm and in Table 2 by using
the modified dynamic mapping algorithm. Speedup
and efficiency of the basic mapping algorithm are
depicted in Figs. 6-7. Speedup and efficiency of the
modified mapping algorithm are depicted in Figs. 8-
9. An efficiency comparison of both algorithms is
reported in Table 3. As it is seen, the modified
mapping algorithm, which uses IHDNN training
time as mapping criterion, shows 5% better
efficiency in average in comparison with the basic
mapping algorithm and 13-16% better efficiency
within two scenarios of IHDNNs training till
SSE=10-5 and SSE=10-7, which had low efficiency in
the basic mapping case.

Table 1. Training Time (Seconds) of 50 IHDNNs by

Basic Dynamic Mapping Algorithm
CPU(s) 1 2 4 8
SSE=10-3 12.39 6.20 3.10 1.66
SSE=10-4 43.49 21.75 10.99 5.69
SSE=10-5 177.09 88.83 68.28 57.46
SSE=10-7 339.48 170.64 100.35 74.31

Table 2. Training Time (Seconds) of 50 IHDNNs by
Modified Dynamic Mapping Algorithm

CPU(s) 1 2 4 8
SSE=10-3 12.39 6.26 3.20 1.62
SSE=10-4 43.49 22.20 10.99 5.62
SSE=10-5 177.09 89.48 54.77 52.48
SSE=10-7 339.48 172.15 86.48 69.91

Table 3. Efficiency Comparison Between Basic and
Modified Dynamic Mapping Algorithms

Efficiency 2 4 8
SSE=10-3 0.00 -0.02 0.03
SSE=10-4 -0.01 0.00 0.02
SSE=10-5 0.00 0.16 0.03
SSE=10-7 0.00 0.13 0.04
Average: 0.05

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 17

2 4 81

2

3

4

5

6

7

8

Number of processors of computational grid

Sp
ee

du
p:

 d
yn

am
ic

 m
ap

pi
ng

SSE=10-3
SSE=10-4
SSE=10-5
SSE=10-7

Fig. 6. Speedup vs number of processors using basic
dynamic mapping algorithm.

2 4 80.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors of computational grid

SSE=10-3
SSE=10-4
SSE=10-5
SSE=10-7

Ef
fic

ie
nc

y:
 d

yn
am

ic
 m

ap
pi

ng

Fig. 7. Efficiency vs number of processors using basic
dynamic mapping algorithm.

2 4 81

2

3

4

5

6

7

8

Number of processors of computational grid

Sp
ee

du
p:

 m
od

ifi
ed

 d
yn

am
ic

 m
ap

pi
ng

SSE=10-3
SSE=10-4
SSE=10-5
SSE=10-7

Fig. 8. Speedup vs number of processors using
modified dynamic mapping algorithm.

2 4 80.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors of computational grid

SSE=10-3
SSE=10-4
SSE=10-5
SSE=10-7

Fig. 9. Efficiency vs number of processors using
modified dynamic mapping algorithm.

Ef
fic

ie
nc

y:
 m

od
ifi

ed
 d

yn
am

ic
 m

ap
pi

ng

8. CONCLUSIONS

The enhanced integration historical data method
using the set of Integrating Historical Data Neural
Networks is described in this paper. The main idea
of enhanced method is to account all available data
on all historical curves of the sensor drift.
Experiments showed that enhanced method has
better accuracy in two times in comparison with
basic integration historical data method. However
the enhanced method requires considerable time and
computational resources for its execution. The
parallelization of the enhanced method has been
done using coarse-grain approach with dynamic
mapping of IHDNNs onto processors of parallel
computer system. We have used a modified mapping
strategy which uses the training time of the IHDNN
as mapping criterion. Parallelization experiments
done on computation grid under Globus middleware
have showed that the modified mapping algorithm is
more efficient on 5-16% in comparison with the
basic mapping algorithm, which does not use any
mapping criterion.

9. ACKNOWLEDGEMENTS

This work is fulfilled within INTAS Postdoctoral
Fellowship for Young Scientists of the
corresponding author Dr. Volodymyr O. Turchenko,
grant reference number INTAS YSF 03-55-2493
“Development of Parallel Neural Networks Training
Algorithms on Advanced High Performance
Systems”. This support is gratefully acknowledged.

10. REFERENCES

[1]. A. Sachenko, V. Kochan, V. Turchenko,
"Intelligent Distributed Sensor Network,”
Proceedings of 15th IEEE Instrumentation and
Measurement Technology Conference IMTC/98,
St. Paul, USA, 1998, pp. 60-66.

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 18

[2]. A. Sachenko, V. Kochan, V. Turchenko,
"Instrumentation for Data Gathering,” IEEE
I&M Magazine, vol. 6, no. 3, September 2003,
pp. 34-40.

[3]. J. Brignell, "Digital compensation of sensors,”
Scientific Instruments, vol. 20, no 9, 1987, pp.
1097-1102.

[4]. V. Turchenko, "Neural network-based methods
and means for improving the effectiveness of
distributed sensor data acquisition and
processing networks,” Ph.D. Thesis, National
University “Lvivska Politechnika,” Lviv, p. 188,
2001 (in Ukrainian).

[5]. A. Alippi, A. Ferrero, V. Piuri, "Artificial
Intelligence for Instruments & Applications,”
IEEE I&M Magazine, June 98, pp. 9-17.

[6]. P. Daponte, D. Grimaldi, "Artificial Neural
Networks in Measurements,” Measurement, vol.
23, 1998, pp. 93-115.

[7]. A. Sachenko, V. Kochan, V. Turchenko, V.
Golovko, J. Savitsky, A. Dunets, T. Laopoulos,
"Sensor Errors Prediction Using Neural
Networks,” Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural
Networks IJCNN'2000, Como (Italy), vol. IV,
2000, pp. 441-446.

[8]. V. Golovko, A. Galushkin, "Neural Networks:
training, models and applications,” Moscow,
Radiotechnika, p. 256, 2001 (in Russian).

[9]. A. Sachenko, V. Kochan, V. Turchenko,
"Sensor Drift Prediction Using Neural
Networks,” Proceedings of the International
Workshop on Virtual and Intelligent
Measurement Systems VIMS'2000, Annapolis,
USA, 2000, pp. 88-92.

[10]. V. Turchenko, V. Kochan and A. Sachenko,
“Advanced Method of Historical Data
Integration Using Neural Networks,” Sensor and
Systems, Moscow, vol. 7 (38), 2002, pp. 35-38
(in Russian).

[11]. V. Turchenko, "Static Mapping of
Integrating Historical Data Neural Networks on
Parallel Computer,” Proceedings of the 16th
IASTED International Conference on Parallel
and Distributed Computing and Systems, 2004,
MIT, Cambridge, MA, USA, pp. 884-889.

[12]. V. Turchenko, "Parallel Algorithm of
Dynamic Mapping of Integrating Historical Data
Neural Networks,” Information Technologies
and Systems, vol. 7, no. 1, 2004, pp. 45-52.

[13]. Patent #50380 Ukraine, IPC 7 G06F15/18,
"Method of the training set formation for neural
network predicting drift of data acquisition
device,” A.Sachenko (UA), V.Kochan (UA),
V.Turchenko (UA), V.Golovko (BY), J.Savitsky
(BY), T.Laopoulos (GR), filled 04 Jan 2000,
issued 15 Nov 2002, p. 14.

[14]. A. Sachenko, V. Kochan, R. Kochan, V.
Turchenko, K. Tsahouridis, Th. Laopoulos,
"Error Compensation in an Intelligent Sensing
Instrumentation System,” 18th IEEE
Instrumentation and Measurement Technology
Conference IMTC/2001, Budapest, Hungary,
May 21-23, 2001, pp. 869-874.

[15]. S. Wang, "Reducing the communication cost
in simulating layered neural networks on a
hypercube machine,” Proceedings of Parallel
Computing, Elsevier, Amsterdam, 1989, pp.
375-380.

[16]. A. Petrowski, G. Dreyfus, C. Girault,
"Performance analysis of a pipelined back-
propagation parallel algorithm,” IEEE
Transactions on Neural Networks, vol. 4, 1993,
pp. 970-981.

[17]. H. Paugam-Moisy, "Optimal speedup
conditions for a parallel back-propagation
algorithm,” Proceedings of CONPAR’92-VAPP
V, Lecture Notes in Computer Science, vol. 682,
Springer-Verlag, 1992, pp. 719-724.

[18]. H. Hopp, L. Prechelt, "CuPit-2: A Portable
parallel programming language for artificial
neural networks,” Proceedings of the 15th
IMACS World Congress Scientific Computation
Modeling and Applied Mathematics, vol. 6,
Berlin, 1997, pp. 493-498.

[19]. Z. Hanzálek, "A parallel algorithm for
gradient training of feed-forward neural
networks,” Parallel Computing, vol. 24, no. 5-6,
1998, pp. 823-839.

[20]. J.M.J. Murre, "Transputers and neural
networks: An analysis of implementation
constraints and performance,” IEEE
Transactions on Neural Networks, vol. 4, no. 2,
1993, pp. 284-292.

[21]. I. Foster, C. Kesselman, "Globus: a
metacomputing infrastructure toolkit,”
International Journal of Supercomputer
Application, vol. 11, no. 2, 1997, pp. 115-128.

[22]. Global Grid Forum webpage.
http://www.gridforum.org/

[23]. J. Dongarra, D. Laforenza, S. Orlando (Eds),
"Recent Advances in Parallel Virtual Machine
and Message Passing Interface,” Lecture Notes
in Computer Science, Berlin: Springer-Verlag,
2003, vol. 2840, ISBN 3-540-20149-1.

[24]. N.T. Karonis, B. Toonen, I. Foster,
"MPICH-G2: A Grid-enabled implementation of
the Message Passing Interface,” Journal of
Parallel and Distributed Computing, vol. 63, no.
5, 2003, pp. 551-563.

V. Turchenko, C. Triki, L. Grandinetti, A. Sachenko / Computing, 2005, Vol. 4, Issue 3, 9-19

 19

Volodymyr Turchenko was born in
1973, in Ternopil, Ukraine. He
received his Engineer Diploma in
systems engineering from Brest
Polytechnic Institute, Brest, Belarus
(1995) and his Ph.D. degree in
computer engineering from National
University “Lviv Polytechnics”, Lviv,
Ukraine (2001). Now he is
Associate Professor of the
Information Computing System and

Control Department of the Faculty of Computer
Information Technologies, Ternopil State Economic
University (TSEU), Ternopil, Ukraine. He is a leader of
Neural Network and Parallel Computing Research Team
within the Research Institute of Intelligent Computer
Systems of TSEU. He has published more than 60
scientific papers. His main research interests are neural
networks, parallel computing and intelligent distributed
sensor networks.

Chefi Triki has received his
Engineer Degree in
Electromechanical Engineering at
“Ecole Nationale d'ingenieurs de
Tunis”, Tunisia (1993) and his
Ph.D. in Engineering Systems and
Computer Science from the
University of Calabria, Italy (1998).
Actually he is assistant professor of
Operations Research at the

University of Lecce, Italy. His major research interests lie
in the field of optimization and simulation with application
to logistics, energy and telecommunications. He has
published and served as reviewer in a variety of
international scientific journals.

Lucio Grandinetti is Full Professor
at the Department of Electronics,
Informatics and Systems of
University of Calabria, Italy (since
1986) and scientific director of the
Parallel Computing Laboratory
(PARCOLAB) at the University of
Calabria, Italy.

He is director of the Center of
Excellence on High Performance Computing established
in the year 2000 by the Italian Ministry of University and
Research at University of Calabria.

Lucio Grandinetti is co-director of the project SPACI
(Southern Partnership for Advanced Computational
Infrastructure) aimed to build a geographic GRID in
Southern Italy (partners involved: University of Naples,
University of Lecce, University of Calabria and Hewlett
Packard) financed by the Italian Government.

He is member of the Partners Board of the main
European Project on Grid, named EGEE

Prof. Grandinetti is co-director of NATO ARW on
Software for Parallel Computation, Italy (1992) and NATO
ARW on High Performance Computing, Italy (1996);
member of several organising and scientific committees of
international conferences on high-performance parallel
computing (e.g. EUROPAR, HPCN Europe, PARCO) and
member of the IEEE Technical Committee on Parallel
Processing.

His areas of expertise are the design of numerical
algorithms for parallel and distributed computer systems,
modeling and simulation of large scale systems, numerical

optimization methods for complex problems, software
engineering aspects related to parallel processing, grid
scheduling models.

He has been and currently is involved in research
projects sponsored and financed by the National Research
Council of Italy, by the European Commission, and by
Italian Ministry of Research.

He has been evaluator and reviewer of European
Commission Research Projects in the IT Programme
ESPRIT, during 1993 and 1995. He has also been
evaluator and reviewer of ESPRIT projects in the 4th
framework programme. He has been evaluator and
reviewer of research projects in the 5th Framework
Programme (INFSO Programme) and is currently reviewer
of a few projects in the 6th Framework Programme in the
same field (Information Society).

Prof. Grandinetti is co-author of more than 60 papers
in refereed journals, and co-editor of several books on
numerical methods for non-linear optimization,
computational engineering, parallel algorithms and
software for vector and parallel computing, grid computing.

He is member of the editorial board of the following
international journals:

- Parallel Computing (Elsevier)
- Optimization Methods and Software (Taylor and

Francis)
- International Journal on Computing (Ukraine).
Lucio Grandinetti is co-Editor of the book series

"Scientific and Engineering Computation" published by
MIT Press, Boston (USA).

He has received several administrative and managing
appointments at the University of Calabria, Italy
(Department’s Chairman, Member of Administration
Council) and currently is Vice-Rector of the same
University (since November 1st, 1999).

Anatoly Sachenko is Professor and
Head of the Department of
Information Computing Systems and
Control and Director of American-
Ukrainian Program in Computer
Science, Ternopil State Economic
University.

He earned his B.Eng. Degree in
Electrical Engineering at L'viv

Polytechnic Institute in 1968 and his PhD Degree in
Electrical Engineering at L'viv Physics and Mechanics
Institute in 1978 and his Doctor of Technical Sciences
Degree in Electrical and Computer Engineering at
Leningrad Electrotechnic Institute in 1988. Since 1991 he
has been Honored Inventor of Ukraine, since 1993 he has
been IEEE Senior Member.

His main Areas of Research Interest are
Implementation of Artificial Neural Network, Distributed
System and Network, Parallel Computing, Intelligent
Controllers for Automated and Robotics Systems. He has
published over 300 papers in areas above.

