
Pawel Falat, Lucyna Brzozowska, Krzysztof Brzozowski / Computing, 2005, Vol. 4, Issue 3, 30-36

 30

APPLICATION OF OBJECT ORIENTED NEURAL NETWORK TO
CONTROL MOTION OF THE LOAD OF A SEA CRANE

Pawel Falat 1), Lucyna Brzozowska 2), Krzysztof Brzozowski 3)

1) University of Bielsko - Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland, falat@ath.bielsko.pl

2) University of Bielsko - Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland, lbrzozowska@ath.bielsko.pl
3) University of Bielsko - Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland, kbrzozowski@ath.bielsko.pl

Abstract: The paper presents object oriented approach to design of neural networks. The second part of the article
presents an application of the object oriented neural network to control the load of the sea crane of an A-Frame type.
The control algorithm has to stabilize load position and compensate the weaving. The model of the A-Frame dynamics
were developed and used to achieve the optimal winch drive functions for various sea conditions. Those functions have
been used to teach the network.

Keywords: Neural network ,object oriented programming, optimization, motion control, A-Frame crane, .NET.

1. INTRODUCTION
The designing process of neural network can be

quite complicated. The object oriented approach can
be used for better understanding the net construction
and behavior while creating the computer program.

2. ADVANTAGES OF OBJECT
ORIENTED APPROACH

Use of object oriented system, enables us to
describe physical and logical relationships between
parts of the system. This means that the real world
can be transferred “as it is” to the computer virtual
environment. Because of that the whole system is
easier to understand. Another advantage is the
flexibility of such system. It is easy to add new
functionality by adding another method to the object
definition or creating derivative objects with
different functionality than parent.

3. DISADVANTAGES (PROBLEMS) WITH

OBJECT ORIENTED SYSTEM
 There are also problems in designing the object
oriented neural network system. The main problem
is connected with the particular object design. Apart
from its own functionality (such as display method
or internal calculation functions) the object design
must consider the interaction (connections) with
other objects (different or of the same type). Second
problem is how to save the whole network structure,
especially how to remember the connections

between the objects. This problem can be solved
using .NET Framework objects (Collections) and
mechanisms (Serialization).

4. OBJECT DESIGN
The object oriented approach makes it necessary

to analyze and implement into virtual environment
the entities from a real world.

The object structure is explained in the following
figures. In Fig. 1. the basic neural objects structure is
presented.

NeuralObject

Neuron

NeuralInput NeuralOutput

Bias

Synapse

Fig. 1 – Hierarchy of classes

All objects are derived from a NeuralObject class
which implements basic display functionality. Every
class implements its own display methods and adds
its own “neural” behavior.

The neuron (Fig. 2.) consist of two collections
(objects of ArrayList type) which holds references to
the Synapses. This kind of object is used to transfer
the signal from other neurons (from other Layers) or

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Pawel Falat, Lucyna Brzozowska, Krzysztof Brzozowski / Computing, 2005, Vol. 4, Issue 3, 30-36

 31

from Input objects.

Neuron

ArrayList

.
.
.

Input

Input

ArrayList

.
.
.

Output

Output

Synapse

Synapse

Synapse

Synapse

Synapse

Activation
Function

Σ

Activation
Value

Neuron

Neuron

Neuron

Bias

Fig. 2 – The Neuron object structure
The Neuron object calculate the sum of the

signals which comes from Synapses and sends it to
ActivationFunction object to calculate the
ActivationValue. That value is used for outputs from
the Neuron. As activation function can be used any
object that implements the IActivationFunction
interface. That gives the possibility for designer to
develop different types of activation function.
 The Synapse object (Fig. 3) is used as was
mentioned to link the neurons with inputs or with
other neurons. It consists of two references to
Neuron Objects (Input and Output) and
multiplication factor which is used during the signal
transfer process from input to output. This design of
Neuron and Synapse objects has some next
advantages. It can be easily transformed to a
network application when every neuron can exist in
separate computer. The Synapse object would be
then responsible for transfer of data between
different machines.

Synapse

Input
(Refernce
to Neuron)

MultiplyValue Output
(Refernce
to Neuron)

Neuron

Output

Output
(Refernce

to
Synapse)

Neuron

Input

Input
(Refernce

to
Synapse)

Fig. 3 – The Synapse object structure

 In order logically connect the neurons in layers
the NeuralLayer class has been created (Fig. 4). It
collects the neurons and gives functionality to
connect the neurons with other layers by creating the
Synapses.

All those neural objects are combined to the net
form in the NeuralNetwork object (Fig. 5). It gives

functionality to calculate the network outputs for a
given vector of input values.

NeuralLayer

ArrayList

.
.
.

Neuron

Neuron

Fig. 4 – The NeuralLayer object structure

 NeuralNetwork

NeuralLayer

ArrayList

.
.
.

Neuron

Neuron

NeuralLayer

ArrayList

.
.
.

Neuron

Neuron

.

.

.

.

.

.

.

.

.

NeuralLayer

ArrayList

.
.
.

NeuralInput

NeuralInput

NeuralLayer

ArrayList

.
.
.

NeuralOutput

NeuralOutput

Fig. 5 – The NeuralNetwork object structure

 Having created the network it must be tought. To
do this the NeuralTeacher object can be developed.
It should hold the reference to the NeuralNetwork
object (Fig. 6) and by changing the multiplyValue
inside the Synapse objects teach the network by
using teaching algorithms. Until now only the
backward propagation algorithm has been
implemented [1] but work with the genetic type of
teaching algorithms is in progress.
 Neural
Teacher

NeuralNetwork

Net

(Reference
to Network)

Fig. 6 –The NeuralTeacher object structure

Those are the most important objects which are
used to create and use the neural network. They are
summarized in the Table 1.

Pawel Falat, Lucyna Brzozowska, Krzysztof Brzozowski / Computing, 2005, Vol. 4, Issue 3, 30-36

 32

Table 1. Summary of object definition

Object Type Function
Neuron This is a primary object

which represents the neuron
behavior. It calculates the sum
of inputs which comes from
the collection of Synapse
objects and send that value to
the ActivationFunction object.

Synapse The Synapse is used as a
multiplication object for the
signal which is transferred by
it.

NeuralLayer The NeuralLayer is a
collection of the neurons
which are connected by the
Synapses.

NeuralInput The NeuralInput object is
in fact a modification of the
neuron object definition.
Hence it was crated as
derivative type of the Neuron
class. It is used to introduce
the signal values to the
network.

NeuralOutput The NeuralOutput object
was designed by similar way
to NeuralInput as a derivative
class of the Neuron.

NeuralNetwork The NeuralNetwork is a
collection of neural layers
which holds the Neuron
objects. It uses other Neural
Objects (Neurons, Inputs,
Outputs and Synapses) to
calculate the network state.

NeuralTeacher This object is linked with
the network. It is used to teach
the network. By implementing
it the different method of
teaching the network can be
easily achieved.

ActivationFunction The ActivationFunction
object is used with the neuron.
Every neuron has its own
activation function object. It is
possible to build the network
in which behavior of a
particular neuron can be
different.

Bias It is a special kind of
neuron. It gives a constant
input value equals 1 for the
connected Neuron.

They are also some additional objects which are
used to simplify the operations with network such
as: TeachingSet object, different kind of activation
function object e.g. UnipolarActivationFunction,
BipolarActivationFunction etc. [1].

5. USING THE NETWORK
First the NeuralNetwork object need to be

created. Having created the NeuralNetwork object
the designer needs to add the inputs and outputs to it.
Next the layers with required number of neuron on it
have to be created. At the end the Synapses have to
connect neurons between the layers (Fig. 7).
 NeuralNetwork NN= new NeuralNetwork();

 NN.AddInput(new NeuralInput());
 NN.AddInput(new NeuralInput());
 NN.AddInput(new NeuralInput());

 NN.AddOutput(new NeuralOutput());
 NN.AddOutput(new NeuralOutput());
 NN.AddOutput(new NeuralOutput());

 NN.Width=600;
 NN.Height=400;

 NN.CreateLayer(5);
 NN.CreateLayer(4);
 NN.CreateLayer(5);

 NN.ConnectLayers();

 Fig. 7 – The NeuralNetwork generation

 After that stage the network should be taught
(Fig.8). In the following example the Teacher object
can set the activation function for neurons inside the
Network object.
 bPTeacher= new BackwardPropagationTeacher(NN);

bPTeacher.LoadTeachingSetsFromFile("TeachinSets.txt");

bPTeacher.SetNeuronsActivationFunction(new
 SigmoidBipolarActivationFunction(1));

bPTeacher.Teach();

 Fig. 8 – The Neural Network teaching process

At the end of the teaching process the network can
be used to solve a problem for which has been
designed. However in order to transform it to other
program we must save its state which will be
explained in following chapter of the paper.

6. SAVING THE NETWORK
One of the main problems with the neural

network created by using objects connected by
references is how to save its state. This means values
which are used to multiply the signal in the synapses
and the whole structure of the network. This may be
very difficult to programming with complicated
networks (Fig. 9) .

Pawel Falat, Lucyna Brzozowska, Krzysztof Brzozowski / Computing, 2005, Vol. 4, Issue 3, 30-36

 33

Fig. 9 – The Neural Network to save

 In order to solve this problem the serialization
mechanism has been used. The serialization is a
process of saving the state of the object. It saves the
values which are “in the object” and all objects
connected with the object which is serialized as well.
Hence the only one constraint which must be
fulfilled is that all objects which are used to build
the network must support the serialization
mechanism. For .NET three types of Serialization
are implemented [2]. XML Serializations, Binary
and SOAP serialization. In the package presented
only the last two has been implemented because
XML serialization saves only data. It cannot save the
connections between the objects, which is necessary
in this case. The net can be saved in the binary file
(binary serialization) or in text file which is used by
SOAP serialization technology. The serialization
mechanism have some constraints, for example it
saves the name of assembly (dll or exe file) which
carried out the serialization to the output file which
can cause problems during deserialization process
but it can be easily solved.

7. APPLICATION OF THE NEURAL

SYSTEM
The system presented have been used to control

the motion of a load hoisted by a offshore crane of
an A-Frame type (Fig. 10). The task is to find the
winch drive function which ensures stabilization of
the load on proper depth. This can be done by using
traditional optimisation methods which is presented
in [3].

8. NEED OF NEURAL SOLUTION
 The optimisation process is fast but not fast
enough. It cannot be applied in real time. But it can
be used to control effectiveness of other controlling
algorithms. It can also be used to generate several
teaching sets which can be used to teach an artificial
controlling system as it can be the neural network.
those sets can be obtained as a result of the

optimisation process.

9. THE A-FRAME MODEL
The first step, to solve the problem, was to create

a computer model of the A-Frame crane (Fig. 10).
The important thing was to discover which
construction properties are important for
optimisation process. For that reason several models
were implemented and tested [3],[4].

{}b1x 2x

1 x 2x

3 x

1 ϕ 3ϕ

2ϕ{ }SB

3x

Fig. 10 – A-Frame Crane

 The complete A-Frame dynamic model was
created by using the Rigid Finite Element Method
[3], which takes into consideration the flexibility of
the structure and flexibility of the rope. The model
created using ANSYS-ADAMS commercial
packages, which have been used to control the own
A-Frame model. For optimisation, which is used to
find the winch drive function, stabilising the load on
proper depth the separate model has been used. The
model was implemented to reduce calculation time
and does not take into consideration the flexibility of
the construction. This is possible and was controlled
in tests [3]. The flexibility of the rope must be taken
into consideration and the optimisation model has
included the flexible behaviour of the rope.

The parameters of ship hull movement and
coordinates of the winch and cylinder position
during derivation of the equations of motion of the
probe were assumed to be known. Fig. 11 presents
the model of the system which was optimised and
values which have been used during calculations.
The water damping ratio was not taken into account.

Ship motion was assumed to be known and is
described by time functions

()
()
()
()
()
()⎪

⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

=
=
=
=
=

t

t
t
tzz
tyy
txx

zz

yy

xx

CC

CC

CC

ϕϕ
ϕϕ
ϕϕ

Pawel Falat, Lucyna Brzozowska, Krzysztof Brzozowski / Computing, 2005, Vol. 4, Issue 3, 30-36

 34

Fig.11- Scheme of the model

The equations of motion can be presented in a
general form:

()

()

()⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=−+−−
∆

⋅+

=−−
∆

⋅+

=−−
∆

⋅+

,0

0

0

WNzzNlNN

yyNlNN

xxNlNN

Fgmlbaz
BN

lCzm

lbay
BN

lCym

lbax
BN

lCxm

&&

&&

&&

where
0l - rope length without the load,

Nm - probe mass,
g - acceleration of gravity,

lC - rope stiffness,
Dϕ - angle of the winch drum

Dr - radius of the winch drum

DD rlBNDBl ⋅+−+=∆ ϕ0
The vectors a and b from formulae have the form:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+′+′+′−
+′−′+′
+′+′−′

=

1
CAAxAy

CAxAAz

CAyAzA

zzyx
yzyx
xzyx

ϕϕ
ϕϕ
ϕϕ

a ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++
−+−
+−−

=

1
ααβαβ

ααβαβ

ααβαβ

ϕϕ
ϕϕ
ϕϕ

SSCSC
SSCSC
SSCSC

xy

xz

yz

b ,

()
().sin

,cos

α

β

α

β

=

=

S

C

The optimisation task is formulated: find winch
angle ()tDϕ so that, with these values known:

() ()
() ()
() ()tzt

tyt
txt

Cz

Cy

Cx

ϕ

ϕ
ϕ

the functional F defined below, is minimised:

[] min
0

2 →−= ∫
Kt

N hzF

Having converted the optimisation task to a

nonlinear one, the Nelder - Mead method, connected
with the Powell method for searching for directional
minima, was applied in order to solve it [6]. The
complete model description can be found in [7].

10. NEURAL NETWORK
The network for this solution was created by

using our own program written in C# for .NET
platform by using the object oriented approach. The
network was created as a classic net with 4 inputs, 3
hidden layers and 9 outputs (Fig. 12).

Fig.12- The network

The four ship motion parameters have been used
as input values:

• the amplitude of the ship motion along z axis,
• the frequency of the motion along the z axis,
• the amplitude of rotations around the y axis,
• the frequency of rotations around the y axis.

Those parameters have the biggest impact on
load behaviour. Every neuron in the network has its
own activation function (sigmoid) and holds a
reference to the bias object.

Output values are the parameters which describes
the winch drive function (Fig. 13).

Fig. 13- The “neural” winch drive function

11. RESULTS

In the paper the first step of designing the neural
control system is presented. In testing process some
aspects have been discovered which need to be
improved in the future.

For teaching process several (1400) teaching sets
were generated by using the optimisation program.

Pawel Falat, Lucyna Brzozowska, Krzysztof Brzozowski / Computing, 2005, Vol. 4, Issue 3, 30-36

 35

The teachings sets cover wide spectrum of input
parameters. The teaching sets have been applied in
teaching process which use the backward
propagation algorithm. After the test the net was
saved and transferred to the program which
simulates behaviour of the A-frame system. Then
the testing simulation has been carried out.

Bellow the examples of calculation for the
following input parameters are presented:

Table 2. The test parameters

Parameter Case A Case B Case C
Amplitude Z [m] 2.25 2.5 2.6
Omega Z [rad/s] 0.52359 0.52359 0.50614
Amplitude ϕy [rad] 0.05934 0.12915 0.12915
Omega ϕy [rad/s] 0.366519 0.52359 0.52359

Two cases (Case A and B) show good results of

neural control system. Case C is an example of
improper results which doesn’t ensure stabilisation
of the load at the proper depth. Calculation results
are presented on following figures:

Fig. 14 and Fig. 15 presents results for Case A,
Fig. 16 and Fig. 17 – Case B,
Fig. 18 and Fig. 19 – Case C.

Fig.14- Case A: Load depth

Fig.15- Case A: Winch angle

Fig.16- Case B: Load depth

Fig.17- Case B: Winch angle

Fig.18- Case C: Load depth

Fig.19- Case C: Winch angle

Pawel Falat, Lucyna Brzozowska, Krzysztof Brzozowski / Computing, 2005, Vol. 4, Issue 3, 30-36

 36

 The best results were achieved for parameters
which were placed at the end of teaching set file.
This means that network “remembers” best what it
learned at the end. That leads to a conclusion that the
net should not be taught sequentially (set by set) but
in random order or the teaching sets should covers
wide spectrum of input parameters which neural
network cannot remember.

12. CONCLUSIONS

The system presented is a first version of a
package which is developed in department of
Mechanics and Computer Methods. It is planed that
package will implement function of visual design of
neural network, design of different types of neural
networks (e.g. radial), different types of teaching
methods (in e.g. by using genetic algorithms).

In most considered cases the network gives
acceptable solution. The winch drive function
generated by network is effective and gives good
load stabilisation. Unfortunately there are some
cases for which huge error causes in the stabilisation
process. That problem can be solved by using
teaching sets which cover smaller spectrum of cases.
This means that several nets which are specialized
for specific range of parameters should be created
and those networks should be used according to the
input range. After that proper neural network would
be loaded to neural controller as a program.
The teaching process also should be improved by
implementing other teaching algorithms and other
types of neural networks.

Another factor which can improve solution is
change the type of output function for the
optimization process and next for neural network.
Because all input functions are periodical, the output
function can be periodical as well an it can be
modeled in a form:

()0sin ϕωϕ += tAD
In that case the network will be searching
parameters 0,, ϕωA . That might simplify the task
and perhaps gives better results. This is are problems
which will be investigated in the future.

13. REFERENCES
[1]. http://nrn.prv.pl/
[2]. http://msdn.microsoft.com/
[3]. P. Falat. PhD Thesis: Dynamic analysis of an A-

Frame crane, University of Bielsko–Biala 2004
[4]. I. Adamiec-Wójcik, P. Fałat, T. Gancarczyk.

Computer Analysis of static loads of an A-
Frame, Zeszyty Naukowe Akademii Techniczno
– Humanistycznej w Bielsku – Białej. Zeszyt nr
6, 2003, pp. 7-25

[5]. J. Kruszewski ,S. Sawiak ,E. Wittbrodt. Metoda
sztywnych elementów skończonych w dynamice
konstrukcji, WNT – Warszawa 1999

[6]. S.C. Chapra and R.P. Canale. Numerical
methods for engineers, McGraw-Hill Higher
Education. New York, 2002

[7]. P. Fałat, S. Wojciech. Application of non-linear
optimisation methods to stabilise motion of a sea
probe. Zeszyty Naukowe Akademii Techniczno
– Humanistycznej w Bielsku – Białej. Zeszyt nr
6, 2003, pp. 29-40.

Paweł Fałat
Born in 1973,
Education:
B.Sc. (1997) and M.Sc. (1999)
in Computer Methods for
Mechanical Engineering at the
Technical University of Lodz
Branch in Bielsko–Biala. PhD
(2004) at the Mechanical
Engineering and Computer
Science Faculty of the
University of Bielsko – Biala.

MCAD (2004) Microsoft Certified Application
Developer in .NET technology.
Position: Lecturer on subjects: C++, Java, C#,
Programming for Internet, Computer Methods.
Areas of Interest: Programming languages, Web
application, Web Services, Computer methods.

Lucyna Brzozozwska
Born in 1973,
Education:
B.Sc. (1997) and M.Sc. (1998)
in monitoring and computer
methods at the Technical
University of Lodz Branch in
Bielsko – Biala. PhD (2002) at
the Faculty of Textile
Engineering and Environmental
Protection of the University of
Bielsko – Biala.

Position: Lecturer on computer systems, monitoring and
process control, database.
Areas of Interest: Computer systems, monitoring and
process control.

Krzysztof Brzozowski
Born in 1972,
Education:
B.Sc. (1997) and M.Sc. (1998)
in monitoring and computer
methods at the Technical
University of Lodz Branch in
Bielsko – Biala. PhD (2002) at
the Mechanical Engineering and
Computer Science Faculty of
the University of Bielsko – Biala.

Position: Lecturer on programming languages (Pascal,
C++, Java), numerical methods.
Areas of Interest: Numerical methods, Computational Fluid
Dynamics.

