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Abstract: Breast cancer is one of the most common forms of cancer among women. Currently mammography is the 
most efficient method for early detection. A simple and fast mammographic mass detection system and two different 
methods for difficult case exclusion are presented in this paper. The mass detection system uses a modified version of a 
known algorithm for small masses and a new algorithm for large masses. The first difficult case filtering method is 
based on tissue density estimation, the second one on mass candidate count. The system was tested with 600 
mammographic cases, each containing 4 images. Case-level performance was measured for malignant mass detection 
first without and then with difficult case exclusion. 
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1. INTRODUCTION 
Breast cancer is one of the most frequent 

cancerous diseases among women. Every 12th 
woman suffers from this disease at least once in her 
lifetime [1]. Since the cause of the disease is 
unknown, early detection is very important. 

Currently mammography (X-ray examination of 
the breast) is the most efficient method for early 
detection. In a mammographic session usually two 
images are taken of both breasts. Left craniocaudal 
(LC) is a top view, left mediolateral (LM) is roughly 
a side view image of the left breast, right 
craniocaudal (RC) and right mediolateral (RM) are 
the same views of the right breast. 

With regular mammographic screening 
examinations the mortality of the disease can be 
significantly decreased. (If breast cancer is detected 
early, the five-year survival rate exceeds 95 %.) 

The evaluation of the images taken at the 
screening examinations needs a large amount of 
human resource and money. Therefore computer-
aided diagnosis (CAD) for mammography has been 
an active area of research (e.g. [2], [3]). The main 
goals of a CAD system are to increase the accuracy 
of examination by aiming radiologists' attention to 
suspicious cases and to decrease the cost by filtering 
out normal cases. 

 

The most important mammographic symptoms of 
breast cancer can be divided into two main classes: 

• Microcalcification: group of small white 
calcium spots. 

• Mass: circumscribed object brighter than its 
surrounding tissue. 

 
Not all microcalcifications and masses are 

cancerous, they can also be benign. The two main 
classes can be divided into subclasses, for example 
the ACR (American Collage of Radiology) BI-
RADS recommendation [4] defines 9 mass and 13 
microcalcification subtypes. Combined mass-
microcalcification lesions are possible too. 

The recognition of these structures is a hard and 
challenging task that needs intelligence. Mass 
detection is particularly difficult, because masses 
show a great diversity in optical density, shape, 
position, size and characteristics at the edge. 
Humans and computer algorithms have to deal with 
a number of difficulties: for example the boundary 
can be fuzzy or partially missing, irrelevant objects 
can overlap the mass, some benign findings (e.g. 
cysts) also appear as masses, normal architectural 
structures of the breast superimposed on each other 
can look like real masses. 

Figures 1 – 4 show some typical forms of 
microcalcifications and masses appearing in real 
mammograms. 
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Fig. 1 – A typical benign 

microcalcification 
Fig. 2 – A typical malign. 

microcalcifiction 

 
Fig. 3 – A typical benign 

mass 

 
Fig. 4 – A typical 
malignant mass 

 
This paper presents a simple and fast system for 

detecting masses in digitalized mammograms. Two 
size classes were defined and different algorithms 
are used for small and large mass detection. The 
precision of the system was improved by applying 
difficult case exclusion. A tissue density estimation 
based and a mass candidate count based method 
were developed and tested in the difficult case 
filtering experiments. 
 

2. DETECTION OF SMALL MASSES 
The size of mammographic masses varies in a 

wide range (~5 mm to ~50 mm in diameter). An 
interesting question of automated breast cancer 
detection is how to handle this size variability. The 
proposed system defines two size classes and uses 
different algorithms for small and large mass 
detection. Most mammographic masses belong to 
the small class so the small mass detector is the 
critical part of the system. Large masses are rare and 
easier to detect. 

For the detection of small masses (smaller than 
20 mm in diameter) a slightly modified version of 
the AFUM mass detection algorithm [5] was 
applied. A short description of our modified 
algorithm: 

At each pixel position (x, y) the minimal intensity 
at distance r1 from location (x, y) is computed (m1), 
then the fraction of pixels at distance r2 from (x, y) 
that have lower intensity value than m1 is measured. 
This fraction under the minimum (FUM) calculation 
is done over many scales using a range of r1 and r2 

values and the average of those calculations yields 
the average FUM (AFUM) value. 

This AFUM algorithm variant slightly differs 
from the original one, because in the original 
algorithm the minimal intensity at distance less than 
or equal r1 from (x, y) is compared to intensity 
values at distance r2 from (x, y). 

In real mammograms some masses contain small 
dark dots inside. The original AFUM algorithm 
prohibits this case while the proposed variant 
tolerates it to some degree. 

If r1 = Rmin, Rmin + 1, Rmin + 2, ..., Rmax and r2 = 
r1 + D then the AFUM value calculation can be 
written as: 
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Values Rmin Rmax and D are fixed a priori choices 

based on the problem definition. An advantage of 
this algorithm is simplicity and therefore 
computational efficiency. A nice property of the 
algorithm is invariance to any monotonically 
increasing intensity transformation of the input 
image, since only logical operators (min. finding and 
comparison) are applied to the intensity values. 

A fast mass detector can be obtained by running 
the AFUM algorithm for each non-background pixel 
of a mammogram. The filtered image is thresholded 
and continuous regions are identified by a region-
filling algorithm. Regions with a too high perimeter-
area ratio are excluded from further examinations. 
The location of the maximal AFUM value is 
computed for each region, and an “energy” value is 
assigned for each maximum location based on the 
AFUM value of that position and its neighboring 
pixels. A structure is accepted as a mass if this 
energy is higher than a limit. Finally the locations of 
the highest N energy maxima are returned. Figure 5 
illustrates the steps of small mass detection: 

 
Fig. 5 – The steps of small mass detection 
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3. DETECTION OF LARGE MASSES 
The a priori parameters of the AFUM algorithm 

(Rmin, Rmax and D) could not be set to deal with 
arbitrary mass size. At the resolution of 400 microns 
Rmin = 0, Rmax = 6 and D = 12 proved to be a good 
choice but worked well only for masses smaller than 
20 mm in diameter. 

For the detection of larger masses the following 
simple and fast algorithm was developed: At a given 
pixel position 8 lines are started from the center 
(vertically, horizontally and diagonally) and a mass 
boundary point is estimated for each direction based 
on some simple intensity change constraints. Then a 
“conspicuousness” value can be obtained from the 
line lengths (li), average intensity along the lines 
(Brightness) and average contrast at the end of the 
lines (Contrast). 
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Since the detection of large masses is easier than 
that of the small ones, the large mass detector 
returns only the location of the highest 
conspicuousness value when processing a whole 
mammogram. Obviously a lower threshold for the 
conspicuousness can be applied to control the 
sensitivity of the large mass detector. 
 
4. DIFFICULT CASE EXCLUSION BASED 

ON TISSUE DENSITY ESTIMATION 
Breast tissue density is an important feature of a 

mammographic case for human experts. There are 
standards for classifying mammogaphic cases into 
tissue density classes. For example BI-RADS 
recommends four breast tissue density types 
numbered from 1 to 4. Class 1 means fatty tissue 
(dark, homogenous background), class 4 means 
dense tissue (that can mask interesting structures). 

Human experts say that mammographic mass 
detection (and microcalcification detection) is a 
much more difficult task on dense cases than on 
fatty ones. For cases with an extremely dense tissue 
mammogaphy is not applicable at all. 

Figures 6 – 7 show a fatty and a dense case, each 
containing a malignant mass. 
 

 
Fig. 6 – A fatty case containing a malignant mass 

 
Fig. 7 – A dense case containing a malignant mass 
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According to this observation a density 
estimation algorithm was developed to improve the 
accuracy of the mass detector by filtering out 
difficult cases. The density estimator measures the 
intensity mean and variance of the four images (LC, 
LM, RC and RM) of the input case. Then the 
estimated density value is computed with the 
following heuristic formulae: 
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NSumSd denotes statistically normalized sum of 

the standard deviations, NSumMean denotes 
statistically normalized sum of the means. Constants 
are set to make the estimated density value directly 
comparable with the BI-RADS density value. 

Experiments showed that our estimated density 
value (rounded to the nearest integer) usually does 
not equal exactly with the BI-RADS density value, 
but the two parameters are in positive correlation 
with each other (Figure 7). The measurement was 
based on 157 mammographic cases of the DDSM 
database [6]. 

 

 
Fig. 8 – The correlation between the BI-RADS and the estimated density value 

 
5. DIFFICULT CASE EXCLUSION BASED 

ON MASS CANDIDATE COUNT 
The first difficult case filtering method was 

developed according to a human experts’ 
observation: dense cases are more difficult than fatty 
ones. Another possible way is to get the case 
difficulty information from the mass detection 
system itself. 

For example the number of energy maxima after 
the perimeter-area ratio filtering step in the small 

mass detector (mass candidate count) seems to be a 
good parameter. If the number of energy maxima is 
high then real masses have lesser chance to be 
among the N highest maxima, so the film is difficult 
for the system. The case-level mass candidate count 
value can be obtained by the summation of film-
level mass candidate counts. 

The average mass candidate count of the BI-
RADS density classes can be seen in Table 1 (based 
on 157 cases of the DDSM database [6]). 
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Table 1. Average mass candidate count of the BI-
RADS density classes 

BI-RADS Density Avg. Mass Candidate Count 
1 71.1 

2 93.1 

3 112.9 

4 85.5 

 
6. RESULTS 

The mass detection system was tested with 600 
cases (600 · 4 = 2400 images) of the DDSM 
database [6]. 424 cases contained malignant masses, 
10 cases contained benign (but no malignant) 
masses, 166 cases contained no masses. A malignant 
case was counted as recognized if one of the pixel 
positions returned by the mass detector was inside 
the radiologist-drawn boundary of a malignant mass 
on any image of the case. An output pixel position 
was counted as a false mark (FM) if it was not inside 
the radiologist-drawn boundary of any (malignant or 
benign) mass. Table 2 shows the performance 
parameters of the system without difficult case 
exclusion: 

Table 2. Results of the mass detector 

MCRR # FMs / Image 
90.3 % 5.45 

 
The malignant case recognition rate (MCRR) is 

nearly 90 % that is acceptable in itself, but it comes 
together with a high number of false marks per 
image. At this false mark level the system can be 
used for increasing the accuracy of the examination 
but cannot be used for decreasing the cost by 
filtering out normal cases. 

Results with density estimation based difficult 
case exclusion are summarized in Table 3: 

Table 3. Results with density estimation based  
difficult case exclusion 

Rejection Rate MCRR # FMs / Image 
18.7 % 90.4 % 5.46 

33.3 % 90.6 % 5.46 

53.8 % 90.8 % 5.43 

69.3 % 90.6 % 5.45 

82.3 % 92.9 % 5.45 

 
The false mark level remained nearly the same. 

The malignant case recognition increases with the 
rejection rate but a significant improvement can be 
observed only at a very high rejection rate. 

 

Table 4 shows the results of mass candidate 
count based difficult case exclusion: 

Table 4. Results with mass candidate count based 
difficult case exclusion 

Rejection Rate MCRR # FMs / Image 
4.2 % 90.8 % 5.43 

10.0 % 91.3 % 5.42 

18.5 % 91.8 % 5.40 

35.3 % 91.8 % 5.35 

55.7 % 93.9 % 5.36 

 
The false mark level is slightly reduced. The 

malignant case recognition rate increases 
monotonically with the rejection rate. The mass 
candidate count based filtering provides a better 
malignant case recognition than the density 
estimation based one at the same rejection rate. The 
system performs better than its previous version [7] 
from which the large the mass detector part was 
missing (Table 5). 

Table 5. Some results of the previous version of the 
system 

Rejection Rate MCRR # FMs / Image 
0 % 89.6 % 5.6 

18.7 %  
(density est. 
based filtering) 

88.7 % 5.5 

4.3 % 
(mass count 
based filtering) 

90.3 % 5.5 

 
7. CONCLUSION 

A mammographic mass detection system and two 
algorithms for difficult case exclusion were 
presented in this paper. The system uses different 
methods for small and large mass detection. The first 
difficult case filtering algorithm is based on tissue 
density estimation, the second one on mass 
candidate count. 

The mass detector is fast enough to process each 
pixel of mammogram in reasonable time at the 
resolution of 400 microns. It finds almost all 
malignant masses, but also returns a high number of 
false marks. 

The malignant case recognition rate of the mass 
detector was improved by filtering out difficult 
cases. The mass count based difficult case filtering 
proved to be better than the tissue density estimation 
based method. 

Further improvements could be achieved by 
implementing a complex post-processing for the 
suspicious spots returned by the fast mass detector, 
and by comparing the two views of the same breast. 
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