
Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 91

ANALYTICALLY MODELING UNRELIABLE PARALLEL PROCESSING
SYSTEMS WITH GENERAL TASK TIME DISTRIBUTIONS

Pierre M. Fiorini 1), Robert W. Rowan 2)

1) University of Southern Maine, Department of Computer Science, Portland, ME, pfiorini@usm.maine.edu

2) Nationwide Payment Solutions, 400 US Rt. 1, Falmouth, ME 04105, wrowan@getnationwide.com

Abstract: For many computing systems, failure is rare enough that it can be ignored. In other systems, failure is so
common that the recovery procedure can have a significant impact on the performance of the system. In this paper,
assuming a computing system is unreliable, we discuss how heavy-tail or power-tail job completion time distributions
can appear in an otherwise well-behaved task stream. This is an important consideration since it is known that power-
tails can lead to unstable systems. We then demonstrate how to obtain performance and dependability measures for a
class of computing systems comprised of P unreliable processors and a finite number of tasks, N, given different
recovery policies. Finally, we discuss the effects of checkpointing on the job completion time distribution.

Keywords: Performance and Dependability Modeling, Parallel & Distributed Systems, Queueing Theory, Heavy-Tails

1. INTRODUCTION
This paper discusses an analytic approach that

can be used to compute expected performance,
dependability, and performability measures for
unreliable parallel processing systems (PPS) given
the following recovery policies: Resume (prs –
preemptive resume same), Replace (prd – pre-
emptive repeat different), and Restart (pri pre-
emptive repeat identical), although other recovery
policies could be considered. We also show how
heavy-tail or power-tail job completion time
distributions can appear in an otherwise well-
behaved task stream. This is significant since it is
well known that power-tails can lead to unstable job
completion times [5] [6]. The PPS can be comprised
of any number of processing elements (PEs) and
tasks. We assume that failure and repair rates are
exponentially distributed, while task service times
can be generally distributed.

The model consists of a queueing system that
characterizes the system’s performance,
dependability, and recovery policy. The model is
solved at task completion points from which
performance, dependability, and performability
measures can be ascertained. One well-known issue
with these problems is the potentially large state-
space required to characterize these types of analytic
models. The technique described in this paper
addresses the state space problem in two ways: 1)
we utilize an epoch approach; and, 2) take advantage
of symmetry in the system structure and task stream

by assuming the tasks in the job stream are
homogenous enabling us to use a reduced Kronecker
product space.

With the epoch approach each task completion in
the job is analyzed independently. We calculate the
distribution and expected values of various metrics
for each epoch, then sum over all epochs to obtain
cumulative metrics for the entire job. This approach
significantly reduces the state space since it requires
that only state information of the current epoch be
stored. Using this approach, performance measures
such as the mean job completion time can be
calculated as well as dependability measures such as
the system availability, the mean time to failure
(MTTF), the mean time between failures (MTBF),
and the mean time to repair (MTTR) given a
recovery policy. Furthermore, the Work done by the
system, which is performability measure, can also be
computed. Our base system can be thought of as a
PPS with P identical processing elements. The base
workload on the system is comprised of N
independent and identically distributed (iid) tasks
which are all present at time x = 0. The service time
of each task has a matrix exponential (ME)
representation given by an m-dimensional vector-
matrix pair, <p, B> (see [1]), such that its
Cumulative distribution function, CDF, is given by:

 еBp ′−−=≤=)exp(1)Pr()(xxXXF

where ε' is an m-dimensional column-vector of ones.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 92

2. PREVIOUS WORK
The analysis of completion times when the policy

was Resume or Replace was carried out by Kulkarni
et. al. [2]. The analysis of mixed polices was also
carried out by Kulkarni et. al. [3]; and, the task
distribution for the Restart policy was examined by
Kulkarni et. al. [2]. The work by Kulkarni et. al. [2]
[3], and Bobbio and Trivedi [4] clearly suggested
that the resulting service time for the Resume and
Replace resumption policies could be represented by
ME distributions; however, they found that the
distribution of the Restart policy (whatever it was)
could not.

Regarding our analytic model, the work of Bobbio
and Trivedi is among the most relevant [4]. It
examines a system whose work requirement for jobs
can be represented by a phase distribution (PH) and
focuses on computing the distribution of the
completion time of the job. Our approach, by
contrast, is intended to investigate the expected
behavior of a job running on a system at various
points in the task stream from which performance
and dependability measures can be generated.

Of interest in this paper is the demonstration of
how heavy-tail (hereafter referred to as power-tail)
distributions can appear in a distribution that has an
ME representation (i.e., any distribution with a
rational LaPlace transform (LPT)). This is
important since it is well known that power-tails can
lead to unstable systems and job completion times
[5] [6]. Furthermore, assuming the computing
system is unreliable and the recovery policy is
Restart, we demonstrate how this behavior occurs
and how it can be modeled.

Additionally, a number of researchers have
observed that much computer system related
phenomena (e.g., CPU process lifetimes) exhibit
properties consistent with power-tail distributions
[7]. Some researchers have suggested the
distribution of run times for jobs in parallel
processing systems are power-tail distributed.
Interestingly, one reason why most sites have not
observed this behavior is because of limitations on
the allowed length of a job [8]. Consequently, users
that need to run very long jobs resort to making a
checkpoint whenever they run out of time, and then
restart the job later. This precludes observations of
job runtimes that are in the tail of the distribution.

Applications of our model include performance
and dependability measures for unreliable
distributed and parallel systems. For instance, in
some distributed applications when jobs running on
hosts fail they must "Restart" elsewhere, which
causes job times to be power-tail distributed if
certain conditions are satisfied.

3. DISTRIBUTION OF NUMBER OF
FAILURES FOR TASKS

In the following sections we summarize various
properties of the Resume, Replace, and Restart
resumption policies for tasks in a job stream. First
we supply some definitions.

Let T be the random variable (rv) denoting the
time for a task to execute without failures, with
probability density function (pdf), f(t) and mean,
E(T) = τ. Let X be the rv denoting the total time a
task spends executing because of failures, but not
including the time it spends waiting. The pdf for X is
g(x). Let t be the time needed by a particular task,
i.e., let T = t. We assume that failures occur
randomly with exponential inter-occurrence times,
with parameter, β. That is, 1/β is the mean time
between failures (MTBF). Then

dttfed t)()(
0
∫
∞

−= ββ

is the probability that a task will be fail at least once.
It also happens to be the LaPlace LPT of f(x)
evaluated at β. In our further discussions, we let

γ = βτ, and λ = 1/τ.

In Table 1, the distribution of the number of
failures, first for a particular task of time t, then
averaged over all task times is shown. We give the
values with exponentially distributed inter-
occurrence times, which can be used to find the total
time spent by a task in waiting for the failure to end.

Table 1. Distribution of Number of Failures

Object Resume Replace Restart

[]ntNP
tnP

=
=

)(
)|(

e
n
t t

n
ββ −

!
)()1(ee t

nt ββ −− −

)1(ee t
nt ββ −− −

)]([tNE βt)1(−−e tβ)1(−−e tβ

P(n) tfetn
tn

n

)(
! ∫ −ββ

[][])()(1 ββ dd n−

dttfee t

nt)()1(∫ −− − ββ

Mean
(general) γ)(

)(1
β

β
d

d− 1)(−∫ − dttfe tβ

P(n)
(exponential)

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+ γ

γ
γ 11

1
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
γ

β
1

1)(dsame

()
γ)1(1

1
0 ++

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑ = ll

l

l

n n

Mean
(exponential) γ γ 1,

1
<⎥

⎦

⎤
⎢
⎣

⎡
−

γ
γ

γ

If a task resumes where it left off, and times
between failures are exponentially distributed (the

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 93

assumption in this paper), then the arrival of failures
is a Poisson process. Since this is also a memoryless
process, the time it takes for the task to continue
does not affect the time until the next failure.
Therefore, the number of failures in time t satisfies
the Poisson distribution, as shown in the table. For
Replace, if each task is replaced by one of the same
length, then the number of failures is geometrically
distributed, with probability (1 – e-βt) that a failure
will occur before the task finishes. This is the same
for Restart, since the task is always "replaced" by
itself after a failure.

4. DISTRIBUTION OF THE NUMBER OF

FAILURES FOR TASKS GIVEN THE
Restart POLICY

Table 2 gives formulas for the time spent by a

given task in actually using the resource. Recall that
Replace involves several different tasks (one for
each failure), whereas the other two involve the
same task. In some cases, the best we can do is to
find the LPT of the distribution, and this allows us to
find the mean and variance.

The Restart procedure requires additional
explanation. Suppose that a task has a time t
remaining. Then the probability density that the task
will fail at time x, given a failure occurs is given by:

.0for,
1

)|(tx
e
etxh

t

t

≤≤
−

=
−

−

β

ββ

Its LPT is

.
1

1)|()|(
)(

0

*
⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

==
−

+−
−∫ e

e
s

dxtxhetsH t

tst
st

β

β

β
β

The density function gn(x|t) for the time the task

would take to finish, given that it failed n times
before it ran successfully, can by found by taking the
convolution of h(x|t) with itself n times, and then
with δ(x – t). This can be done since it is well known
that the LPT of a convolution of functions is equal to
the product of the transforms. Thus, we can find
Gn

*(s|t), the LPT of gn(x|t), since we already know
H*(s|t). We can then average over the number of
failures, using P(n|t) from Table 1. This yields an
explicit expression, as shown in Table 2. The LPT of
the distribution of the time to finish a Restart task
can be found by averaging over the task-time
distribution. That is,

Table 2. Distribution of Number of Failures for Restart

Object Restart

)|(txgn
(Fixed t)

[] etsHtsG stn
n

−=)|()|(**

)|(txgn

(Fixed t)
es
es

tsGtnPtsG

ts

ts
n n

)(

)(
0

**

)(

)|()|()|(

+−

+−

∞

=

+
+

=

= ∑

β

β

β
β

Density, g(t)
(general) dttftsGsG)()|()(

0

** ∫
∞

=

Density
(exponential) dtetsGsG tλλ −

∞

∫=
0

**)|()(

Mean
(general) ∫

∞
′ =−

0

*)()|0(dttftsG

Mean
(exponential)

1,
1

<
−

γ
γ

τ

E(X2) dttftG)()|0(
0

*∫
∞

′′′

dttf
es
esdttftsGsG ts

ts

)()()()|()(
0

)(

)(

0

** ∫∫
∞

+−

+−∞

+
+

==
β

β

β
β

It is not possible to find g(t) itself, since f(t) is not
specified, and in any case, we have not been able to
take the inverse LPT of G*(s). However, as well
known, the LPT is a Moment generator, so,

dttftsG
ds
dsG

ds
dXE

ss

)()|()()(
0

*

0

*

0
∫
∞

==
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡−=

An explicit expression for G*'(s|t) can be found from
Table 2:

[]
[]e tss

eess
es
es

ds
dtsGds

dtsG

tsts

ts

ts

)(
)(

)()|()|(

2

)()(

)(

)(
**

ββ

ββ
β

β

ββ

β

β

+−+

++
=

+
+

==

+−+−

+−

+−
′

For s = 0, this reduces to a simple expression,
namely:

β

β 1)|0(* −
−== etsG

t

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 94

Observe the positive exponential function in the
numerator. Thus, if follows for any function,

 ∫
∞ −

=
0

)(1)(dttfeXE
t

β

β

Clearly, E(X) must be infinite for all distributions
that go to zero more slowly than exp(-βt).

A similar situation occurs for E(X2), and thus for
the variance of g(t). Without going through the
details, it can be shown that

[],)1(2)|0(22
2

* etetsG tt ββ β
β

+−==′′

and since

∫
∞

′′=
0

*2 ,)()|0()(dttftGXE

\
it is clear that the variance must be infinite for any
function that goes to 0 more slowly than exp(-2βt).

Since g(x) is the pdf of the time needed to
complete a task with Restart, it is the inverse LPT of
G*(s). Now let R(x) be the Reliability or
Complementary distribution function for X. That is,

.)()(:)(∫
∞

=>=
x

dxxgxXPxR

It can be seen that each successive derivation of
G*(s) introduces another factor of exp(-βt), so

,)|0()*(ectG tnn β→

implying that if

∞=
∞→

)(lim xfe x

x

λ

for some λ > 0, then g(x) has infinite moments. Now
suppose that λmax > 0 has the property that for all λ >
λmax, the above equation is true, but for λ < λmax, the
limit is bounded. Next let

βλα /: max=

Then for all α≥l

∫
∞

∞=
0

.)(dxxgxl

But this is just the property of power-tail
distributions. Since we are not able to find g(x) from
G*(s) at this time, we claim that

x
cxR

x α
⇒

∞→
)(lim

5. SIMULATIONS OF TASKS WITH THE

Restart POLICY
To test our results concerning the behavior of

tasks that must Restart, Sheahan et. al. [9] carried
out a set of simulation runs for three different
functions, f(t), all with mean time τ = 1, but with
different variances σ2. They are: the Erlangian-3 (E3)

,3/1with,
2

)3(3)(23
2

33
== − σ E

t
E e

ttf

the exponential (with σ2 = 1), and Hyperexponential-
2 (H2), given by:

epeptf tt
H

λλλλ 21
2 21)1()(−− −+=

where ,9082848.0)63(K=+=p λ1 = 2p = 1.816...,
and λ1 = 2(1 – p) = 0.1835034... .

The simulation of Restart operated as follows.
First, the failure time distribution and the task time
distribution are initialized. For the examples here,
the failure time distribution is exponential and the
failure rate, β, is 0.5. The task time distributions and
parameters used here have all been chosen to have a
mean time of 1.0 to illustrate that the shape not the
average is the distinguishing feature. All simulation
runs examined 107 tasks.

The best way to illustrate power-tail behavior is
to plot them on log-log scale. For instance, consider
power tail functions of the form in Equation (6).
Taking the logs of both sides we get:

[]).log()log()(loglim xacxR
x

−⇒
∞→

That is, R(.) functions approach a straight line with
slope –α when viewed on log-log scale. This is seen
in Fig. 3, where only the Restart-time distributions,
coming from the task time distributions E3, M, and
H2 (i.e., the functions with exponential tails), have
this behavior. From the definition of λmax earlier, it
follows that

(1)

(2)

(4)

(5)

(6)

(3)

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 95

λmax = 3.0, 1.0, 0.184...,

for E3, M, and H2 respectively.

Fig. 1 - Illustrating the power-tailed behavior of the

Restart or pri recovery policy.

When β = 0.5, then:

α = 6.0, 2.0, 0.367001...,

for E3, M, and H2 respectively.

The three PT curves, together with their
respective straight line asymptotes are plotted in Fig.
1, which demonstrates the asymptotic behavior of
these functions, which is clearly power-tail.

One objective of this work was to employ a ME
representation for the Restart recovery distribution
so that performance, dependability, and
performability measures could be generated using
analytic queueing models for jobs that implemented
this policy. By constructing the state transition
diagram for the Restart recovery policy, it can be
shown that there is no ME representation since the
number of states required to characterize this process
is infinite [11]. Given this, our approach was to
utilize a suitable ME approximation that
asymptotically emulates important statistical
properties of PT distributions. To do this we used
Truncated power-tail (TPT) distributions
appropriately parameterized with α and τ, which do
have ME representations [12]. Essentially, TPTs are
Hyperexponential distributions that are "truncated"
after a predetermined number of exponential phases.
Their ME representation is given by <p(T), B(T)>,
where T is the truncation parameter or the number
of phases in the Hyperexponential distribution. The
entrance vector, p(T), can be constructed by

[],,,,,1
1
1)(12

2 θθθ
θ
θ −

−
−

= TT Kp

and the generator B(T) by

.1,,1,1,1diag)(12 ⎥
⎦

⎤
⎢
⎣

⎡
⋅= −γγγ

µ TT KB

The mean for <p(T), B(T)>, 1/µ(T), can be fixed
using

,
1

)(1
1
1)(

θ
θγ

γθ
θ

T

T

T
−

−
⋅

−
−

=p

Important parameters of the TPT distribution are α
and γ, which can be set (and determined) by the
relation

,
)log(
)log(,1

γ
θαθγ α −== or

where µ (in practice) is usually fixed to 0.5. Observe
that α can be determined by appropriate use of
Equation (4).

Another consideration we have addressed is that
although the asymptotic properties of Restart case
can be reasonably modeled using TPT distributions,
its non-asymptotic behavior cannot. To handle this,
we have investigated approaches that fit the non-
asymptotic properties of the Restart distribution to
an ME distribution and combine this with a TPT
distribution, which captures its asymptotic behavior .

6. GENERATING PERFORMANCE,

DEPENDABLITY AND PERFORMABILITY
MEASURES

Recall that our base system can be thought of a
parallel system consisting of P identical processing
elements executing a finite set N independent and iid
tasks as shown in Fig. 2. We assume the service time
distributions for tasks can be represented by some
m-dimensional ME vector-matrix pair, <p, B> [1].

To generate expected performance and
dependability measures for unreliable computing
systems, we use a G/C queueing system that
incorporates the recovery policy of the system and
task service times that can be generally distributed.
The model is then solved at task completion points
from which performance, dependability, and
performability measures can be calculated.

As mentioned earlier, one well-known issue is the
potentially large state space required to characterize
these types of problems. We address the state space
problem in two ways: 1) we utilize an epoch
approach; and, 2) take advantage of the symmetry in

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 96

system structure and task stream by assuming tasks
in the job are homogenous, which enables us to use a
reduced product space.

Fig. 2 - This figure shows our base model, a parallel
processing system with non-exponential task time
distributions where failures and repairs can occur.

We define an epoch as the period between the

completion of one task and the completion of the
next task (i.e., these are the embedding points - see
Fig. 3). Except at the end of a job, there are usually
P processors and tasks running during an epoch. If
one formulated this as a direct product (or
Kronecker product) space, then one would need mr

P

Fig. 3 - The job starts at time zero. Each "X"
represents a task completion. When the final task

completes, the job is completed.

states to represent all possibilities during an epoch.
However, in our model we assume that processors
and tasks are statistically identical, thus one does
not need to keep track of which processor/task
failed, but merely how many processors are running,
and how many tasks are in each state of execution.
In our method we treat each epoch separately
(taking due account of the dependence of each epoch
on the previous one).

One could argue that the epoch approach
provides less information than the approach that
directly integrates the Chapman-Kolmogorov (CK)
formula, which is one way to handle these types of
problems; however, this is not true in principle. The

two domains can be thought of duals of each
other, analogous to a function and its LPT. For
instance, if one specifies the time that a system has
been running, then one gets from the CK solution
the probability that the lth task has finished. If one
specifies the epoch (l – 1) tasks have already been
completed), then one gets the mean time it took to
get there.

By extendeing results from the G/C queue
(namely, suitable modifications for the mean time
for the queue to drain – see [1] and [9]), we define a
vector-matrix pair <℘(l), B(l)>, that characterizes
the distribution of the completion time for the lth
epoch, where ℘(l) is the entrance vector and B(l)
is the infinitesimal generator matrix of the
completion process for the lth epoch. We
construct B(l) from the underlying Markov chain
and service time distribution.

The epoch number, l, denotes the number of
tasks remaining in the system. We combine this
information with that garnered from the state space
to represent the system. Hence, the state-space tells
us how many processing elements (PEs) have and
have not failed so that we can determine how many
PEs are busy, how many PEs are idle, and how
many PEs are down.

The inverse of the B(l) matrix is the service time
matrix, V(l). Elements of [V(l)]ij represent the
amount of time during the l th epoch that the system
spends in state j, given the system began the epoch
in state i. The service time matrix is the inverse of
B(l); that is, V(l) = [B(l)]-1. To calculate the
entrance vector, ℘(l), we compute the conditional
probability transition matrix, Y(l), by

Y(l) = V(l)M(l)Q(l)R(l),

where M(l) is the transition rate matrix. Q(l)
represents the state transition on an epoch
completion and R(l) represents state transitions due
to a task arrival from the queue. Their construction
depends upon the recovery policy, the task
distribution, and the modeling situation.

the entrance vector, ℘I = ℘(1), can be
determined from the modeling situation and℘(l) is
calculated by the following:

℘(l) = ℘(l – 1)Y(l)

Finally, we can compute T(l), the mean time to
complete the lth epoch,

T(l) = ℘(l) V(l)ε',

and TN, the mean time to finish all N tasks,

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 97

.)(

1∑ =
=

N
N TT l

l

Expected dependability (i.e., the system
availability, the mean time to fail (MTTF), the mean
time between failures (MTBF), the mean time to
repair (MTTR)), and performability measures (i.e.,
Work) can be calculated in a similar manner with
suitable matrix operators. For more information, the
reader is referred to Rowan [10].

7. AN EXAMPLE – A SINGLE
PROCESSOR THAT CAN FAIL AND BE

REPAIRED
In this section, we derive an analytic formulation to
compute the mean time to complete a job consisting
of N tasks, with independent and identically
distributed non-exponential completion times,
running on 1 processor that can fail and be repaired.
We consider the Resume, Replace, and Restart
policies.

In all cases, the non-exponential task times are
represented by an m-phase ME distribution which is
characterized by the vector-matrix pair <p, B>,
where p is a row vector of dimension m and B is a
square matrix of size m × m (see [1]).

Processor failures occur at rate β, which have
exponentially distributed inter-occurrence times.
When the processor fails, it gets repaired at rate α,
which is also exponentially distributed.

The behavior of these systems is as follows.
Suppose the processor has N tasks to complete and
assume the processor is operational when the job
begins. The system services tasks for some period of
time until either the job (all the tasks) completes or a
failure occurs (at rate β). When this happens, no
more tasks can complete until the system is repaired
and this occurs at rate α. Once this happens, the
processor resumes servicing tasks. This cycle
continues until all N tasks have finished.

The differences between the Resume, Replace,
and Restart policies are characterized by the matrix
representations shown below. For example, the
completion rate matrix, BResume, for the lth epoch for
tasks executing on a single processor, which after a
failure, continues later where it left off (i.e., the
Resume policy) is

.
-

-
)(⎥

⎦

⎤
⎢
⎣

⎡ +
=

II
IIB

αα
ββ

lB Resume

Given a failure, the matrix representation of a

task using the Replace policy after a failure (a new
task time from the distribution) is given by

.
-

-
)(⎥

⎦

⎤
⎢
⎣

⎡ ′+
=

αα
ββ

p
еIIB

lB Replace

The matrix representation of a single task given
the Restart policy is

[],)(BTPTRestart =lB

where BTPT is an ME representation of a power-tail
distribution.

The service time matrices for the Resume and
Replace policies can be computed as
VResume/Replace/Restart(l) = [BResume/Replace/Restart(l)]-1. To
calculate performance measures for both the Resume
and Replace policies, the following matrices and
matrix operators are required.

Following Section 6, the conditional completion
probability matrices need to be determined, and they
can be defined for the Resume and Replace
resumption policies by

Y(l) = V(l)M(l)Q(l)R(l),

where M is the state departure rate matrix defined by

),,(diag)(IIB ββ+=lM Resume
and

),(diag)(ββIB +=lM Replace

It is important to remark that with the Restart case,
for all l, Y(l) is equivalent to the Q matrix as
defined in [1] (i.e., ε'℘I,Restart – see below).

Q is a conditional probability matrix representing
the state of the system upon a task (or epoch)
completion for all policies. It is a column vector of
dimension [(2m) × 1] in the Resume scenario and
[(m + 1) × 1] in the case. Assuming task times in the
job are Hyperexponentially distributed and with both
recovery policies, the ith element of Q is equal to µi
= (mµi + β), which is the probability of a task
completion prior to failure given the system is in
internal state i for all 1 ≤ i ≤ m and is 0 otherwise.

Lastly, R represents the transition of the internal
state of the system upon an arrival. R is a row vector
of dimension [1 × (2m)] (Resume) and [1 × (m + 1)]
(Replace) where the ith element is equal to [p]i (the
probability of an entering task entering phase i).

Observe that in the single-server case, both Q and
R are one dimensional matrices. However, when
more PEs are modeled in the system, these matrices
become two dimensional.

Before performance measurements can be
calculated, the initial state vector, ℘I , representing
the initial state of these systems must be determined.

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 98

Assuming the processor is operational when the job
begins (other assumptions are valid as long as ℘I ε′
= 1), we have

],[];[];[,,, popop III TPTstartReplaceResumeRe =℘=℘=℘

where o is an m dimensional row vector of 0’s.

To compute performance measures (i.e., the mean
time for N tasks in a job to complete), suitable
modifications regarding the mean time for to drain a
finite G/1 queue are utilized (see Section 6, [1], and
[9]).

8. NUMERICAL EXAMPLES
In this section, we present some examples using our
analytic model for two non-exponential task time
distributions: 1) Hyperexponential distributions; and,
2) m-phase TPT distributions. Fig. 4 shows various
systems where the workload having task execution
times sampled from an Hyperexponential-8 (H8)
distribution and a Replace task resumption policy.
The number of tasks in the workload equals the
number of processing elements (PEs) in the system
(i.e., N = P), and that value is varied and the job
completion time is shown for three different failure
rates.

Fig. 4 – Performance measures using the Replace
resumption policy where the workload has task

execution times sampled from an H8 distribution

Comparing the curve when the failure rate is 0
(i.e., no failures) with the curves with failures shown
in Fig. 4 demonstrates one property of the Replace
resumption policy; performance can improve when
failures are introduced into the system. This is
because tasks from the longer phase are more likely
to fail (simply because they take longer to execute),
and when the failed task is restarted it has a good
chance of restarting in a faster phase. Observing the
two lines with failures, we see this property holds
until performance degrades with increasing failure
rate.

Fig. 5 – Performance measures using the Replace
resumption policy where the workload has task

execution times sampled from an TPT distribution

Fig. 5 shows various systems with a workload
comprised of 100 tasks sampled from a 3-phase TPT
distribution with a Resume task resumption policy.
Again, the expected job completion time is shown as
a function of the number of processing elements in
the system for three different failure rates.

Fig. 6 – The expected work done by the system as a
function of PEs for various failure rates where the

number of tasks in the workload is equal to the
number of processors. The task execution times are

sampled from a 4-phase TPT distribution.

Fig. 6 shows expected work done by the system
as a function of the PEs for various failure rates. We
are again looking at a system where the number of
tasks initially in the workload is equal to the number
of processors. The task execution times are sampled
from a 4-phase TPT distribution with a Replace
resumption policy.

We again see the result of a decrease in the
amount of work done by the system when failures
are introduced. This is again due to the fact that the
tasks with long execution times are likely to fail and
be replaced (when restarted) by a task with a shorter

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 99

execution time from another phase. Notice that we
now have a strict decrease in the amount of work
done by the system with increasing failure rate.

 Fig. 7 – The expected work done by the system as a
function of PEs for various failure rates where the

number of tasks in the workload is equal to the
number of processors. The task execution times are

sampled from a 4-phase TPT distribution.

Fig. 7 shows both expected work done by the

system and expected job completion time as a
function of PEs for various failure rates. We are
again observing a system where the number of tasks
initially in the workload is equal to the number of
processing elements in the system. The task
execution times are sampled from a H2 distribution
with a Resume resumption policy.

Interestingly, we observe that work is
independent of the failure rate for the Resume task
resumption policy, despite a strict increase in the
expected job execution time with increasing failure
rate. We attribute this to the Markovian property of
each phase. Once each task starts, it executes with
some exponentially distributed rate until completion.
If the task fails, the Markovian property tells that, on
average, the time remaining is equal to the expected
time of a new sample. That is, when the task
resumes the new completion time is equal to the
time that had been remaining prior to failure, on
average. The result is that expected work done by
the system is independent of failures since work
neglects time spent by tasks in the waiting queue.

9. ON-GOING WORK – CHECKPOINTING

AND TASK-TIME DISTRIBUTIONS
The purpose of checkpointing is to prevent a task

from having to start again from the beginning if it
fails. This involves interrupting the task, recording
its internal state, and then resuming where it left off.
If, at any time before the next checkpoint operation,
the task should fail, then it can restart later at the

most recent checkpoint. This may turn out to be a
costly procedure and aversely affect system
performance. Thus, the question how often
checkpointing should be done, or even if it should be
implemented at all is a legitimate concern. Clearly,
the results of this paper indicate that not
checkpointing can be destabilizing for tasks (and
jobs comprised of 1 or more tasks) that are required
to finish.

One possibility investigated by [13] [14] would
be for a task to checkpoint a fixed number of times.
This would make sense for a task or job which is
itself made up of a fixed number of sub-tasks. Then
the task could checkpoint immediately after the
execution of each sub-task. But if the distribution of
task times is ME then at least one of the sub-tasks
will be as well. Thus, the power-tail behavior of X
will not go away. Indeed, [13] showed that the mean
time to complete the task (with k sub-tasks) would
be

.1)|(
β

β −
⋅= ekktT k

t

Thus, if we averaged over all task times, it can be
shown that the effective α becomes larger. For
instance, suppose that the tasks can be executed with
k checkpoints per task. Then, α for the sub-task time
distributions would be scaled accordingly; that is,

α ≈ k × λmax.

Observe that power-tail behavior is still present
using this checkpointing strategy since the existence
of α implies the task time distribution has infinite
moments (see [13]).

Another possibility would be for the task to be
interrupted at fixed intervals of time ∆. It can be
shown that the mean time to complete the task or job
using this approach, averaged of all possible tasks
times, is proportional to

,1)|(
∆
−

∝∆
∆

β

βetT

which clearly indicates this procedure does break up
power-tail behavior [14].

10. CONCLUSIONS
The performance of tasks in jobs that restart after

having failed or been interrupted is an important
topic of research. It is of particular importance in the
execution of parallel programs on computers, where
PEs may fail, or in distributed applications where

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 100

tasks can fail (or be interrupted) and must run at
least as long as they did before they failed (i.e., the
Restart policy). Tasks that can resume from the
point where they were before the interruption have
been described in the literature, but if a task must
start over from the beginning, little is known
regarding their analytic properties. We discussed
that if the task time distribution has an exponential
tail (which includes all ME, or RLT functions), then
the completion time distribution is power-tailed.
This can have serious consequences for the
performance of the system if α is too small. In fact,
when α ≤ 1, the time to completion has infinite
mean, and when α ≤ 2 it has infinite variance. Thus,
via our analytic and simulation results, we can say
that the Restart recovery mechanism can be very
unstable regarding the execution times of jobs.

We also discussed an analytic approach that
generates performance and dependability measures
for parallel jobs running on unreliable systems
whose tasks times are non-exponentially distributed
using the Resume, Replace, and Restart recovery
polices, although other recovery policies could be
considered. One well-known problem with these
types of analytic approaches is their (potentially)
large state-space requirements. This was addressed
in two ways: 1) analyzing the system via epochs
since the only storage requirement is the current
epoch to generate performance and dependability
measures; and, 2) using a reduced product space.

Finally, we discussed on-going work regarding
power-tail behavior and tasks or jobs that checkpoint
on unreliable systems. It was discussed that when a
task or job checkpointing after a sub-tasks completes
does not eliminate power-tail behavior when one of
the sub-tasks is ME distributed. However,
checkpointing at fixed intervals of time does
eliminate power-tail behavior

11. REFERENCES
[1]. L. Lipsky. Queueing Theory: A Linear

Algebraic Approach. McMillan. NY. 1992.
[2]. V. Kulkarni, V. Nicola, and K. Trivedi. On

Modeling the Performance and Reliablility of
Multimode Systems, The Journal of Systems and
Software 20 (1986).

[3]. V. Kulkarni, V. Nicola, and K. Trivedi. The
Completion Time of a Job on a Multimode
System, Advances in Applied Probability 19
(1987).

[4]. A. Bobbio and K. Trivedi. Computation of the
Distribution of the Completion Time When the
Work Requirement is a PH Random Variable,
Communications in Statistics- Stochastic Models
6 (1990).

[5]. M. Greiner, M. Jobmann, and L. Lipsky. The
Importance of Power-Tail Distributions for
Modeling Queueing Systems, Operations
Research 47 (2) (1999).

[6]. P. Fiorini, L. Lipsky, and M.Crovella.
Consequences of Ignoring Self-Similar Data
Traffic In Communications Modeling. "10th
International Conference on Parallel and
Distributed Computing (PDCS-97)", New
Orleans, USA 1997.

[7]. W.E. Leland and T. J. Ott. Load-balancing
heuristics and process behavior, in
"SIGMETRICS Conf. Measurement & Modeling
of Comput. Syst.", 1986.

[8]. D. Feitelson. Sensitivity of Parallel Job
Scheduling to Fat-Tailed Distributions.
unpublished manuscript, School of Computer
Science and Engineering, The Hebrew
University of Jerusalem, 2000.

[9]. R. Sheahan, L. Lipsky, and P. Fiorini. The
Effect of Different Failure recovery Procedures
On the Distribution Of Task Completion
Times," in 19th IEEE International Parallel and
Distributed Processing Symposium," Denver,
CO 2005.

[10]. R. W. Rowan. Modeling Unreliable Parallel
Systems with Non-Exponential Task Time
Distributions, M.S. Thesis, University of
Southern Maine, 2005.

[11]. P. Fiorini, R. Sheahan, and L. Lipsky. On
Unreliable Computing Systems when Heavy-
Tails Appear as a Result of the Recovery
Procedure, Performance Evaluation Review 33
(2) (2005).

[12]. M. Greiner, M. Jobmann, and L. Lipsky.
The Importance of Power-Tail Distributions for
Modeling Queueing Systems. Operations
Research 47 (2) (1999).

[13]. P. Fiorini and C. Bossie. On Checkpointing
and Heavy-Tails in Unreliable Computing
Environments. to appear in Performance
Evaluation Review (2006).

[14]. P. Fiorini and L. Lipsky. Comparing
Checkpointing Strategies in Unreliable
Computing Environments. Unpublished
manuscript, 2005.

Pierre M. Fiorini is an
Assistant Professor of
Computer Science at the
University of Southern Maine.
He received the Ph.D. degree
from the University of
Connecticut in Computer
Science & Engineering (1998),
an M.S. in Computer Science &
Engineering from the University

Pierre M. Fiorini, Robert W. Rowan / Computing, 2005, Vol. 4, Issue 3, 91-101

 101

of Connecticut (1995), and a B.S. in Computer
Science from Trinity College (1989). His research
interests include Queueing Theory, Computer
Performance Modeling, Network Modeling,
Stochastic Processes, and Artificial Intelligence. He
is a member of the IEEE and ACM.

Robert W. Rowan received his
M.S. degree in Computer
Science from the University of
Southern Maine in 2004. After
earning a B.S. in Mechanical
Engineering from Cornell
University in 1999, he went
work for MicroStrategy
Incorporated, a database
analysis software vendor in

Vienna, Virginia. He currently manages information
systems for Nationwide Payment Solutions, a
provider of electronic payment transaction
processing and services.

