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Abstract: Multimedia applications are characterized by a high number of data transfers and storage operations. 
Appropriate transformations can be applied at the algorithmic level to improve crucial implementation characteristics. 
In this paper, the effect of data-reuse transformations on power consumption and performance of multimedia 
applications, realized on an Application Specific Instruction set Processor (ASIP), is examined. An ASIP for multimedia 
applications designed based on a complete methodology is used to evaluate this effect. Results prove the efficiency of 
the ASIP solution and indicate benefits from the use of the data-reuse transformations in terms of energy consumption 
and performance. Also, preliminary results from the exploitation of instruction buffering technique to reduce the energy 
consumption of the ASIP are presented. 
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1. INTRODUCTION 
The popularity of multimedia systems used for 

computing and exchanging information is rapidly 
increasing. With the emergence of portable 
multimedia applications (mobile phones, laptop 
computers, video cameras, etc) the power 
consumption has been promoted to a major design 
consideration due to the requirements for long 
battery life, large integration scale and the related 
cooling and reliability issues [1], [2]. Consequently, 
there is great need for power optimization strategies, 
especially in higher design levels, where the most 
significant savings are achieved. 

A number of code transformations can be applied 
to any algorithm aiming at a memory hierarchy 
where copies of data from larger memories that 
exhibit high data-reuse are stored to additional layers 
of smaller memories. In this way, exploiting the 
temporal locality of data memory references [1], the 
greater part of the accesses is performed on smaller 
memories. Since accesses to smaller levels of the 
memory hierarchy are less power costly, significant 
power savings can be obtained [3], [4]. 

Different hardware architectures can be used for 
the implementation of an application. The use of 
application specific integrated circuits (ASICs) leads 
to high performance, small area and power 
consumption. However they completely lack 
flexibility since only a specific algorithm can be 
implemented on the system. A flexible solution, with 

a negligible Time-to-Market (TTM), is the use of an 
existing General Purpose Processor (GPP). Such a 
solution is rather unlikely to be viable, due to the 
fact that conventional RISC/DSP approaches pose 
limitations in tuning the architecture towards narrow 
application domains or they may be prohibitively 
expensive in respect to energy consumption [5]. 
Thus, the embedded systems industry shows an 
increasing interest in ASIPs. ASIPs are processors 
tailored to the needs of the target application [6], 
providing the right balance between flexibility, 
performance, and power consumption. 

In this paper a methodology for the 
implementation of an ASIP from a hardware-
software perspective is followed. Based on this 
methodology an ASIP for multimedia applications is 
designed. The effect of data-reuse transformations 
on an application, which is executed on this ASIP, is 
examined. The Two Dimensional Three-Step 
Motion Estimation video coding algorithm is used as 
benchmark. A comparative study indicates that 
known benefits from data-reuse transformations in 
power and performance of GPPs are valid for an 
ASIP approach. 

In addition, preliminary results from the use of 
the instruction buffering technique [14] to decrease 
energy consumption are presented. Typically 
applications executed in embedded processors 
consist of small fragments of code that are heavily 
executed. Such, fragments can be stored and 
accessed from a small local storage structure rather 
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than from the Instruction Memory. Since, accesses 
to the Instruction Memory of an embedded processor 
are a major source of energy consumption [15] 
significant energy savings can be obtained. 

In section 2, a brief description of the data-reuse 
methodology and the used benchmark is given. The 
followed ASIP design flow is presented in section 3. 
Results are discussed and analyzed in section 4 
while we conclude in section 5. 

 
2. DATA-REUSE TRANSFORMATIONS 

In data-dominated applications such as 
multimedia algorithms, significant power savings 
can be achieved by developing a custom memory 
organization that exploits the temporal locality in 
memory accesses [1]. According to the proposed 
methodology, data sets that are often being accessed 
in a short period of time are identified and placed 
into smaller memories leading to a new memory 
hierarchy. Hence, power savings can be obtained by 
accessing heavily used data from smaller foreground 
memories instead of large background memories. 
Such an optimization requires architectural 
modifications that consist of adding layers of smaller 
memories to which frequently used data can be 
copied. Consequently, there is a trade off here; on 
the one hand, power consumption is decreased 
because data is now read mostly from smaller 
memories, while on the other hand, power 
consumption is increased because extra memory 
transfers are introduced. 

An exploration of all architectural alternatives is 
required for finding the optimum solution. This data-
reuse exploration is performed by applying a number 
of code transformations to the original code, which 
are determined by the group of data sets that are 
being used in the algorithm. These transformations 
are extracted according to the methodology 
described in [3], [4]. 

As a benchmark, for the application of data-reuse 
transformations, the popular motion estimation, two 
dimensional Three-Step Search (TSS) algorithm is 
used. Motion estimation algorithms are used in 
MPEG video compression systems [7], [8] to 
remove the temporal redundancy in video sequences 
which is determined by the similarities amongst 
consecutive pictures. Instead of transmitting the 
whole picture, only the displacements of pixel 
blocks (motion vectors) between neighboring 
pictures (frames) and the difference values for these 
blocks have to be encoded. The calculation of the 
motion vector is performed by means of the 
matching criterion, a cost function to be minimized 
[8]. 

TSS consists basically of four nested loops, one 
for each block in the frame, one for each step, one 

for each candidate block and one for every pixel in 
the block. The number of the corresponding 
transformation, produced by the application of the 
data reuse transformations on the TSS, and the size 
of the introduced memory, given parametrically, 
annotate each rectangle in Fig.1. 

 
Fig.1 – Custom Memory Hierarchy 

 
3. ASIP DESIGN FLOW 

An important issue in ASIP design is the 
identification of the tradeoffs involved in instruction 
set and micro-architecture design, which requires 
efficient architecture design space exploration. In 
this paper an existing processor architecture is used 
to initialize the design flow. The goal of the flow is 
to extend the existing instruction set of the selected 
processor by identifying and incorporate new 
instructions from which the target application can 
benefit in terms of performance and power 
consumption. At the same time these newly defined 
instruction should not introduce significant hardware 
overhead and not increase the critical path of the 
processor. 

The different steps of the followed design flow 
are presented below. The TSS algorithm and its data 
reuse transformations are used as representative 
benchmark. In addition, since the main objective of 
this work is to study the effect of data reuse 
transformations on ASIPs, the selection of such an 
algorithm, suitable for the applications of such 
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transformations, is straightforward. 
 

3.1 ESTABLISHMENT OF AN 
ARCHITECTURE TEMPLATE 

In our work, the architecture model assumed is a 
32-bit single-issue machine with a five-stage 
pipeline, with separate instruction and data buses 
(Harvard architecture), consistent to the RISC 
(Reduced Instruction Set Computer) paradigm. The 
control model is data stationary and execution is 
performed in-order. Thus, a MIPS-like processor 
architecture [9] was selected to initialize the design 
flow. 

 
Fig. 2 – Basic Instruction Formats 

 

The initial 32-bit Instructions of the processor 
can be grouped in three basic formats, illustrated in 
Fig.2. R-type instructions use two source registers 
and one destination register. I-type instructions 
feature one source register, one destination register 
and an immediate field containing a constant value. 
Load and Store instructions and conditional 
branches, for example, belong to this category. J-
type format is typically used by jump instructions 
and contains only a target field. 

 
3.2 FRONT-END COMPILATION 

At first, the application described in a high level 
language, in particular ANSI C, must be compiled 
for the target architecture. The GNU-GCC [10] for 
embedded architectures, configured as a cross-
compiler for the MIPS architecture, is used for this 
reason. The TSS algorithms with the different data 
reuse transformations are compiled and machine 
code for each transformation is generated in this 
stage. 

 
3.3 DYNAMIC PROFILING 

The produced machine code is dynamically 
profiled with the GNU [10] tools (gcc, binutils, gdb) 
configured for the MIPS processor. Profiling 
information at the levels of C and assembly code, 
generated by the execution of the application on the 
target machine is collected. In this way heavily 
executed portions of the code can be identified. New 
candidate instructions from which the application 

can benefit in terms of performance (at first) can be 
revealed. Dynamic profiling was performed on all, 
modified by the data reuse transformations, versions 
of the application code. 

Average profiling values from all the different 
transformations, at the level of the C code, indicate 
that the control flow of the application, namely the 
loop and case statements (“for”, “while”, “loop”, 
“if”) in the C code consists 24% of the total 
execution cycles. The bigger portion of the 
execution time is consumed on the addressing 
equations and on access to the different memory 
layers. That is the 62% of the total execution cycles. 
Only 14% of the execution time is consumed on 
pure computational micro-operations.  

In addition profiling information on the assembly 
code indicates that there are patterns of instructions 
that appear with high frequency on the above 
identified heavily executed portions of the code. In 
particular the loop statements are executed with two 
instructions overhead, one instruction for the 
iteration of the loop and one for the conditional 
branch of the program. Clearly a newly defined 
complex instruction that can control the flow of the 
program with one cycle overhead can boost the 
performance of the processor. Also various 
implementations of the branch instruction could 
have the same results.  

As it was observed, a large portion of the 
execution time is consumed in the addressing of and 
access on the different memory layers. Load and 
Store instructions with opcodes refereeing directly to 
a specific memory layer should be added. Also an 
arithmetic operation, in particular an addition, 
always exists before a memory access due to the 
addressing calculation. Combining the addition with 
Load Store instructions, resulting in the support of 
the appropriate addressing modes, significant speed 
up of the processor’s performance can be achieved. 
It must be pointed out that the requirement for such 
addressing modes imposes the use of different 
pipeline stages for the execution and memory access 
stages. 

Furthermore, profiling information can be used to 
deploy instruction buffering technique. Identified 
heavily executed portions of the code are candidates 
for storage in a local storage structure rather than the 
main Instruction Memory. The trade-off between the 
storage size and energy savings will determine the 
instructions that will finally be included in this local 
memory. 

 
3.4 INSTRUCTION SET EXTENSIONS 
The previously identified instructions, from 

which the processor can benefit, must be 
incorporated in the existing instruction set. 
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Additional hardware resources and changes on the 
processor architecture necessary for the execution of 
the new instructions must be taken into account. 

A new type of instruction is added to support an 
alternative implementation of the conditional branch 
instruction. Fig.3, illustrates the new B-Type format 
of those instructions. The difference is that the I-
Type instruction format presented in Fig.1 can 
support a conditional branch in which registers, Rs 
and Rd, are compared and if the branch is taken the 
program branches to the address indicated by the 
immediate value. The B-Type format can support 
comparison between an immediate constant value 
and the Rs register and branch to the address 
indicated by the target field, in the case that the 
branch must be taken. The B-Type format does not 
require any additional computational hardware 
components. Slight changes on the Instruction 
Decoding Unit, the Hazard detection Unit and the 
overall control logic must be made, to support the 
new format. These changes slightly increase the area 
requirements with no penalty to the critical path 
(performance). 

 
Fig. 3 – The B-Type Instruction Format 

 
A second extension to the instruction set aims to 

the reduction of the loop overhead from two 
instructions to one. For this reason the branch 
instructions of the I-Type and B-Type are combined 
with an increment operation. The Rs register is 
incremented, the result is compared with the Rd 
register, for the I-Type format, or the immediate 
value for the B-Type format, and based on the result 
a branch is performed or not. The incremented value 
of the Rs register is written back in the same 
register. An increment unit must be included in the 
Arithmetic/Logical Unit to support the 
increment/branch MOP. The delay of the new 
instruction is not in the critical path length therefore 
no reduction on the performance is occurred. Also 
minor changes in the control logic of the processor 

must be performed. 
As have been observed the largest portion of the 

execution cycles is consumed on the addressing 
equations and memory access. Clearly new defined 
addressing modes must be incorporated. Firstly 
separate Load and Store operations for each memory 
layer are included in the instruction set. Therefore, 
overhead due to the partition of the memory 
addresses is removed. Secondly the new Load/Store 
operations are combined with an addition operation, 
to produce a new addressing mode, since such 
MOPs are always executed sequentially. The new 
complex instruction has a format identical with the 
R-Type. The Rs and Rt are added, result is used as a 
memory address in which the content of the Rd 
register will be stored, or a memory address, the 
contents of which are going to be loaded in the Rd 
register. In addition a complex add+Store instruction 
with immediate value of the data to be stored is 
included in the instruction set. The SI-Type 
instruction format is illustrated in Fig.4. The Rs 
register is added to the Rt register. The produced 
result is used as the address of the memory layer, 
provided by the opcode, in which the immediate 
value is going to be stored. In order for the new 
instructions to be supported by the architecture, 
appropriate decoding of the opcodes must be added 
to give direct access to the desired memory layer. 
Then, the pipeline stages of the Execution and 
Memory must be controlled for the new addressing 
mode. In order for the new defined instructions to be 
supported by the processor architecture, additional 
decode logic and control signals, that add a slight 
hardware overhead, must be included. Also, no 
increase on the critical path has occurred due to the 
incorporation of these instructions, resulting in no 
degradation on performance. The instruction set 
extensions are summarized in Table 1. 

 

 
Fig. 4 – The SI-Type Instruction Format 

 
Table 1. Instruction Set Extensions 

Description/Format Instruction  
Format Type 

Additional Hardware  
Requirements Penalty 

Branch Rs, Immed, Target B-Type Control Logic Area 
Inc+Branch Rs, Immed, 

Target B-Type Control Logic + Incrementer Unit Area+Delay 

Inc+Branch Rs, Rd, Target I-Type Control Logic + Incrementer Unit Area+Delay 
Add+SW_L# Rs, Rt, Rd R-Type Control Logic Area 
Add+LW_L# Rs, Rt, Rd R-Type Control Logic Area 

Add+SW_L# Rs, Rt, Immed SI-Type Control Logic Area 
L# is the desired level of the 
custom memory hierarchy 
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3.5 CODE RE-GENERATION 

Code Re-Generation is performed by taking into 
account the new defined instructions. First the 
original code is parsed and the MOPs are reordered 
in order to construct the previously identified 
instruction patterns. The patterns are then substituted 
by the new defined instructions. Finally, due to the 
fact that there is no flush unit in the processor 
architecture, MOPs are reordered to keep the 
pipeline as full as possibly [11]. Fig.5 illustrates an 
example. 

Fig. 5 – Code Re-Generation 

3.6 CYCLE ACCURATE SIMULATION 
For the evaluation of the candidate new defined 

instructions a cycle accurate simulation model, using 
SystemC, is constructed. The application code with 
the instruction set extensions is executed on the 
simulator and execution cycles for each 
transformation are derived. In addition information 
about the execution of particular instructions and 
access to crucial hardware components like 
memories, are collected. 

 
3.7 HARDWARE MODEL 

A model in a hardware description language 
(VHDL) is designed. All the necessary micro-
architectural and hardware modifications in order for 
the new defined instructions to be supported by the 
designed processor are incorporated. The design is 

synthesized on a popular standard cell technology 
and information for the performance (critical path), 
power consumptions and the area requirement of the 
processor are collected. Information from the 
previous executed steps is collected. Results are 
evaluated and they are presented in the next section. 

 
4. EXPERIMENTAL RESULTS 

The different versions of the TSS code, resulting 
by the application of the data-reuse transformations 
were compiled for the ASIP core. Cycle accurate 
simulations were performed using the SystemC 
simulator designed for this reason. Execution cycles 
and accesses to different memory layers were 
collected from the simulations. 

The TSS was executed for a picture of 
MxN=144x176 pixels. The block size B was set to 
16 while the search window size [-p,p] was set to [-
7,7]. 

 
4.1 PERFORMANCE RESULTS 

Total execution cycles for each transformation 
are presented in Fig.6. Fig.6 actually indicates that 
since data-reuse transformations simplify the 
addressing calculation, it can be used not only for 
energy savings but also to boost performance. 
Specifically, the P4 transformation, which provides 
the highest performance, achieves performance gain 
of 55% compared to the original TSS. 

In order to evaluate the designed ASIP efficiency 
towards a GPP with architectural similarities, the 
application codes were executed on an ARM9TDMI 
core [12]. For the most efficient P4 transformation 
the ASIP is capable to deliver 54% performance 
gain compared with the ARM9TDMI core. 

 

 
Fig. 6 – Executed Cycles for ASIP 
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4.2 ENERGY RESULTS 
Data-intensive applications are dominated by 

power consumption due to data and instruction 
memories accesses [2]. Based on this assumption, 
energy consumption estimations for the different 
transformations on the ASIP are presented in Fig.7. 

For the calculation of the energy consumptions, 
accesses to the instruction memory and the used data 
memory layers for each transformation were 
obtained from the cycle accurate simulations. SRAM 
memories with appropriate size were used for each 
layer of the data memory. For the Instruction 
memory a 1KByte SRAM was used. Power 
consumption for each memory was obtained from 
the Embedded Memory Generator of [13]. 

Results indicate that energy savings can be 
obtained through data-reuse transformations based 
on the reduced number of accesses on the instruction 
memory. P4 is also the best transformation, in terms 
of energy savings achieving 61% energy savings 
compared to the original TSS. 

 
4.3 ENERGY RESULTS USING 

INSTRUCTION BUFFERING 
Fig.7 indicates that energy consumption is 

dominated by the energy consumption due to 
accesses on the instruction memory. Therefore, 
Instruction Buffering can be used to dramatically 
reduce the Instruction Memory energy consumption 
and consequently the overall energy consumption. 

As already mentioned, TSS code consists 
primary of nested loops where the inner loop is the 
most heavily executed one. The code of the inner 

loop can be moved from the instruction memory to a 
local storage structure. This structure was modelled 
as a register file with negligible energy 
consumption. For all transformations the size of the 
instruction register file was smaller than the 25% of 
the operand register file of the ASIP core. Based on 
these assumptions, energy consumption estimations 
for the different transformations on the ASIP with 
the instruction buffering are presented in Fig.8. 
Results indicate that an average reduction of 33% in 
energy consumption can be obtained with instruction 
buffering. Moreover, for the P4 transformation a 
dramatically 68% reduction, compared to the case 
with no instruction buffering, is feasible. 

 
5. CONCLUSIONS 

In this paper, the effect of data-reuse 
transformations on multimedia applications 
implemented on an ASIP platform has been 
presented. An ASIP for multimedia applications has 
been designed for this reason. The popular, on video 
compression systems, TSS algorithm and its 
modifications imposed by data-reuse 
transformations were used as benchmarks. 
Performance and energy consumption of these 
benchmarks were estimated, on the ASIP. 

Results indicate that the ASIP can benefit in 
terms of performance and energy consumption by 
selecting the appropriate custom data memory 
hierarchy. In addition preliminary results on 
instruction buffering indicate that significant energy 
reduction is feasible. 

 

 

 
Fig. 7 – ASIP Energy Consumption 
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Fig. 8 – ASIP Energy Consumption with Instruction Buffering 
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