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Abstract: The structure of the fast hardware neural network, based on generalized trigonometric transformations 
algorithm is developed. The network is appointed for optimal by some given criteria transformation selection and 
synthesis in adaptive digital signal processing system.  
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1. INTRODUCTION 
Rapid development of information technologies 

in these latter days makes new demands to digital 
signal processing (DSP) methods and tools [1, 2]. 
Characteristic feature of DSP tasks is multiple 
iteration of simple primitive operations (PO), which 
can be usually executed in parallel. Especially it 
concerns fast trigonometric transformations (FTT) 
algorithms that are one of the most common used 
DSP mathematical tools [2, 3]. It is well known that 
DSP tasks execution on standard computers may 
take a lot of time. A great number of high-
performance systems with application-specific 
architecture were developed to resolve this problem. 
Recently an interest in more flexible DSP systems, 
capable of changing their features for some range of 
typical applications execution, has quickened [2, 3]. 
Such systems are expected to provide adaptive 
selection of specific FTT which matches given 
application and input data nature best. This is 
important for modeling and adaptive data processing 
especially [2]. Among possible FTT adaptive 
selection methods, neural networks usage is of high 
interest [1, 3, 4]. One-layer linear network with N 
neurons, each having N inputs may be trained to 
perform N-point FTT [3]. This procedure will 
require O(N2) weighting coefficients selection. An 
algorithmic approach [3] to the fast neural network 
synthesis allows to reduce this value to O(N log2N2) 
and even to O(N).  

In [3] parallel computing system for adaptive 
execution of the fast trigonometric transformations 
is proposed. The system consists of transformation 

execution unit (TEU, ASIC-processor) and 
transformations synthesis unit (TSU, neural 
network). Here transformation synthesis task comes 
to optimal transformation coefficients selection. In 
given work the structure of TSU hardware 
implementation is offered. The new U-
transformation algorithm [2], with simplified 
structure, is implemented. 
 

2. UNIFIED FTT HARDWARE 
FTT execution system may be implemented in 

hardware using one of two major approaches. The 
first one presupposes configurable hardware usage – 
digital signal processors (SP) or field programmable 
gate arrays (FPGA). In that case several SP 
programs or FPGA configurations, each 
implementing one FTT, are stored in memory and 
loaded on demand.  Evidently this increases 
hardware costs and design time. The second 
approach is unified algorithms usage [2, 3].  
Empirically determined characteristics of both 
approaches are given in Table 1. Unified 
algorithms [2] commensurable to traditional FTT 
algorithms by performance are used. The following 
notation is implied:  

k – number of transformations implemented by 
the system; 

Mprog – average configuration/program storage 
capacity per one FTT (using the first method); 

Mcoef – average coefficients storage capacity per 
one FTT (using the first method); 

tproj – average system design time per one FTT 
(using the first method).  
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Table 1. Characteristics of universal FTT systems 
design methods  

Specification Configured 
hardware 

Unified 
algorithms 

Configuration/program 
storage capacity kMprog ≤ 2Mprog 

Coefficients storage capacity kMcoef ≤ 3Mcoef 
System design time ktproj ≤ 2tproj 
Single-cycle change of 
executed FTT  on SP only on SP 

 and FPGA
ASIC implementation 
possibility No Yes 

 
As may be seen, for k ≥ 2 the second approach 

reduces hardware costs and system design time 
while providing several specific advantages. It 
makes possible ASIC system implementation, which 
may be required for high-performance or mass 
production applications. Computational costs of 
transformation switching for FPGA-based systems 
are reduced also. Single-cycle change of executed 
FTT is of high importance for continuous data 
streams processing. The first approach does not 
provide single-cycle FTT switching on FPGA, as 
existing devices reconfiguration time is much 
longer. Thus it may be said that unified algorithms 
usage is the most efficient approach to FTT systems 
design. 

 
3. PARALLEL COMPUTING SYSTEM 
FOR ADAPTIVE TRANSFORMATION 

EXECUTION 
Offered in [3] system (see fig. 1) is based on 

universal structurally homogenous fast trigonometric 
transformations algorithm (UFTT algorithm). UFTT 
algorithm manipulates real data sequences and 
implements fast Fourier, Hartley, cosine and sine 
transformations [3]. Furthermore it allows 
changeover to other transformations execution by 
proper coefficients selection. The last task is 
performed by TSU — fast neural network based on 
UFTT algorithm. TSU may be implemented both in 
software and hardware. Software implementation 
has the following benefits: 

− hardware costs reduction (or possibility of 
larger transformation length implementation 
on the same device); 

− training and result estimation algorithm may 
be modified easily. 

Advantages of hardware TSU implementation 
are: 

− higher network training performance; 
− CPU load reduction (if working as a part of 

general-purpose computer); 
− suitable for embedded systems. 
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Fig. 1 - Parallel computing system for adaptive 
execution of fast trigonometric transformations 

 
Thus hardware TSU implementation makes sense 

for stand-alone embedded systems with stringent 
performance and power consumption requirements, 
weight and dimension restrictions. 
 

4. U-ALGORITHM FOR GENERALIZED 
TRANSFORMATIONS EXECUTION 

U–transformation [2] is generalized FTT 
algorithm, a progressive advance of UFTT 
algorithm. It expands basic system transformations 
set with Walsh-Hadamar, Haar and Vilenkin-
Chrestenson transformations additionally. 
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Fig. 2 - U-transformation directed graph for N=16 

 
N-point U-transformation is determined as two 

equivalent N/2-point transformations and their join 
stage (see fig. 2). The latter one consists of N/4 4-
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point primitive operations (see fig. 3, a). PO outputs 
bk are determined by equation (1). 

 

( ) 3 ,2 ,1 ,0 ,,
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Here ( )knV p

N ,  is primitive operation number p 
coefficients matrix in N-point join stage; an – PO 
inputs array. N-point U-transformation includes 
m=log2N-1 stages and Nm/4 PO. The structure of 
algorithm is simplified, comparative to UFTT, as 
data transposition block is eliminated [2]. 

Algorithmic approach to the fast neuronet 
synthesis presupposes substitution of every n-point 
fast algorithm PO by n neurons, each having n 
inputs. For U-transformation algorithm n=4 (see 
fig. 3). 
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Fig. 3 - Four linear neurons (b) substituting 
algorithm primitive operation (a) 

 
Four-input linear neuron excitation function y is 

a sum of products of neuron input signals x and 
corresponding weighting coefficients w (2). As 
evident equation (2) is special case of (1). 
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The most common neuronet training algorithm is 

back-propagation [4]. Nowadays it is used in almost 
80% of DSP neurosystems [5]. It describes output 
layer neuron error function δ m  as a difference 
between neuron excitation function y and given 
reference result value z (3). 

 
yzm −=δ    (3) 

 

Inner layer (layers k=1, 2, …, m-1) neuron error 
function δ k  depends on the weighting coefficients 
and error functions of layer k+1 neurons, connected 
with given neuron output (4).  
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Weighting coefficient correction is governed by 

equation (5).  
 

0, 1, 2, 3ixww iii =+=    ,  ' δη  (5) 
 
Here w and w' – current and the following value 

of weighting coefficient; η is training rate 
coefficient, 0<η<1. 

The structure of acquired network and U-
transformation graph structure are the same. N-point 
FTT implementation requires Nm neurons and 4Nm 
weighting coefficients. In fact, neuron weighting 
coefficients play a part of FTT algorithm PO 
weighting coefficients here. Synthesized network 
characteristics and characteristics of one-layer linear 
network for FTT [3] are given in table 2. 

 
Table 2. FTT neural networks characteristics 

Specification Linear 
network U-network 

Number of network layers 1 log2N-1 

Number of neurons N N(log2N-1) 

Number of inputs per neuron N 4 

Number of network weighting 
coefficients N2 4N(log2N-1)

 
5. NEUROPROCESSING HARDWARE 
Major advantages of neurosystems are massive 

parallelism and synthesis methods invariance to 
network dimensions and dimensions of input 
data [5, 6, 7]. Nowadays the following approaches 
are used for neurosystems with massive parallelism 
design [5]: 

− general-purpose processors cascading; 
− parallel processors usage (digital signal 

processors, ASICs, FPGAs); 
− dedicated processors usage (bit processors, 

neurochips). 
Neural network in hardware is a dedicated 

computer with SIMD architecture (single 
instruction – multiple data). In such a system 
processing element (PE) implements neuron 
functions. Programming here comes to weighting 
coefficients selection [6]. 
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Distinctive feature of proposed network is 
4-input neurons usage. Evidently implementation of 
4-input neuron demands fewer hardware resources 
and much less training time, comparative to N-input 
neuron. On the other hand, most of known 
neurochips are not highly suitable for given network 
realization, as their architecture is optimized for 
multi-input neurons [5]. Thus optimal decision 
seems to be network realization on ASIC or FPGA.  

Hardware implementation presupposes dividing 
the network into operational unit and storage unit. 
Storage unit capacity is determined by the network 
dimensions. Each neuron is represented in the 
memory by the structure shown on fig. 4. Here 
w0, … w3 are weighting coefficients, y — neuron 
excitation function value, δ — neuron error function 
value. Nw, Ny and Nδ — weighting coefficients, 
excitation function and error function width 
correspondingly.  
 

W2 W3 Y δ

Nw Nw NY
Nδ

W1W0

NwNw

 
Fig. 4 - Data structure representing neuron in the 

memory 

The Network for N-point transformation 
synthesis includes log2N-1 layers and each layer 
consists of N neurons [3]. Implementation of such a 
network requires M memory bits, where M is 
calculated by the equation (6).  

 
)4)(1(log2 δNNNNNM yw ++−=  (6) 

 
Operational unit may be PE array or matrix, the 

size of which is determined by available hardware 
resources and system performance requirements. 

Each PE implements four neurons and may work 
in two modes. Operative mode implements 
equation (2), while correction mode implements 
equations (3, 4, 5). Each neuron requires 
4 multiplications and 3 additions in operative mode.  

Correction mode requires 5 multiplications and 
4 additions per inner layer neuron and 1 addition per 
output layer neuron. Notice that the magnitude of η 
is limited here to values 2-j, where j = 0, 1, 2, … This 
allows logical shift usage as a substitute for 
multiplication by η. 

The most common operational unit design 
method used in DSP is algorithm graph mapping 
into hardware. Since network training is iterative 
process, and number of neurons in all of network 
layers is the same, mapping of one network layer 
into PE array is advisable. 
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Fig. 5 - Transformation synthesis network 

(operative mode). 
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Fig. 6 - Transformation synthesis network 

(correction mode). 

In that case operational unit for N-point 
transformation may include k=1,2, …, N/4 PE. All 
of log2N-1 layers will be processed sequentially in 
operative mode. Correction mode provides network 
training in the reverse layer sequence. The structure 
of network in operative and correction modes is 
shown on fig. 5 and fig. 6 correspondingly. 

Using known methods network could be trained 
to perform specific FTT or to synthesize a new one, 
which matches given application better [3]. 
Furthermore network may be used for the synthesis 
of transformation with prescribed characteristics. 
The choice of appropriate FTT depends on desired 
appearance of the signal in the frequency domain 
usually. For example in data compression 
transformations concentrating signal energy in 
narrow frequency band are preferred. Developed 
network may be used to synthesize transformation, 
which yields spectral signal image of prescribed 
form (constant, linear, quadratic, etc) for given type 
of the signal. That will be done if the reference 
signal for network training matches desired signal 
accurate to constant [3]. 
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Fig. 7 - Comparison of the weighting coefficients 

number in modeled networks 

 
Usually network training time is proportional to 

the number of weighting coefficients. Comparison of 
examined networks weighting coefficients number 
for standard transformations length is given in fig. 7. 
As evident, higher transformation length results in 
greater training time reduction. For example U-
network for 256-point FTT provides almost tenfold 
training time reduction comparative to one-layer 
linear network. 
 

6. CONCLUSION 
Developed fast hardware neural network 

implements fast Fourier, Hartley, Walsh-Hadamar, 
Haar, Vilenkin-Chrestenson, cosine and sine 
transformations of the real data sequences. It may be 
used for new, optimal by some given criteria, 
transformation synthesis also. The network is 
appointed for FPGA or ASIC implementation and is 
supposed to be used as a transformation synthesis 
unit in adaptive DSP system. 
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