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Abstract: This paper deals with an optimal method concerning nonlinear parameter identification of risk technical 
systems (automobile and railway transport, aircrafts, marine and river transport, chemical installations, munitions, 
information society suffering by terrorism).  Unknown states of the model are built by sliding observers which converge 
in a finite time. Due to this property, it is possible to derive equations of the model in order to obtain an estimation law 
which converges to the nominal values of the parameters also in the finite time. 
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1. INTRODUCTION 
While identification in linear context it is now 

well established and it is widely applied, methods 
for nonlinear identification of risk technical systems 
(RTS) are nowadays uncommon. This paper deals 
with a new method to identify parameters of some 
nonlinear models. In order to identify unknown 
parameters, we build observes which estimate 
unknown states. Our approach is inspired from 
methods based on sliding observes. This kind of 
observes was introduced by Slotine, Hedrick and 
Misawa [1] and then used by many authors in 
various control problems. Our idea here is to 
generalize to nonlinear parameter identification the 
work by Utkin [2] on linear parameter identification. 
For instance, we will use low-pass filters in order to 
approximate the equivalent control and in order to 
avoid the chattering problems. The main advantage 
of our approach is its robustness and the fact that it 
converges in a finite time. 

After describing our observer in section 2, we 
will apply the proposed method in section 3 in order 
to design a new identifier for a general class of 
nonlinear parameter systems ( ),x f x θ=&  where 

nx R∈  and pRθ ∈  is the vector of unknown 
parameters.  
 

2. DESIGN OF A SLIDING OBSERVER 
Let us consider the following class of nonlinear 

systems: 
 

1i ix x +=& , 1,..., 1i n= − ,                       (1) 

 
( )1 2 1, ,..., ,n n nx f x x x x−=& ,                      (2) 

 
1y x= ,                                       (3) 

where  ( )1 2, ,..., T n
nx x x x R= ∈  and with ( )0 0f = . 

We will assume that the RTS is stable around the 
equilibrium point 0 0x =  and that the region of 
attraction of 0 0x =  is contained in a known ball of 
radius ρ . In the light of the observer designed by 
Drakunov and Utkin [3] and then studied by Ahmed-
Ali [4] and Ahmed-Ali and Lamnabhi-Lagarrigue 
[5], let us consider the following sliding observer: 
 

( )1 1 1 1€ €.x k sign x x= −& ,                     (4) 
 

( )1 1 1 1
1

1 €z sign x x z
r
⎡ ⎤= − −⎣ ⎦& ,              (5) 

 
( )1 1€ €.i i i i ix k sign k z x− −= −& , 2,..., 1i n= − ,     (6) 

 

( )1 1
1 €i i i i i
i

z sign k z x z
τ − −⎡ ⎤= − −⎣ ⎦& ,         (7) 

 
( ) ( )1 1 1 1 1 1 1€ €, ,..,n n n n n n nx f x k z k z k k z x− − − −= + −& , (8) 

 
where , 1,...,ik i n=  and , 1,..., 1i i nτ = −  are suitable 
positive constants which will be determined later on. 
By defining the observation errors €i i ie x x= −  for 
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1,...,i n=  and the new states 1 1i i n nx k zµ − −= − , for  
2,...,i n=  we obtain equations: 

 
  ( )1 €i i i i i ie x k sign x x µ+= − − −& ,  1,..., 1i n= −    (9) 

 

( )1
1 1 1 1

1 1

€i i i
i i i i i

i i

x kx sign x xµ
µ µ

τ τ
−

+ − − −
− −

−
= + − − −& , 

2,..., 1i n= − ,                  (10) 
 

( ) ( )
( )

1 2 2, ,...,

€
n n n

n n n n

e f x f x x x

k sign x x

µ µ

µ

= − − − −

− − −

&
,    (11) 

( )

( )

1

1 1

1 1 1€

n n n
n

n n

n n n

x kf x

sign x x

µ
µ

τ τ

µ

−

− −

− − −

−
= + − ⋅

⋅ − −

&
.             (12) 

 
Proposition:  
For any initial condition 0

nx R∈  in the region of 
attraction, we can find positive constants, 

1 2, ,..., nk k k  that are large enough and positive 
constants, 1 2 1, ,..., nτ τ τ −  that are small enough such 
that the observation errors 1 2 1, ,..., ne e e −  and the 
states 2 ,..., nµ µ  converge to zero in a finite time and 
such that observation error ne  converges 
asymptotically to zero. 
  

Proof: 
Step 1: Let us define the Lyapunov function 

2
1 10,5.V e= . Its time derivative is given by equation: 

 
( )1 1 1 1 2 1 1

1 2 1 1

.

.

V e e e x k sign e

e x k e

⎡ ⎤= = − =⎣ ⎦
= −

& &
,           (13) 

 
therefore: 1 1 2 1 1max. .V e x k e≤ −& . 

 
Hence, if we chose the constant 1k  such that 

1 2 maxk x> , 1V&  will be negative definite and a 
sliding mode is reached after a finite time denoted 
by 1t , the sliding surface being 1e . This allows us to 
write that equation ( )1 1 10,e t e t t= = ∀ ≥& . At this first 
step, we than conclude that we can find a time 1t  and 
a positive constant 1k  such that: 

 

1t t∀ ≥ ,     
( )

1 1

2 1 1

€ ,
.

x x
x k sign e
=⎧⎪

⎨ =⎪⎩
       (14) 

 

Step 2: Let us first consider the Lyapunov 
function 2

2 20,5.W µ= . Its time derivate is given by 
equation: 
 

                        1
2 2 2 2 3

1
. . .kW xµ µ µ

τ
⎡

= = −⎢
⎣

& &  

                      . ( ) 2 2
1 1

1

€ xsign x x µ
τ

⎤−
− + ⎥

⎦
.             (15) 

 
Using (14) leads to, for all 1t t≥ , 

( )2 2 3 2 1.W xµ µ τ= −& . This implies that if we choose 
the positive constant 1τ  such that equation: 

2
2 2 3 2 1max

. 0W xµ µ τ≥ − <& ,             (16) 
 
that is, if 1 2 3 max

xτ µ≤ .  
 

Then there exists a finite time 2 1t t′ ≥  such that a 
sliding mode occurs on: 
 

2 0µ = .                           (17) 
 

Let us now consider the full state Lyapunov 
function: 
 

2 2
2 1 2 20,5 0,5V V e µ= + +            (18) 

 
It follows that: 

 
2 1 2 2 2 2V V e e µ µ= + +& & & & .                (19) 

 
Now, by using (14) and (17), we obtain: 

 
2 2 3 2 2max

. .V e x k e≤ −& .                (20) 
 

Hence, if we choose the constant 2k  such that 

2 3 max
k x> , 2V&  will be negative definite and a 
sliding mode is reached after a finite time denoted 

2t , the sliding surface being 2 0e = . This allows us 
to write that ( )2 2 20,e t e t t= = ∀ ≥& , at this second 
step, we then conclude that we can find a time 

2 2 1 0t t t′≥ ≥ ≥  and positive constant 1τ  and 2k such 
that: 
 

1t t∀ ≥     
( )

2 2

3 2 2

€ ,
. .

x x
x k sign e
=⎧⎪

⎨ =⎪⎩
            (21) 

 
Step n: This step is almost the same as the 

previous one. Let us first consider: 
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2

2

1
2

i n

n i
i

W µ
=

=

= ∑ .                  (22) 

 
It can easily be shown that we can find a time 

1n nt t −′ ≥  such that a sliding mode occurs on 
equation: 
 

0nµ = ,                              (23) 
 

provided that the positive constant 1nτ −  is chosen 

such that  ( )1 maxn n f xτ µ− ≤ . 

The end of the proof is shown by considering the 
full state Lyapunov function: 

 
2 2

1 2

1 1
2 2

i n i n

n i i
i i

V e µ
= =

= =

= +∑ ∑ .                 (24) 

 
First, we note that, for all 1nt t −≥ : 

 
n n n n nV e e µ µ= +& & & ,                        (25) 

 
and hence by using (23), it follows that, for all 

1n nt t t −′≥ ≥  is done 2.n n nV k e≤ −& . We then conclude 
that the observation error ne  converges asymptotical 
to zero. 
 

Remark: The important property of our sliding 
observer is that it converges in finite time expert for 
the last observation error. The convergence in a 
finite time (see Slotine et Li [6]) can be quickly 
explained as follows. Let us define a time varying 
surface ( )S t  of the form: 
 

( ) ( )
1

, .
n

t
ds x t x x
dt

λ
−

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

,              (26) 

 
where tx  is the trajectory. The sliding condition is 
reminding a Lyapunov function 

( )20,5. .ds dt sη≤ − .       This implies that s η≤ −  if 

s  is positive. Let 1t  be the time required to hit the 
surface 0s = . By integrating the equation between 

0 0t t= =  and 1t t=  leads to 
( ) ( ) ( )1 0 1 0.s t s t t tη− ≤ − − . However, ( )1 0s t =  and 

0 0t = . Therefore we have ( )1 0t s t η≤ , which 
illustrates the convergence to the surface in a finite 
time.  
 
 

3. DESIGN OF A SLIDING IDENTIFIER 
Let us consider the general class of nonlinear 

systems ( ),x f x θ=& , where nx∈ represents the 

vector of states and pθ ∈  is the vector of 
unknown parameters. In the following we will 
assume that the system is identifiable and that the 
function f  is sufficiently derivable. This means that 
there exist two functions Θ  and Φ  such that: 
 

( )( ), ,..., qx x xθ = Θ & ,                   (27) 

 
( ) ( )( )1 , ,...,q qx x x x+ = Φ & ,            (28) 

where q  is a positive integer. Therefore, the 
identification problem can be stated as the search for 
an observer converging in finite time of the 
following system: 
 

( )

1
2

2
3

1
1 2

,

,

, ,..., .q
q

d
dt

d
dt

d
F

dt

ξ ξ

ξ ξ

ξ
ξ ξ ξ+

=

=

=

           (29) 

 
with the true vector of parameters θ  obtained by the 
design of on adoption law, denoted in the following 
by ( )€ tθ . 

 
By applying the design of the sliding observer of 

the previous section to the system (29), we know 
that there exist large enough gains , 1,...,ik i n=  and 
small enough , 1,..., 1i i nτ = − , such the new states 

, 1,...,i i qξ =  converge in a finite time to zero. We 
then immediately deduce that the adaptation law: 
 

( ) ( )1 1 1 1 1
€ , ,..., q qt k kθ ξ ξ ξ− −= Θ ,            (30) 

 
converges also in finite time, to the nominal values 
of the unknown parameters. 

In order to illustrate this result, we show how to 
find the nominal values for a synchronous machine 
using a quite simple model. 
 

4. SIMULATION RESULTS 
4.1. DESIGN OF THE MODEL 
Let us consider a synchronous machine  for 

aircrafts described by the following simple model of 
three state equations with three unknown 
parameters: 
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1. . ,

1. . ,

.

S
d d q d

fS
q q d q

f q

Ri i p i
L L

Ri i p i p
L L L
f p i
J J

υ

φ
υ

φ

= − + Ω +

= − − Ω − Ω +

Ω = − Ω +

&

&

&

  (31) 

 
where , ,d q di i υ  and qυ  are respectively the stator 

currents and the stator voltages in the Park reference. 
Ω  is the mechanical speed. All the three states 

, ,d qi i Ω  are assumed to be measurable and the 
friction parameter f , the inertia J , and the number 
of poles p , are assumed to be known. The unknown 
parameters that we whish to identify are the resistor 

SR , the indicants L  and the flux fφ . 
Finally, the reference values used in the 

simulation are given by: 
 

1 9,5SR Lθ = = ; 2 1 1,332Lθ = = ; 3 0,1fθ φ= =  
(32) 

 
4.2. IDENTIFIABLY 
First of all, we need to know the identifiably of 

the RTS i.e., if we can identify the there parameters. 
Rewriting the RTS described by (31) using (32) the 
notation, 1 2 3, ,d dx i x i x= = = Ω  gives: 
 

1 1 1 3 2 2

2 1 2 3 1 3 2 3 2

3 3 3 2

,
,

.

d

q

x x px x
x x px x p x

f px x x
J J

θ θ υ
θ θ θ θ υ

θ

= − + +

= − − − +

= − +

&

&

&

    (33) 

 
In order to prove the identifiably, let us apply a 

method developed by Lecourtier, Lamnabhi-
Lagarrigue and Walter [8] and based on generating 
power series. Let us consider the vector fields 
associated with equation (33), 
 

( )[ ] ( ) [ ] ( )0 1 1 3 2
1

.
, . ,F x x px x x

x
θ θ θ

∂
= − + + Ξ

∂
,       (34) 

 
where 
( ) ( )

[ ] ( )

1 2 3 1 3 2 3

2

,

.
, ,

x x px x p x

x
x

θ θ θ θ

θ

Ξ = − − − ⋅

∂
⋅ + Ψ
∂

( ) [ ]
3 2 3

3

.
, p fx x x

J J x
θ θ

∂⎛ ⎞Ψ = −⎜ ⎟ ∂⎝ ⎠
. 

Is analogy consider the vector fields with 
equation: 

( )[ ] [ ]
1 2

1

.
, .F x

x
θ θ

∂
=

∂
,                  (35) 

( )[ ] [ ]
2 2

2

.
, .F x

x
θ θ

∂
=

∂
.                 (36) 

 
Let us now compute the following Lie derivatives 

( )[ ]( )1 0 , .F F x θ , ( )[ ]( )2 0 , .F F x θ  and  

( )( )[ ]( )1 0 0 , .F F F x θ  applied to the arbitrary chosen 

output 1 3y x x= + . That leads to equations: 

( )[ ]( )1 0 1 2,F F x yθ θ θ= − ,            (37) 
 

( )[ ]( )2 0 3 20, pF F y
J

θ θ θ= ,          (38) 

 
( )( )[ ]( ) 2

1 0 0 2 10,F F F yθ θ θ= .        (39) 

 
The correct identification of the RTS, is proven 

by showing that the nonlinear algebraic system, 
where ( )1 2 3, ,θ θ θ θ′ ′ ′ ′=  is another triplet of 
parameters, has a unique solution θ θ ′= . It this 
following the system equations: 
 

( )

1 2 1 2

3 2 3 2
22

2 1 2 1

,
,

.

θ θ θ θ
θ θ θ θ

θ θ θ θ

′ ′=
′ ′=

′ ′=

                     (40) 

 
 

5. CONCLUSIONS 
The conclusions obtained are summarized as 

follows: 
1. In this paper, a new approach for the 

identification of parameters of risk technical systems 
was investigated. 

2. This approach could be applied to a large class 
of nonlinear systems. 

3. Moreover, this approach is robust towards 
noise compared to the classical method based on the 
recursive least square algorithm.  
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