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1. INTRODUCTION 
In gas or oil industry, a pipe that is not connected 

to anything else is not much use. But a main line 
that's connected to a network of subsidiary pipes is 
powerful because it can distribute or gather product 
throughout city or enterprise. 

To develop approaches of identification, 
diagnostics and prediction of pipeline systems 
behavior it is necessary both to use computing 
engineering and to elaborate models of pipeline 
operation. Moreover it is required not just 
correlation between input / output signals of 
measured parameters but also it is required 
functional statistic correlation between structure and 
imperfections of pipeline under investigation. 

The main contribution in discrete model 
representation was made in paper [1]. Further 
development of discrete models with introduction of 
directional changes of its physical properties was 
made in paper [2]. In this paper was made an 
assumption that a unit which conducts a measured 
signal can be modeled by one lumped element which 
describes continuum with set of material particle. In 
a number of cases such approach gives reasonable 
degree of accuracy. But in a case when the time of 
signals propagation in the unit has commensurable 
quantities with the time delay from distinct 
measured parameters or imperfections this approach 
is unacceptable. 

In the paper presented a development of 
structural model of variously distributed in time 
processes which are interrelated to each other 
functionally or stochastically. The novelty of the 
developed model is the possibility to consider both 

variously distributed processes and processes with 
accumulative changes. The main approach of the 
model development is to build nonstationary 
autoregressive filters. 
 

2. DISCRETE REPRESENTATION OF 
THE MODEL 

The basic assumption of the approach of building 
model lies in hypothesis that real units of dynamic 
systems under operation are always spatially 
prolonged. In addition it implies that measured 
signals in those units propagate in the medium. The 
medium is characterized by continuum of material 
particles. In each material particle arises own 
transient processes which depend not only on time 
but on spatial position of material particle. These 
processes can be deterioration, ageing, changes of 
environment parameters etc.  The made assumption 
obtains a special significance while diagnosing units 
with distributed in space parameters. 

The signals, which propagating in dynamic 
systems, have as a rule broad spectrum of 
frequencies and they cause impact on the units in 
system in the same broad spectrum of frequencies. 
Such impacts result in accumulation stresses and 
defects along individual units with different 
intensity. To calculate values of stresses and size of 
defects it is necessary to have both the model of 
signals distribution in space and the model of 
interrelation of units' properties of the system in 
space with propagating signals characteristics. 
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3. MODELLING OF SIGNALS 
DISTRIBUTION IN SPACE 

As our interest lies in a field of diagnostics of 
units in the system then we limit a scope of the 
research to model both processes of reversal 
vibrations and stresses fluctuations. Such processes 
cause the most rapid units wear and ageing of the 
system. 

In general an equation of unit oscillation in the 
system has a form [3]: 
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where u is a function which describe oscillation of 
the unit in the system; X(x1, x2, x3) is coordinate 
system; t is the time; F(X(x1, x2, x3), t) is function of 
external disturbance; ρ is density; p, q are 
parameters which values depend on properties of the 
system. 

Under divergence and gradient definitions the 
first member of a right part of Eq. (1) can be 
expressed as: 
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where n can be 1, 2 and 3 and it depends on 
considered dimension. 

Eq. (1) and Eq. (2) describe processes in the 
system from one theoretical and methodological 
point of view. To simplify these equations consider 
plane wave propagation. This simplification is 
suitable for the most technical problems inclusive 
pipelines. The plane wave approach reduces 
independent variables to two namely the time and 
one dimension. With two independent variables Eq. 
(1) describes one-dimensional harmonic motion. 
Solving Eq. (1) with F(x, t) ≠ 0 leads to 
determination of forced oscillation. Solving Eq. (1) 
with F(x, t) = 0 leads to determination of free 
oscillations. General solution of Eq. (1) can be 
expressed as: 

 ( ) ( ) ( ) ,, ctxuctxuxtu −++= +−  (3) 

where u-, u+ are doubly continuously differentiable 
functions. 

Function u+(x - ct) describes disturbance from a 
point x0 in the time moment t0 to a point x = x0 + ct 
in the time moment t. In other words this function 
describes a wave which propagates from the left side 
of the model (point x0) to the right with velocity c. 

Similarly function u-(x - ct) describes a wave which 
propagates from the right side of the model to the 
left with the same value of velocity. 

For an unambiguous solution of Eq. (1) it is 
necessary to set both initial conditions and boundary 
conditions of oscillatory motions. 

In a mechanical elastic unit longitudinal strains 
u(x, t) and impulse p(x, t) can be expressed as: 

 

( )
( ) ( )

( )

( ) ( ) ( ) ,,,

;,1,

t
txuxS

x
txp

t
txp

xSxEx
txu

∂
∂

⋅−=
∂

∂
∂

∂
−=

∂
∂

ρ
 (4) 

where S(x) is area of crosscut of elastic unit, E(x) is 
coefficient of elasticity of the first order. 

Combining two equations (4) in one leads to 
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Under conditions of E(x) = const, S(x) = const, 
Eq. (5) can be reduced to 
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where ( ) ρxEc =  is a velocity of deformational 
wave in the unit. 

In a case of the real system is a multiply 
connected pipeline with different geometry of pipes, 
Fig. 1 it is necessary to consider geometry of the 
unit. 

 

Fig. 1 Multiply connected pipeline 

 
In this case the unit is a hollow cylinder with the 

air inside, Fig. 2. The real system is modeled by set 
of units with constant wall thickness and constant 
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pressure along of the unit. Pressure component and 
bulk acoustic wave velocity are interrelated with 
each other as 
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where ρ is the density of the air, S(x) is area of 
crosscut of hollow cylinder, c is bulk acoustic wave 
velocity in the air. 

 

Fig. 2 The unit of pipeline model 

 
Eq. (7) can be transformed into acoustic horn 

equation 
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In case of S(x) = const Eq. (8) can be transformed 
into general wave propagation equations 
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Let's consider the case when the unit is hollow 
cylinder filled with liquid (water or oil) Fig 3.  

Our interest lies in observing laminar flow in the 
pipe unit. In this case friction of the flow to wall of 
the pipe and changes of the acoustic wave velocity 
can be neglected with respect to infinitesimally of 
their values. Under Zhukovsky approach we have 
[3] 
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where h(x, t) is relative change of hydraulic drop, 
q(x, t) is relative change of supply rate. 

 

Fig. 3 Pipe unit filled with liquid 

 
From Eq. (10) density ρ(x) can be derived as 
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where g is the gravity, V(x) is flow velocity, Q is 
nominal value of the supply rate and H is nominal 
value of the hydraulic drop. 

Deriving wave equations for units with different 
shapes, we made an assumption that continuum of 
the points which form one unit is homogenous 
medium with independent from space coordinate 
physical properties. 

In the most real practical situations this 
assumption fails. It is obvious that analysis of the 
system with this assumption becomes very 
complicated. To approximate non-uniformity of the 
unit physical properties in the space it is suitable to 
use approach of chain data representation. In 
accordance with this approach a continuous function 
of representation in the space non-uniformity is 
replaced by a discrete set of step functions. For 
example, one elastic unit with variable in the space 
hardness values is changed by set of the units with 
constant hardness value and the pipe with variable 
cross-sections is changed by set of shot pipes with 
constant cross-section. It makes analysis of chain 
model easier when the units are equal in length. A 
number of the units in chain model are defined with 
the assumption of accuracy of performed 
calculation. 

As it implies that the units in chain model have 
constant physical properties along itself then we can 
apply Eq. (1) to every unit separately. 
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4. CHAIN MODEL ANALISYS 
Let us examine in details physical processes in 

the arbitrary unit with sequence number i. In 
accordance with Eq. (7) in this unit a resultant wave 
can be expressed as a superposition of waves +

iu  and 
−
iu  

 ( ) ( ) ( ) ., cxtucxtutxu iii ++−= −+  (12) 

The time of resultant wave propagation through 
the unit can be calculated as 

 ,
c
l

=τ  (13) 

where l is a length of the unit. 
Let move a center of coordinate system to the left 

boundary of a unit. At the left boundary waves can 
be expressed as 

 ( ) ( ) ( ) ( ) ,0,0 tuctutuctu iiii
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Respectively at the right boundary waves can be 
expressed as 
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As the chosen set of the units models the single 
real part of the system with distributed physical 
properties, then at the boundaries of the units a 
condition of continuity of physical properties must 
obey  

 ( ) ( ) .0,,1 tultu ii =−  (16) 

For further analysis it is necessary to get the 
additional information about binding parameter of 
main modeled real part with process of wave 
propagation in the unit. This information can be 
obtained from Eq. (4) 
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where Pi(x, t) is a pressure in the single unit. 
To calculate how much wave energy is passed to 

the next unit and how much energy is reflected at the 
boundaries we introduce reflection coefficient 
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By constituting Eq. (18) into boundary conditions 
(14)-(15) can be expressed wave equations as 
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Eq. (19) corresponds to flowchart of Kelly – 
Lockbaum [4], (Fig. 4). 

 

 

Fig. 4 Functional chart of the single unit in the chain 
model 

Considered above theory relates to the internal 
units of the chain model. To build the complete 
model it is necessary to define boundary conditions 
at the ends of chain. From the practical point of view 
the most suitable is to move coordinate system to the 
left end of the pipeline. There are many approaches 
to bridging the first and the last unit in chain [5]. 
The most of these approaches have similar results 
which base on two hypotheses. The first hypothesis 
is build on an idea of equality of direct and return 
waves at the output of the chain 

 ( ) ( ) .00 ττ +=− −+ tutu  (20) 

The second hypothesis is build on condition of 
matched impedance at the origin of the waves 
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Eq. (21) is the same as Eq. (19) for arbitrary unit 
in the middle of the chain. Equality of Eq. (21) and 
Eq. (19) allows us to derive wave equations in 
arbitrary unit 
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Eq. (22) possible to transform into equation with 
the absolute time member in a way of binding of all 
time records at beginnings of the every unit with the 
absolute time at the output of the chain 
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Based on Eq. (23) can be expressed other 
members 
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where ±
iY  are transform components which 

unambiguously model distributed physical property 
of the model. The wave velocity can be expressed as 
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Eq. (23) – Eq. (25) have important practical 
sense. These equations bind properties of wave 
propagation in the real model with parameters of an 
autoregressive filter. The purposes for which the 
filters are used are sometimes the opposite of those 
envisaged by the classical theory. If the interest 
centers on the high frequency component, then it is 
the low-frequency trend which might be regarded as 
the nuisance component. Often, the trend and the 
residue are of equal interest. The filter can be used to 
model the wave propagation processes if sampling 
interval of the filter will be equal to τ from Eq. (23). 

 
5. DIGITAL FILTER ANALYSIS 

In the classical Wiener and Kolmogorov theory 
of signal extraction [6] and [7], it is envisaged that 
the data are generated by a stationary stochastic 
process and that they form a lengthy sequence. 
Structure of wave is often depicted as a combination 
of frequencies, with a low-frequency spectrum, and 
a noise process, with a high-frequency spectrum. It 
envisaged that the noise process has a uniform 
spectrum. This is appropriate whenever the signal 
process is obscured by a sequence of independently 
and identically distributed errors of observation. In 
that case, the noise is aptly described as a nuisance 
component. 

The task of adapting classical signal-extraction 
filters to limited samples from nonstationary 
processes has caused difficulties. Problems often 
arise from not knowing how to supply the initial 
conditions with which to start a recursive filtering 
process. By choosing inappropriate starting values, 
one can generate so-called transient effects which 
are liable, in fact, to affect all of the processed 
values. One common approach to the problem of the 
start-up conditions relies upon the ability to extend 
the sample by forecasting and back casting [8]. The 
additional extra-sample values can be used in a run-
up to the filtering process wherein the filter is 
stabilized by providing it with a plausible history, if 
it is working in the direction of time. An approach to 
the start-up problem is to estimate the requisite 
initial conditions. 

To avoid the start-up problem we apply the filter, 
in the first instance, to a version of the data sequence 
which has been reduced to stationarity by repeated 
differencing. We can proceed to find an estimate of 
the residual sequence by cumulating its differenced 
version. If the residual sequence has a significant 
degree of serial dependence, we can profit from 
some carefully estimated start-up values to set the 
process of accumulation in motion. However, if the 
residual sequence is generated by a weak serial 
dependence, then it may be acceptable to replace 
these start-up values by their unconditional 
expectations which are zeros. 

From the theory of digital filters we can derive a 
transfer function of the direct filter of p-order 
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where ap0 = 1. 
 
The transfer function of the inverse filter is 
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where bp = bp+1 = 1. 
Based on Eq. (26) and Eq.(27) can be expressed 

parametric binding of the direct and inverse filters 
[9] 
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Initial conditions of Eq. (28) are 

 ( ) ( ) .1,1 00 == zzBzA  (29) 
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We can notice that Eq. (28) and Eq. (23) 
structurally are similar. Therefore when the number 
of units in the chain model is equal to the filter’s 
order then members of Eq. (23) can be calculated 
from analysis of the signal at the output of the real 
model by means of direct filter. Moreover if 
arbitrary signal e(t) effect at the origin of the chain 
model with its transform E(z) then at the output of 
the model 

 ( ) ( )
( ) .
zA
zEzY =  (30) 

From Eq. (30) can be expressed the transform of 
signal at the origin of the chain model 

 ( ) ( ) ( ) .zyzAzE =  (31) 

Eq. (31) is more interesting from a practical point 
of view because it allows modeling the filter with 
finite impulse response by means of Eq. (26). Eq. 
(30) allows only modeling the filter with infinite 
impulse response. Structural flowchart of the A(z) 
and 1/A(z) filters are shown on the Fig. 2 and Fig. 3 
respectively. Other way to build the filters with 
transfer function based on Eq. (28) and lattice 
structure are shown on Fig. 4 and Fig. 5. 

 
6. CONCLUSION 

From the shown above becomes clear that the 
digital filters can be used to represent distributed 
processes in the chain model. Physical properties of 
the unit are unambiguous bridged with properties of 
the real model at the interval which equals to length 
of one unit. 

Using lattice digital filters is more preferable 
because the signals propagating in cells of the filter 
are orthogonal. Orthogonally means that amount of 
cells in the lattice filter do not have influence on the 
signal. 

With this approach change of properties of 
separate part of the model can be easily model by a 
way of transferring from constant values of filter 
coefficients 
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where i = 1, 2, …, p 
to variable value of filter coefficients 
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where i = 1, 2, …, p. 
Members of Eq. (33) have own pattern of change 

which depend on developing and accumulating 
defects in every unit. 
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