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Abstract: In order  to address accuracy issues of discrete Hidden Markov Models (HMMs), in this paper, a new vector 
quantization (VQ) approach is presented.  This new VQ approach performs an optimal distribution of VQ codebook 
components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov 
models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM 
parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means 
algorithm (K-means-DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification 
behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-
based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed 
vector quantization technique increase the performance of the discrete HMM system.  
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1. INTRODUCTION 
Automatic Speech Recognition (ASR) can be 

viewed as a successive transformations of the 
acoustic micro-structure of the speech signal into its 
implicit phonetic macro-structure. The main 
objective of any ASR system is to realize the 
mapping between the two structures. The hidden 
Markov model (HMM) is actually the most used 
approach to the ASR. Several types of HMMs as 
discrete, continuous and semi continuous HMMs 
[1], [2] have been developed and applied to the 
ASR. The discrete HMM (DHMM) is attractive in 
terms of algorithmic complexity; that is why, it has 
been investigated in several studies [3], [4], [5], [6]. 
Recently, in the context of the prodigious growth of 
network applications, discrete HMM-based speech 
recognition systems that use a Vector Quantization 
(QV) front-end process constitute a very useful and 
inexpensive solutions [7], [8]. In this scenario, it is 
highly desirable to perform compression of acoustic 
features, but it is crucial that the VQ involved in the 
front-end stage does not introduce noise that 
degrades the recognition accuracy. This is the 
dilemma. In fact, discrete HMM inherently suffers 
from some problems due to the Vector Quantization 

(VQ) process. The lack of sufficient training data 
involved by the VQ causes poor HMM parameter 
estimation, and this inevitably leads to a degradation 
of recognition performance. This paper is dedicated 
for improving accuracy issues of discrete HMM-
based ASR systems. It proposes a complete discrete 
statistical framework, based on the use of a novel 
VQ-based front-end process. This new approach 
performs an optimal distribution of VQ codebooks 
on HMM states. This technique, which has been 
named the distributed vector quantization (DVQ) of 
hidden Markov models, succeeds in unifying 
acoustic micro-structure and phonetic macro-
structure, when the parameter estimation of HMM is 
performed. The DVQ technique is implemented 
through two variants. The first variant uses the K-
means algorithm (K-means-DVQ) to optimize the 
VQ, while the second variant exploits the benefits of 
the classification behavior of neural networks (NN-
DVQ) for the same purpose. The evaluation is done 
by focusing on specific Arabic consonants:  
emphatic and back consonants. The characterization 
of these consonants has captured the interest of 
many researchers, since they are specific to the 
Arabic language [9]. The paper is structured as 
follows: after the first, introductory section, we 
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present in the second section the well known 
statistical paradigm used for speech recognition 
represented by the HMM. In section 3 we depicts the 
framework of distributed vector quantization. 
Section 4 reports the comparative results of trials 
that aim to evaluate the proposed techniques by 
focusing on some specific Arabic phonemes. 
Finally, we summarize our major findings in section 
5. 
 

2. CONVENTIONAL VQ/HMM SYSTEM  
To illustrate an application of HMMs for speech 

recognition, we present in Fig.1 our implementation 
of an isolated word recognition system based on 
discrete hidden Markov models. We have a 
vocabulary of L words to be recognized, and each 
word is to be modeled by a distinct HMM. The 
training sets consist of  K utterances of each word, 
pronounced by one or more speakers. In order to 
obtain a word recognizer, we performed the 
following steps: 
 

2.1 FEATURES EXTRACTION 
The digitized speech signal is pre-emphasized by 

a first-order digital filter in order to spectrally flatten 

the signal )1()()(
_

−−= nSnSnS , with µ = 0.96. The 
signal is fragmented into frames by using a 25.6 ms 
Hamming window with 10 ms shifting. For each 
frame,  the mel frequency cepstral coefficients 
(MFCCs) [10], their corresponding first and second 

derivatives, named respectively ∆MFCC,  ∆∆MFCC  
are computed. Each frame is thus represented by an 
acoustic vector xt as follows: 
 

{ })(),(),( mMFCCmMFCCmMFCCxt ∆∆∆=  (1) 
 
The first and second order derivatives of cepstral 
coefficients were approximated respectively by 
equations (1) and (2) given as follows: 
 

⎥⎦
⎤

⎢⎣
⎡=∆ ∑

−=
−

K

Kk
kll mMFCCkmMFCC ))(()(      (2) 

)()()( 11 mMFCCmMFCCmMFCC lll +− ∆−∆=∆∆ (3) 

where k and l -frame indexes, m- the MFCC 
component. 
 

2.2 VQ CODEBOOK 
In discrete HMM system, the continuous feature 

space is subdivided by a vector quantizer into J non-
overlapping subsets and each subset is represented 
with a codeword mj (1 ≤ j ≤ J). The set of available 
code words is termed the codebook. The VQ 
codebook is constructed by an unsupervised cluster 
algorithm, the LBG (Linde–Buzo-Gray) algorithm 
[11]. 
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Fig.1 - Schematic diagram of the VQ/HMM isolated word recognition system. 
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2.3 RE-ESTIMATION OF HMM 
For each word of the vocabulary, we built a 

HMM, that is, we estimated the model parameters 
that optimize the likelihood for the training set of 
observation sequences. There are many criteria that 
can be used to this problem. We have used for this 
problem the Baum-Welch  algorithm [12] developed 
by Baum which is one of the most successful 
optimization methods. 

 
2.4 RECOGNITION  

For each unknown word to be recognized, we 
calculated the model likelihood for all possible 
models, and selected the model with the highest 
likelihood. The probability calculation was 
performed using the Viterbi algorithm [13], more 
precisely the logarithm of the maximum likelihood. 
The system developed can be applied not only for 
word recognition, but also for recognition of other 
speech segments. Experiments performed with this 
system will be discussed in Section 5. 
 

3. DISTRIBUTED VQ/HMM SYSTEM 
The main weak point of VQ/HMM, in the field of 

ASR, resides in the fact that they inherently suffer 
from some problems linked to the quantization error 
induced by the limited number of clusters of input 
vectors, and the lack of sufficient training data that 
causes poor estimation of HMM parameters. In 
order to limit the effect of this insufficiency, we 
propose the use of a new technique (DVQ) based on 
the principle of optimally distributing the codebook 
components, issued from a vector quantization, over 
the HMM states. This approach will allow a model 
parameter initialization based on the expected 
unification of acoustic and phonetic sources. Two 
hybrid implementations of this approach are 
presented: the K-mean DVQ and the neural network 
NN-DVQ. The synoptic of a DVQ-based system 
dedicated to isolated word or phoneme recognition, 
is given in Fig. 2. 
 
3.1 OVERVIEW OF THE DVQ APPROACH 

For recognition systems that use HMMs, it is 
important to be able to estimate probability 
distributions of the computed feature vectors 
preferably over a high multi-dimensional space. To 
reach this goal, it is often easier to start by 
quantizing each feature vector to one of a relatively 
small number of template vectors.  In fact, DVQ 
aims to make probability distributions estimation 
over this finite set of templates more effective by 
tying this set of templates to a corresponding HMM 
state.   
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Fig.2 - Overview of DVQ approach applied to a word 

recognition process 
 

The observation sequence labeling, and 
evaluation, are done simultaneously. For each 
sequence X1

T, we have the sequence {Y1
T(j) , 1 ≤ t ≤ T 

and 1 ≤ j ≤ N}. To compute the probability P(X1
T , 

λ), probability of generating the sequence by the 
model, we use the modified logarithm of the 
maximum likelihood : 
 

))((]),1([max),( i
tYiLogbjiLogajt

j
it ++−= αα         (4) 

where  1 ≤ t ≤ T    and   1 ≤ i ,  j ≤ N 
 

Two hybrid techniques are used to optimally 
distribute code vectors over the HMM states: K-
means- and neural networks-based techniques.  
 

3.2 THE HYBRID K-MEANS DVQ 
In the K-means DVQ variant, we use the K-means 

algorithm [14] to generate the codebook. From the 
codebook distribution, the model parameters are re-
estimated. Different steps are required in order to 
generate codebooks that are optimally distributed 
over HMM states: 

1. Take several realizations of utterances, spoken 
several times by many speakers. 

2. Determine the optimal state sequence of each 
utterance (Viterbi). 

3. Put the whole observations belonging to each 
state from all versions of the spoken words 
into separate cells.  Each cell contains the 
population of a given state. 

4. Apply VQ to split the population of each cell  
into M classes within each state. 
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5. Re-estimate the discrete output probability by 
using the following formula: 

 

jN
kN

jkb = , 

with    1 ≤ j ≤ N    and   1 ≤ k ≤ Lj 
 

where N- the number of HMM states, Nk - the   
number of prototype in the class k, Nj - total number 
of  prototypes in state j 

6. Refine model parameters using standard re-
estimation formulas. 
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Fig. 3 - Topology of the neural network used in the 

hybrid NN-DVQ configuration. 

 
The K-means algorithm is based on the 

minimization of a distortion criterion. Thus, the 
phonetic classification of the acoustic vectors is not 
taken into account during the design of codebooks, 
and therefore, this information is missing in the 
acoustic processor of a discrete HMM system. In 
order to take in account the phonetic information 
contained in the input vectors, the use of a neural 
network-based configuration to generate the 
codebook is proposed to perform the DVQ. 
 

3.3 THE HYBRID NEURAL 
 NETWORK DVQ 

In this method, the standard LBG algorithm is 
replaced by a neural network VQ algorithm trained 
on unsupervised mode using the principles of the 
mutual information theory. Before describing the 
neural network that is used, and its training 
algorithm, definitions related to the mutual 
information theory are briefly recalled in what 
follows. The mutual information (M.I) is a measure 
of the information content that one variable contains 
with respect to another random variable. This means 
a reduction in the uncertainty of one random 

variable, i.e. Y, due the knowledge of another 
variable, i.e. W as described by equation (5):  

)()(),(. WYHYHWYIMF −==   (5) 

H(Y) represents the entropy Y = {y1, y2, ….., yM}. It is 
given by equation (6): 

∑
=

−=
M

m myPmyPYH
1

)(log)()(   (6) 

H(Y|W) represents the conditional entropy:  

∑
=

∑
=

−=
M

m nWmyPnWmyP
N

n nWPWYH
1

)(log)(
1

)()(  (7) 

This conditional entropy is interpreted as the 
average incertitude on symbols ym when symbols Wn 
are observed. The mutual information MI(Y, W) can 
then be expressed as follows: 

∑∑
= =

==
N

n

M

m nm

nm
nm

WPyP
WyP

WyPWYIMF
1 1 )()(

)(
)log(),(.    (8) 

The topology of the network used as vector 
quantizer is given in Fig. 4. It is a network with two 
layers. The input layer contains D neurons. D is the 
number of components of the feature vector X={x1, 
x2, …, xD} and the output layer with M neurons. M is 
equal to the desired codebook size.  

The same steps 1 to 3 of the K-means DVQ 
training algorithm are used. The difference begins 
from step 4 described below.  
At the beginning of the learning procedure, the 
weights of the neural network are initialized. Each 
presentation of a feature vector X(k), with k = 
1,…,K, will result into the activation for each of the 
M neurons in the output layer, denoted Zm(k), m = 1, 
….. ,M. The Euclidean distance, between the 
weights and the input values has been used for 
computation of the activation. This distance is 
calculated as follows:  

( )
2

1
)( ∑

=
−=−=

D

d
dxdmgXmgkmZ    (9) 

For each presentation k, the activation of the 
neuron of output layer with the smallest distance is 
set to 1.0, and all other activations are set to 0.0. 
The conditional probabilities )( nm WyP  of the label 
m in the label stream Y resulting from the 
presentation of all feature vectors of word Wn can be 
computed as follows: 

∑
=

=
nL

l
lmZ

wLnWmyP
1

)(1)(   (10) 

The probabilities )( myP of the label m in the label 
stream Y, resulting from the presentation of all 
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features vector K, with ∑
=

=
N

n
nLK

1
, where N is the 

number of vocabulary words (phonemes), can be 
computed as follows: 

∑
=

=
K

k
kmZ

KmyP
1

)(1)(   (11) 

These probabilities and the probability 
)( nWP which is the a priori probability of word Wn 

can now be used for the computation of mutual 
information (M.I) by using equation (11).  

The training procedure iteratively modifies the 
weights gdm*, where m* denotes the label with the 
largest frequency by using: 
 

gjdmgjdmg ∆+−= )1(*)(*   (12) 

The computation of the change in activation for 
label m* is computed according to: 
 

( ))(*(2)(* kdxdmgggkmZ −+∆∆=∆   (13) 

Equations (10) and (11) permit the computation 
of both the label stream, and the change in the 
probabilities of labels. The resulting changes in the 
mutual information (∆F) can also be computed. If 
this change is positive, the modification of weight 
according to equation (13) is accepted. If not, the 
procedure is repeated with the negative value of ∆g. 
If this does not lead to a positive value of (∆F), the 
weight remains unchanged and the next weight is 
modified in the same way. The network training is 
stopped once all weights have been visited. At the 
end of the learning procedure, the weights of 
connections of the cells represent the prototypes of 
the codebook and the probabilities )( myP  represent 
the discrete output probabilities initials bjk. 
 

4. EXPERIMENTAL RESULTS 
Various sets of experiments have been carried out 

in order to assess the improvement involved by the 
proposed approach. This latter is compared to the  
conventional VQ (VQ/HMM). In the case of the 
Arabic language, one important issue that needs to 
be addressed is the characterization of the particular 
phonemes such as back consonants, and how the 
proposed techniques deal with this type of complex 
phonemes. The objective is to determine the key 
issue pertaining to Arabic speech recognition by 
identifying precisely the root of the recognition 
drawback 
 

4.1 SPEECH MATERIAL 
Standard Arabic is distinct from Indo-European 

languages because of its consonantal nature. It is 

characterized by the presence of back consonants. 
These consonants are characterized by having 
particular vertical places of articulation. In fact, the 
point of articulation is situated in the rear of the 
vocal tract. There are four back consonants in 
Arabic: two glottal /?/ and /h/ classified respectively 
as plosive and fricative and two pharyngeal /h/ and 
/ε/ classified as unvoiced fricative and sonorant. The 
emphasis aspect is a phonetic feature that 
characterizes the consonants in the Semitic 
language. There are also four emphatic consonants 
in the Arabic language: two plosive consonants /t/ 
and /d/ and two fricative consonants /s/ and /∂/. 
Designers of systems dedicated to the Arabic 
language have unanimously observed that emphasis, 
germination constitute the main root of failure. It is 
the reason why we focus our experiments on these 
consonants. Two test sets of data were used 
throughout all experiments. The first set is 
composed of words containing these consonants in 
different phonetic contexts. These words were 
pronounced by 80 Algerian speakers and repeated 
five times. The second set composed of sentences, 
was also used, since isolated words do not take into 
account the co-articulation phenomenon.  
 

4.2 EVALUATION OF IMPLEMENTED 
SYSTEMS  

In order to evaluate the DVQ, a  set of experiments 
in both multi-speakers and speaker-independent 
mode has been carried out. The acoustic vector used 
is a 33-dimensional vector {MFCC(11) , 
∆MFCC(11) , ∆∆MFFC(11)}. In the NN-based 
front-end technique, the value of ∆g retained for the 
modification of network weights, is 0.05.  
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Fig. 4 -  Comparative phoneme recognition rate in 

multi-speakers mode using conventional VQ (CVQ), 
K-means-distributed vector quantization (K-means-

DVQ) and neural networks distributed vector 
quantization (NN-DVQ). 
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Various sizes of codebooks varying from 8 to 
128 were used in a comparison between the 
conventional (CVQ), the K-means-DVQ and NN-
DVQ. Fig. 4 and Fig. 5 show the comparative results 
in multi-speakers mode and speaker-independent 
mode, respectively.  

As expected, in the speaker independent mode, 
more errors have been observed. We can see that the 
difference between the two modes is not noticeable, 
which confirms that the DVQ scheme leads to more 
robustness of the recognition process. We must note 
that NN-DVQ exhibits better performance at all 
codebook sizes. 
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Fig. 5 - Comparative phoneme recognition rate in 
speaker independent mode using conventional VQ 

(CVQ), K-means distributed vector quantization (K-
means-DVQ) and neural networks distributed vector 

quantization (NN-DVQ). 

 
5. CONCLUSION 

In this paper a new approach of discrete HMM 
(distributed vector quantization: DVQ), based on the 
tying between Markovian states and the 
conventional vector quantization, was presented. 
Two implementation schemes of this approach, 
namely the K-means DVQ and the NN-DVQ, were 
tested in both multi-speakers and speaker-
independent modes. Results suggest that this new 
approach with the NN-DVQ variant is more 
effective in terms of error reduction and of the 
decoding speed of the discrete HMM. We currently 
attempt to apply this new variant to a multiple 
codebook large vocabulary speech recognition 
system.. An important challenge is somehow to 
adapt the vector quantization when it is incorporated 
into the training optimization process, in such a way 
that it takes into account the diversity of human-
language particularities. In the near term, such 
integration will no doubt result in massive increases 
in computation, but will certainly constitute a very 

promising way towards the design of multilingual 
speech recognition systems. 
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