
Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski / Computing, 2006, Vol. 5, Issue 1, 79-85

 79

WEB ACCESSIBLE MULTIACCOUNT CONFIGURABLE CLIENT EMAIL
APPLICATION

Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski

Department of Microelectronics and Computer Science,

al. Politechniki 11, 90-924 Lodz, POLAND
icek@elek.osemka.p.lodz.pl, sakowicz@dmcs.pl, mw@dmcs.pl, napier@dmcs.pl,

http://www.dmcs.pl

Abstract: The article presents alternative ways of checking emails and how to make an application mail enabled using
library of J2EE Platform – JavaMail API. The article describes application attainable from WEB browser based on
JSP Scripts and Java servlets. Application allows for access to multiple email accounts through one web page.

Keywords: J2EE, JAVA, JAVAMAIL API, EMAIL.

1. INTRODUCTION
In the late 60's, Ray Tomlinson contributed his

research to the invention of a service we know as an
electronic mail (e-mail). Nowadays a billion of
people from whole world send emails to each other
every day. Messages contain not only a plain text, as
it was at the beginning, but include images,
attachments, documents etc.

The article presents an application, which can
access to email box fast and easy from every
terminal equipped with web browser.

The JavaMail API provides a set of abstract
classes defining objects that comprise a mail system
[2]. The API defines classes like Message, Store and
Transport. The API can be extended and can be
subclassed to provide new protocols and to add
functionality when necessary. In addition, the API
provides concrete subclasses of the abstract classes.
These subclasses, including MimeMessage and
MimeBodyPart, implement widely used Internet
mail protocols and conform to specifications
RFC822 and RFC2045 [1]. They are ready to be
used in application development with standards and
protocols:

SMTP (Simple Mail Transfer Protocol) is a
simple protocol used to send messages through
email server to advisable address.

POP (Post Office Protocol) and IMAP (Internet
Message Access Protocol) are two various protocol
used to receive messages from server. The
difference is in what way the messages are managed
on the server. POP works with emails received from
server. It is a popular protocol but its abilities are

limited. IMAP allows creating folders, marking
messages, searching for, sending and managing the
mailbox directly on server. Because of that, protocol
cause more traffic and server load than POP.

MIME (Multipurpose Internet Mail Extensions)
is standard for attachments and non-ASCII text in
emails. Because POP and SMTP allows for MIME-
formatted email, all Internet email comes MIME-
formatted so POP clients should also understand and
use MIME. IMAP, by design, assumes MIME-
formatted email [8].

Developing a tool to deal with e-mail called E-
mail Client, which sends and receives text mail as
well as receives and sends attachments, works both
plain and HTML mode has become the main
objective of this article.

In major requirements this client should be
accessible from web browser and should have
features similar to e-business application (secure,
fast, reliable, user friendly). Additionally it differs
from existing applications in the way that it allows
for accessing any mail account, not only related to
the server on which the client is deployed.

2. APPLICATION ARCHITECTURE
Application is based on J2EE platform. It

consists of two layers (Fig.1).
• Communication layer, which is an interface

between user and core engine layer.
Communication layer has been built from
JSP scripts and Java servlets

• Core engine layer is based on JavaBeans,
which use ready to run tools to interact with

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski / Computing, 2006, Vol. 5, Issue 1, 79-85

 80

remote email box and to exchange data with
database. This database stores data needed
to login and basic but necessary information
to establish connection with remote box.

Fig. 1 - Overview of application

3. APPLICATION STRUCTURE

The application consists of JSP scripts and Java
servlets. JSP scripts are used as forms; servlets are
responsible for data processing and interact with
mailbox (Fig.2). All needed information about users
and configuration of application are stored in
MySQL database. There are items such as: login and
password to access the application, information
necessary to check and send messages, role of the
user (administrator or regular user).

Fig. 2 - Login process

Servlet login.java takes data from application

form loginform.jsp(Fig. 2):

String login=
request.getParameter("user");
String
pass=request.getParameter("pass");

and next using JNDI Resources checks user and
password in database (Fig. 3) [5].

If login process was successful servlet db.java
reads information about user stored in database and
controlling is moved to main controller of
application main.java (Fig. 4).

Connection connection = null;
Context initctx = new

InitialContext();
Context envCtx = (Context)

initctx.lookup("java:comp/env");
DataSource ds =

(DataSource)envCtx.lookup("jdbc/
AccountsDB");

connection = ds.getConnection();
Statement statement =

connection.createStatement();
ResultSet rs = null;
SQLQuery = "SELECT * FROM javamail

WHERE login ='"+login+"';";
rs =

statement.executeQuery(SQLQuery)
;

while(rs.next()){
pwd = rs.getString("pass");
 }
connection.close();

 }

Fig. 3 - Part of login.java file

Fig. 4 - Main controller of application

4. SERVLETS CONTAINER

Tomcat implements the servlet and the Java
Server Pages (JSP) specifications from Sun
Microsystems [5]. That is to say, it provides an
environment for Java code to run in cooperation
with a web server. Tomcat is a web server that
supports servlets and JSPs. Tomcat comes with the
Jasper compiler that compiles JSPs into servlets.

The Tomcat servlet engine often appears in
combination with an Apache web server or other
web servers. Tomcat can also function as an
independent web server in it. Earlier in its
development, the perception existed that standalone
Tomcat was only suitable for development
environments and other environments with minimal
requirements for speed and transaction handling.
However, that perception is no longer true. Tomcat
is increasingly being used as a standalone web

loginform.jsp

login.java
Data
Base

?cmd=comment

db.java
login/pass OK

wyloguj.java

main.java

superu

modyfication data

login.java
(db.java)

wszystkie.java

Role

pokazdb.java

user

suser

Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski / Computing, 2006, Vol. 5, Issue 1, 79-85

 81

server in high-traffic, high-availability
environments.

The Tomcat server plays in described email client
application three major functions. First of all makes
the application accessible for registered users,
second makes secure connection between client and
application using SSL and finally supports
communication with database server based on
MySQL [7,9]. Configurations examples are
introduced on Fig. 5 and Fig. 6.

Application server Jakarta Tomcat is intermediate
layer between client using WWW browser and
application layer. Tomcat can be a standalone
WWW server or can co-operate with the other
servers like Apache, which may work with static
part of service. That cooperation may in
considerably way improve speed of all service.
Server Tomcat makes possible to use SSL protocol,
can also restrict access to server’s resources or
support access to exterior resources (JNDI
Resources, JDBC DataSources).

<Resource name="jdbc/AccountsDB"
 auth="Container"
 type="javax.sql.DataSource"
 maxActive="100" maxIdle="30"
 maxWait="10000"
 username="root"
password="pass_to_DB"

driverClassName="com.mysql.jdbc.Dri
ver"
url="jdbc:mysql://localhost:3306/na
me_of_DB?autoReconnect=true&

 useUnicode=true&
 characterEncoding=latin2"/>

Fig. 5 - Part of Tomcat’s configuration file –
server.xml

<resource-ref>
 <res-ref-name>jdbc/AccountsDB
 </res-ref-name>
 <res-type>javax.sql.DataSource
 </res-type>
 <init-param
 driver-name="com.mysql.jdbc.Driver"/>
 <init-param url="

jdbc:mysql://192.168.1.62:3306/name_DB"/>
 <init-param user="root"/>
 <init-param password="pass_to_DB "/>
 <init-param max-connections="20"/>
 <init-param max-idle-time="30"/>
</resource-ref>

Fig. 6 - Part of Application’s configuration file –
web.xml

5. SECURITY
In this kind of applications safety needs to be

considering as secure connection between client and
application server and between email box and
application (Fig. 7).

“SSL, or Secure Socket Layer, is a technology
which allows web browsers and web servers to
communicate over a secured connection. This means
that the data being sent is encrypted by one side,
transmitted, then decrypted by the other side before
processing. This is a two-way process, meaning that
both the server and the browser encrypt all traffic
before sending out data [3]”.

Fig. 7 - Secured connection: browser-App-
POP/SMTP Server

Tomcat server supports secure communication

(over SSL) between web browser and application
[3].

JavaMail supports accessing mail servers over
secured connections using SSL or TLS. To simplify
such access, three new protocols have been added.
In addition to the non-SSL JavaMail protocols
"imap", "pop3", and "smtp", the protocols "imaps",
"pop3s", and "smtps" can be used to connect to the
corresponding services using an SSL connection [6].

This SSL/TLS supported in JavaMail works only
when JavaMail is used in version of J2SE that
includes SSL support (J2SE 1.4 and J2SE 1.5). The
SSL support is provided by the JSSE package, which
is also available for earlier versions of J2SE.

When using the new protocol names,
configuration properties must also use these protocol
names. For instance, set the property
"mail.smtps.host" to specify the host name of the
machine to connect to when using the SMTP
protocol over SSL. The Transport.send()
method will use the default transport protocol, which
remains "smtp". To change the default transport
protocol to SMTP over SSL, is necessary to set the
property "mail.transport.protocol" to "smtps" (Table
1).

Table 1. Names of the supported protocols used
in the JavaMail API [1]

Name Store or
Transport

Uses
SSL ?

Supports
STARTTLS?

imap store no yes
imaps store yes yes
pop3 store no no
pop3s store yes no
smtp transport no yes
smtps transport yes yes

WWW
browser

App Server

HTTPs:443 POP3s:995

SMTPs:465

Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski / Computing, 2006, Vol. 5, Issue 1, 79-85

 82

6. WORKING WITH MAILBOX
The JavaMail API supports many different

messaging system implementations — different
message stores, different message formats, and
different message transports. The JavaMail API
provides a set of base classes and interfaces that
define the API for client applications. Many simple
applications will only need to interact with the
messaging system through these base classes and
interfaces.

To use JavaMail API completely is important to
install JavaBeans Activation Framework (JAF).
JavaMail API includes lots number of classes. All of
them contains in javax.mail.

Class Session defines settings email’s session,
configurational parameters for mail server. The
object of class the Session serves to management
with configurational options such: user’s name and
password, or other properties, which can be used by
whole application [1].

The default instance is:
Properties props = new Properties();
Session defaultsession =
Session.getDeaultInstance(props,
authenticator);

Object props initializes session, contains default
properties and setting environmental variables:

• mail.store.protocol - determining default
protocol to fetch the message

• mail.transport.protocol - determining
applied protocol for sending the message

• mail.host - defines the name of the mail
server

• mail.user - defines the user's name, which is
used at the connection with the mail server

• mail.protocol.host - is determining default
name of the mail server protocol

The object of the Authenticator class is second
from parameters. It belongs to the
javax.mail.Authenticator class, which is used
while user's authorization. Object of this class
implements getPasswordAuthentication()
method, which contains the name and passwords
data.

Using the Authenticator object isn’t obligatory,
in that way the other argument is “null”.

Session session =
Session.getDefaultInstance(props,null);

Class Message is the abstract, defining the
group of settings of mail message such: the
addresses (the sender, recipient), date of send,
subject and content. It contains interface Part
which is used to service of content of message and
also defines structure, it fetch and set headlines of
message. Main part can to be divided on smaller,

what it is possible to use to sending in different
formats message or sending attachments. With
regard that it is an abstract class, often is used
javax.mail.internet.MimeMessage
subclass, which is the representation of electronic
message in standard MIME or RFC822.

Message message =
new MimeMessage(session);

Class javax.mail.Address is an abstract
class. JavaMail API possesses subclass for SMTP
(InternetAddress) and newsgroups (NewsAddress).
The object of class the InternetAddress is the
standard Internet address defined in RFC 822.

Example of create the object of Address class:
Address adres = new InternetAddress
(“user@dmcs.pl”,“name surname”);

Class javax.mail.Store provide connection with
mailbox using defined protocol. After establish
connection it is possible to get the folder contains
messages via object javax.mail.Folder class.

Fig.8 shows part of java code used to fetch
messages to local computer. First is important to get
the Store object and choose the protocol (pop3,
pop3s, imap, imaps), then connect to store
(store.connect()) using HOST – pop3
server address, USERNAME – username of mailbox
and PASSWORD – password to mailbox. Next step
is opening the folder and list folders in the store and
list/view messages in a folder:

Folder inbox =
store.getFolder("INBOX");

Than we should get a message's attributes like e.g.:
String subj =
MimeUtility.decodeText(m.getSubject());

MimeUtility.decodeText() is used to decode
the Mime Message subject line. The
mail.mime.decodetext.strict property controls
decoding of MIME encoded words.

The MIME specification requires that encoded
words start at the beginning of a white space
separated word. Some mailers incorrectly include
encoded words in the middle of the word.

Return the MIME type of a message's content:
String mimeType = m.getContentType();

Get a message's content:
Object o = m.getContent();

The type of the returned object depends on the

type of the actual content. When done, close all open
folders and then, the store:

inbox.close(false);
store.close();

Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski / Computing, 2006, Vol. 5, Issue 1, 79-85

 83

Developers writing a JavaMail client need to
write additional viewers that support some of the
basic content types-- specifically message/rfc822,
multipart/mixed, and text/plain. These are
the usual content-types encountered when displaying
a Message, and they provide the look and feel of
the application. Content developers providing
additional data types should refer to the JAF
specification that discusses how to create
DataContentHandlers and Beans that operate
on those contents.

To send email first at all it is necessary to get the
Session object and set “props”.

The "props" Properties file contains mail
protocols to use, mail host and port to connect to,
username etc. that will be used later to connect to the
mail server. It can be blank although you may want
to set mail.store.protocol,
mail.transport.protocol, mail.host,
mail.user and mail.from properties.
A new message is created by (Fig. 4):

Message msg = new MimeMessage(sess);

Next step is setting message's attributes like:
addresses to:, from:, set subject, date of send and set
message's content:

msg.setContent(messageText,"iso-8859-
2");

To create MIME multipart content, first
instantiate a MimeMultipart object. The default
subtype of a multipart content is "mixed". You can
specify other subtypes such as "alternative",
"related", "parallel" and "signed".

MimeBodyPart mbp =
new MimeBodyPart(“alternative”);
mbp.setText(messageText);
mbp.setContent(messageText,"iso-8859-
2");

Multipart multip = new
MimeMultipart();
multip.addBodyPart(mbp);
mbp = new MimeBodyPart();

Add BodyPart objects to Multipart object
 multip.addBodyPart(mbp);

and other parts:
multip.addBodyPart(mbp1);
 multip.addBodyPart(mbp2);

Finally, set the Multipart object as the message's
content:
 msg.setContent(multip);
And send the message:
Transport.send(msg);

Complete procedures of receiving and sending
emails using JavaMail API are introduced on Fig. 8
and Fig. 9 respectively.

import javax.mail.*;
import javax.activation.*;
...
 Properties props = new Properties();
 Session sess =
 Session.getDefaultInstance(props,
null);
 Store store = sess.getStore("pop3s");
 store.connect(HOST, USERNAME,
PASSWORD);
 Folder inbox =
store.getFolder("INBOX");
 Message m = inbox.getMessage(num);
 Address[] from = m.getFrom();
 String subj =
 MimeUtility.decodeText(m.getSubject());
 String frm=
MimeUtility.decodeText(from.toString());
 String mimeType = m.getContentType();
 Object o = m.getContent();
 if (o instanceof String) {
 //declaration how to process plain
 //messages
 }
 else if (o instanceof Multipart) {
 Multipart mp =
(Multipart)m.getContent();
 for (int i=0; i< mp.getCount();
i++){
 Part p = mp.getBodyPart(i);
 //declaration how to process
//multipartmessages (attachments)
 }
 else if (o instanceof InputStream) {
 InputStream is = (InputStream)o;
 int c;
 while ((c = is.read()) != -1) {
 out.write(c);
 }
 inbox.close(false);
 store.close();

Fig. 8 - Example of receiving message using
JavaMail API

7. CONCLUSIONS

The JavaMail API is designed for multiple
purposes. Client, server or middleware developers
interested in building mail and messaging
applications are using the Java programming
language. Application developers who need to
“mail-enable” their applications. Service Providers
who need to implement specific access and transfer
protocols.

Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski / Computing, 2006, Vol. 5, Issue 1, 79-85

 84

import javax.mail.*;
import javax.activation.*;
...
 Properties prop =
System.getProperties();

prop.put("mail.host",”mail2.p.lodz.pl”);

prop.put("mail.transport.protocol","smtp"
);
 Session sess =
Session.getInstance(prop,
 null);
 Message msg = new MimeMessage(sess);
 msg.setContent(messageText, "iso-8859-
2");
 msg.setSentDate(new Date());

msg.setRecipient(Message.RecipientType.TO
,
 “email_to@domena.pl”);
 msg.setFrom(“email_from@domena.pl”);
 msg.setSubject(
 MimeUtility.encodeText(subject,"iso-
8859-2",
 "Q"));

//below segment if attachment required

 MimeBodyPart mbp = new MimeBodyPart();
 mbp.setText(messageText);
 mbp.setContent(messageText,
iso-8859-2");
 Multipart multip =
 new MimeMultipart();
 multip.addBodyPart(mbp);
 mbp = new MimeBodyPart();
 String FileSource =
 (“path_to_file”);
 FileDataSource FILE =
 new FileDataSource(FileSource);
 mbp.setDataHandler(
 new DataHandler(“FILE”));
 mbp.setFileName(“FILENAME”);
 multip.addBodyPart(mbp);
 msg.setContent(multip);

 Transport.send(msg);

Fig.9 - Example of sending message using JavaMail
API

A great advantage of this API is independence

from the system platform of a user. This feature is
more then welcome nowadays in world of business
applications and non-commercial software as well.

The author’s task has been to gather all this tools
together and put them to work as a basic but fully
functional email system.

The most important part is to understand ways of
working JavaMail API and present it using JSP
script or Java servlets, it’s also crucial to find
balance between performance, easy of use and
reliability.

All this process demands from developer to be
familiar with networking issues like Java
programming, using Java Beans, JNDI Resources,
JDBC DataSources, SQL, JavaMail API,
configuring Tomcat Server, e-mail system (protocols
and standards), security.

8. ACKNOWLEDGEMENTS
This research was supported by the Technical

University of Lodz Grant K-25/1/2006/Dz.St.

9. REFERENCES
[1] JavaMail™ API documentation, Sun

Microsystems, Inc.
[2] Sun Developers Network, Products &

Technologies, JavaMail API
http://java.sun.com/products/javamail

[3] http://tomcat.apache.org/tomcat-5.0-doc/ssl-
howto.html

[4] Enterprise Java Technologies Tech Tips,
http://java.sun.com/developer//EJTechTips/

[5] The Apache Tomcat 5.5 Servlet/JSP Container
Documentation, The Apache Jakarta Project,
http://jakarta.apache.org/tomcat/

[6] Brzózka R., Dzieniecki M., Sakowicz B.,
Napieralski A.,"Metody zabezpieczania
transmisji internetowej”, X Konf.”Sieci i
Systemy Informatyczne, Lodz, 17-19 october
2002, pp.49-62

[7] Sakowicz B. , Wojciechowski J., Dura K.,
"Metody budowania wielowarstwowych
aplikacji lokalnych i rozproszonych w oparciu
o technologię Java 2 Enterprise Edition."
Slesin 2004, ISBN: 83-919289-5-0, pp. 163-
168

[8] Dura K., Sakowicz B., Napieralski A.,
"Proposal of extensions to electronic mail
client applications" ISBN 966-553-380-0,
TCSET Lviv 2004

[9] Wilk S., Sakowicz B., Napieralski A.,
"Wdrażanie aplikacji J2EE w oparciu o serwer
Tomcat 5.0 i bazę danych MySQL", XII
Konferencja Sieci i Systemy Informatyczne, 21-
22.10.2004

[10] Ratecki K., Sakowicz B., Wojtowski M.,
Napieralski A.: "Configurable Client Email
Application Working as Web Page", TCSET,
Feb. 2006, Lviv, Ukraine

Krzysztof Ratecki, Bartosz Sakowicz, Marcin Wójtowski, Andrzej Napieralski / Computing, 2006, Vol. 5, Issue 1, 79-85

 85

Krzysztof Ratecki, He
received the M.Sc. from
Technical University of Lodz in
2005 year. His interests are
about Internet applications,
Internet protocols, Java
language and microchips.

Bartosz Sakowicz. He
received M.Sc. and currently is
Ph.D. student and lecturer at
Technical University of Lodz.
His interests are about Internet
applications, J2EE technology
and stochastic optimization. He
is an author or co-author of
about 30 publications
published on national and

international conferences. He is supervisor of co-
supervisor of about 20 finished Master Thesis. He is
also author or co-author of about 20 commercial
Internet applications and web sites.

Marcin Wójtowski. He
received M.Sc. and currently is
Ph.D. student at Technical
University of Lodz. His
interests are about network
structures, network
administration, and
programming languages. . He
is an author or co-author of
about 10 publications

published on national and international conferences.
IEEE Member.

Andrzej Napieralski. He
received the M.Sc. and Ph.D.
degrees from theTechnical
University of Lodz in 1973 and
1977, respectively, and a D.Sc.
degree in electronics from
theWarsaw University of
Technology (Poland) in
January 1989, and in
microelectronics from the

Université de Paul Sabatié (France) in May 1989.
Since October 1991 he has been a Professor at the
Technical University of Lodz. From 1992 until 1996
he was the Vice-Director of the Institute of
Electronics, and since 1996 he has been Director of
the Department of Microelectronics and Computer
Science. In 2002 he has been elected as the Vice-
Rector for Promotion and International Co-operation.
In 1995 he received the title of Professor, and
become the Tenured Professor in 1999. He is an
author or co-author of 530 publications. In 52nd
World Exhibition of Innovation, Research and New
Technology, EUREKA 2003 in Brussels, he received
the Commander Cross Merite dInvention of the
Kingdom of Belgium.

