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Abstract: Checkpointing mechanism is the one of the best attractive approach for providing software fault tolerance in 
distributed message passing systems. This paper aims to implement a distributed checkpointing technique, which 
eliminates the drawbacks of the centralized approach like “domino effect”, “useless checkpoint” (checkpoints that do 
not contribute to global consistency), and “hidden and zigzag” dependencies. The proposed checkpointing protocol has 
a checkpoint initiator, but, coordination among the local checkpoints is done in a distributed fashion. This guaranty 
that no message would be lost in case of failure occurs, has been maintained in this work by exchange of information 
among the processes. However, there is no central checkpoint initiator, but each of the processes takes turn to act as an 
initiator. Processes take local checkpoints only after being notified by the initiator. The processes synchronize their 
activities of the current checkpointing interval before finally committing their checkpoints. Thus, the checkpointing 
pattern described in this paper takes only those checkpoints that will contribute to the consistent global snapshot 
thereby eliminating the number of useless checkpoints. 
 
Keywords: Asynchronous distributed system, software fault tolerance, consistent global checkpoint, useless checkpoint, 
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1. INTRODUCTION  
In a distributed system a finite set of processes 

interact to achieve a common goal. The processes 
are synchronized by exchanging messages over a 
reliable communication network, in the absence of a 
global clock. The delay in the message transfer is 
finite and unpredictable. These are the 
characteristics of the well-known “asynchronous 
distributed systems” [6]. When computation is 
extensive, the possibility of process failures may be 
on the rise. Many techniques have been developed to 
increase reliability of the system making them 
highly available. One of them is rollback-recovery; 
which is the process of undoing the computations 
from the most recent checkpoint (CP) and resuming 
processing [12]. The CP is a snapshot of the state of 
a process saved on nonvolatile storage.  

A global checkpoint (GCP) of a system is a set of 
local CPs one from each process [19]. During 
message transmission, if a receiver is down, then the 
message becomes missing and if the sender crashes, 
the message is termed as orphan. A system can have 
consistent global checkpoint (CGCP) while these 
two types of messages are absent [7]. A process, 
designated as CP-initiator takes care of CGCPs in 
the present work and each process is made to take 

turn and act as the initiator. Generally, processes 
take local CPs after being notified by the initiator 
except in certain cases. The processes synchronize 
their activities before committing their CPs. This 
removes inconsistency, if any, when CPs are 
committed [22]. In the present study disallows the 
formation of zigzag paths and cycles [9] by this 
strategy as the checkpointing pattern makes use of 
only that CPs that will contribute to a CGCP. If the 
ith set of the CPs can be proved to be consistent, then 
in case of recovery the system has to rollback only 
up to this state [5].   

The processes do not post their status information 
along with computation messages but update-their 
status whenever a message is sent or received. 
Whenever process fails, all its dependent processes 
may not necessarily rollback to the most recent 
consistent CP. When processes resume after roll-
back, they get duplicate messages from other 
processes using suitable request, inspect stable 
storage log information for the already received 
messages from other processes. Alternatively, 
duplicate messages can be received or sent to other 
processes using communication primitives. 

 Dependent processes are identified using the 
information piggy-backed with the sent and received 
messages. The CPs from every pair of dependent 
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processes is used to construct a GCP for each group 
of dependent processes and this is found to be 
consistent in the present study. One of the processes 
in the system acts as CP-initiator and is considered 
to be reliable until CGCP is established. For all 
dependent processes after which the next designated 
process takes over its jobs and a complex election 
algorithms should the CP-initiator be prone for 
downtimes. Complex and complicated election 
algorithm may be thought of in this contest. The rest 
of the paper is organized as follows: Section 2 
throws light on some related works in this area. 
Section 3 describes the system model and its 
notations. Section 4 discusses in details of the 
checkpointing algorithm with a proof and section 5 
shows the result of simulation. Section 6 provides 
the comparison with the earlier work of the message 
passing systems with different checkpointing 
protocols and section 7 concludes the paper.  

 
2. RELATED WORK 

With reference to Chandy and Lamport [5], 
Wang et. al [21], Tsai and Kuo [20] states that “A 
GCP ‘M’ is consistent if no message is sent after a 
CP of ‘M’ and received before another CP of ‘M’ ”. 
Following these observations we regard consistency 
as the scenario where if a sender ‘S’ sends a message 
‘m’ before it has taken its ith CP, then message ‘m’ 
must have to be received by a receiver ‘R’ before the 
receiver has taken its ith CP. A message will be 
termed ‘missing’ if its send is recorded but receipt is 
not and otherwise it is termed as ‘orphan’ [18]. 
Suppose a node fails after taking its ith CP, it is 
desirable that the system in such a scenario should 
rollback to the last (ith) saved state and resume 
execution from there. If a system can ensure that 
there is no missing or orphan message in the 
concerned ith GCP, then the set of all the ith CPs 
taken by its constituent processes is bound to be 
consistent. Unlike the approach that should exist in a 
distributed system, Kalaiselvi and Rajaraman [10] 
have kept record at the message sending end and at 
the message receiving end. A CP coordinator 
matches the log it gets from all the processes at each 
checkpointing time. The present system also keeps 
records of messages sent and received in each 
process but the log is matched in a distributed 
fashion. Due to disparity in speed or congestion in 
the network, a message belonging to (i+1)th 
checkpointing interval (CPI) may reach its receiver 
who has not yet taken its ith CP. Such a message is 
discarded in [3, 4] and sender retransmits it. Another 
method of dealing with such messages is to prevent 
their occurrences by compelling the sender to wait 
for a certain time before sending a message after any 
checkpoint [1]. The present work discards such a 

message by adopting a technique in receiving 
whereas in another approach [7] any process refrains 
from sending during the interval between the receipt 
of CP initiation message and completion of 
committing that CP. Distributed systems that use the 
recovery block approach [6, 10] and have a common 
time base may estimate a time by which the 
participating processes would take acceptance test. 
These estimated instants form the pseudo point times 
as described in [14]. The disadvantages of such a 
scheme are more than one, like, fast processes may 
have to wait for slow processes to catch up and other 
fault tolerance mechanisms like time out may be 
required. In [12, 14] the authors have analyzed 
checkpoints taken in a distributed system having 
loosely synchronized clocks [13, 16]. No special 
synchronization messages have been used in those 
methods but the existing clock synchronization 
messages were utilized. The work described in [1, 3] 
however, allows processes to take CPs on one’s own 
and then a CGCP is constructed from the set of local 
CPs. The drawback of the method is that useless CPs 
can’t be avoided. The approach taken by Strom et al. 
in [17] does not maintain a CGCP at all times but 
has to save enough information to construct such a 
CP when need arises. So, this requires logging of 
messages. Contrary to the present checkpointing 
protocol, Prakash et. al. [15] presents minimal 
snapshot collection protocol where dependency is 
calculated during checkpointing also. 

 
3. SYSTEM MODEL AND NOTATIONS  
The system consists of ‘n’ processors, P0, P1, …, 

Pn-1. Let i
kC denote the ith CP of kth process (for 

example, the kth process, initial-CP is 0
kC (for i=0), 

first-CP is 1
kC  (for i=1), second-CP is 2

kC (for i=2) 
and so on). The CPI is the time interval between any 
two consecutive CPs and its ith CPI ends at i

kC . The 

kth process starts its execution at 0
kC (k = 0,k = 

1,…,k = n-1). To begin with a process, say P0, 
initiates checkpointing procedure. The next 
checkpoint initiation is done by P1 and so on and 
forth. Further, the initiation of checkpointing at 
regular intervals is done by processes. Asynchronous 
communication has been assumed among the 
processes. Acknowledgement and time-out are part 
of the communication protocols. 

 
4. ALGORITHMS AND DESCRIPTIONS  

The algorithm has a CP initiator which sends an 
implicit CP synchronization messages. The initiator 
sends the initiation message to all other processes  
with the information such as: (i) The number of 
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messages sent to processes in the current CPI and 
(ii) The number of messages received from 
processes in the current CPI. It must be mentioned 
here that the additional information regarding 
messages would not be sent during the initial CP 
since it is taken just after the system has been 
initialized and hence it is assumed that 
communication among processes has not yet started. 
The information means that if Pk has sent a total of 
two messages to Pj in the current CPI, then Pk would 
write 2 as number of messages and j as process id 
(PID) as part of the first information. Similarly if Pj 
has indeed received all the two messages from Pk it 
would write 2 as number of messages and k as PID 
as part of the second information. Pj checks whether 
the total number of messages sent by Pk matches 
with that received by Pj. If the answer is positive, Pj 
takes the checkpoint. If not, then it waits for the 
undeceived message(s) and takes the CP after 
receiving it (them). During this time only those 
messages are received for which Pj is waiting and 
any unwanted messages is discarded.  

 
The list of variables used in the algorithm is 

described as follows: 
Own_Pid: PID of the process responding to 

the communication. 
Initiator: PID of CP initiator. 
CP_Seq: CP sequence number, initially 0. 

CP_Indx: Index of the current CPI, initially 0 
MSTi[j] : Values denote the number of 

messages sent by the process i to 
process j in the current CPI. 
(Example, MST2[5] = 3, specifies 
that the process P2 has sent 3 
messages to P5 in the current CPI). 

MRFi[j]: Values denote the number of 
messages received by the process i 
from process j in the current CPI.  
(Example, MST0[2] = 1, specifies 
that the process P0 has received 1 
message from P2 in the current 
CPI). 

 
CP_Consistency is the subroutine and 

Send_CP_Req, Receive_CP_Req, Send_PSI and 
Receive_PSI are the set for communication 
primitives used by the proposed algorithms. 
 
Algorithm Checkpoint  
{ 
1. if (Own_Pid = Initiator) then { 
2.    if (CP_Seq = 0) then { 
3.       Take a CP and increment CP_Seq by 1; 
4.       ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid)     
         Send_CP_Req (CP_Seq, CP_Indx);} 
5.    else {  // CP_Seq ≠ 0 

6.       Take a tentative CP and increment CP_Seq     
          and CP_Indx by 1; 
7.      ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid)     
        Send_CP_Req (CP_Seq, CP_Indx) and  
        Send_PSI (CP_Seq, CP_Indx, MST, MRF);}} 
8. else { // PID ≠ Initiator 
9.      if(CP_Seq = 0) then { 
10.       Receive_CP_Req (Rcvd_CP_Seq,     
            Rcvd_CP_Indx) from process P0;  
11.      Repeat line 3.;} 
12.   else { // CP_Seq ≠ 0 
13.    Receive_CP_Req (Rcvd_CP_Seq, 

Rcvd_CP_Indx) from the initiator; 
14.    ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid) do 

{Receive_PSI (Rcvd_CP_Seq, 
Rcvd_CP_Indx, Rcvd_MST, Rcvd_MRF);  

15.    Send_PSI (CP_Seq, CP_Indx, MST, MRF) 
check CP_Consistency (Rcvd_MST, 
Rcvd_MRF);} 

16.    Receive_PSI (Rcvd_CP_Seq, Rcvd_CP_Indx, 
Rcvd_MST, Rcvd_MRF); 

17.    Check CP_Consistency (Rcvd_MST, 
Rcvd_MRF);}} 

18. } 
 
Algorithm CP_Consistency (MST, MRF) 
1. {  
2.   for(i=0;i≤n-1;i++) 
3.     for(j=0;i≤n-1;j++){ 
4.       if((i≠j){ 
5.        if((MSTi[j] = MRFj[i])){ 
6.              Convert a tentative CP of ith and jth   
                 processes are permanent; 
7.              Increment CP_Seq by 1 and reset CP_Indx   
                to initial value;} 
8.        else if (j = Own_Pid){  
9.         Receive_CP_Req (Rcvd_CP_Seq,              
           Rcvd_CP_Indx) from the initiator; 
10.    ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid) do     
           Receive_PSI(Rcvd_CP_Seq,Rcvd_CP_Indx,  
           Rcvd_MST, Rcvd_MRF);  
           Check CP_Consistency (Rcvd_MST,  
           Rcvd_MRF);}  
11.  else{ // MSTi[j] ≠ MRFj[i] 
12.     Discard the tentative CP; 
13.     Expand the CP_Indx and Decrement    
            CP_Seq by 1;}}} 
14. } 

 
The Checkpoint algorithm works as follows: The 

initial checkpoint is taken after system initialization 
by the CP-initiator (Cf. lines 1-4) and other 
processes (Cf. lines 9-11). For any other CPs, the 
initiator first sends a ‘CP-request’ along with its 
process status information within the current CPI 
(Cf. lines 6 and 7). Other than the initiator processes 
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receive and send their status information to the 
initiator and exchanges among them, which is 
described in lines 12-15. Some slow process may 
wait and receiving status information in line 16. 
After it receives status information from all others it 
goes on to check system consistency in line 17. 
When the system is consistent, commit the tentative 
CP (Cf. lines 5-7); otherwise discard the tentative 
CP (Cf. lines 11-14) using CP_Consistency 
subroutine. This is demonstrated using Boldoni et.al. 
algorithm in [2] and Lamport ‘happened before 
relation’ [21] as follows: 
 
Theorem 1 

A GCP { }ikC  is consistent only when all pair of 

local CPs { }{ }i
k

i
k CC 1, +  is consistent 

(where, 10, −≤≤∀ nkk ) and the CP taken by the 
algorithm forms a CGCP. 

Proof: This theorem is proved by contradiction.  
Let us consider the checkpoints form an 

inconsistent GCP. Then there should be a checkpoint 
i
sC  that happened before [11] another 

checkpoint i
rC . This implies that, the two scenarios 

were obtained as follows:  
1. There should be at least a message ‘m’ 

sent by the process Ps after i
sC  but 

received by the process Pr before i
rC .   

2. There should be at least a message ‘m’ 
sent by the process Ps before i

sC  but 

received by the process Pr after i
rC .  

Therefore, the pair ( i
sC , i

rC ) in not a consistent 
CP and it is not a part of CGCP. This can be proved 
in the following way: 
Case 1: 

 
 
 
 
 
 
 
 
 

Fig. 1 

 
Let us consider figure 1 and a fault-free scenario 

where messages reach destinations correctly. 
Assumptions: 

1. Message ‘m’ not recorded sent. 
2. Message ‘m’ recorded received.  

3. 1−i
sC and 1−i

rC are the CGCPs.  

4. i
sC and i

rC are the tentative local CP 
(initially not recorded in the stable 
storage) taken by the processes Ps and Pr 
respectively after the CP request message 
received. 

The following scenario is observed: 
i. Message ‘m’ is sent at t3 and tentative i

sC  
taken by the process Ps at t2. (t2 < t3 by 
assumption 1)   

ii. Message ‘m’ is received at t4 and tentative 
i
rC  taken by the process Pr at t5. (t4 < t5 by 

assumption 2)   
iii. When process Ps takes CP at t2 (by 

assumption 1 and step i).  
a. Ps has reached line 17 of algorithm 

via lines 12-16. 
b. Ps has checked its consistency with 

other (n-1) processes including Pr 
using algorithm CP_Consistency. 

iv. In line 15 Ps sends its status and Pr receives 
it in line 16.   

a. Pr check the system consistency in 
lines 1-5 using algorithm 
CP_Consistency and no 
discrepancies are noted. 

b. Pr reaches line 6 and takes i
rC by 

step ii.  Therefore, violating 
assumption 2 and scenario ii. 

c. Message ‘m’ reaches Pr and 
eventually gets rejected using lines 
8-14 of algorithm CP_Consistency 
(by step i). 

d. Step iv. (b and c) contradicts 
assumption 2. 

Therefore, there can’t be any message ‘m’ that is 
not recorded sent but recorded received in the 
same GCP. 

Case 2: 
 
Let us consider Figure 2. 

 

 

 

 

Fig. 2  
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Assumptions: 

1. Message ‘m’ is recorded sent. 
2. Message ‘m’ is not recorded received.  
3. 1−i

sc and 1−i
rc are the CGCPs.  

4. i
sc and 1−i

rc are the tentative local CP 
(initially not recorded in the stable storage) 
taken by the processes Ps and Pr 
respectively after the CP request message 
received. 

The following scenario is observed: 
i. Message ‘m’ is sent at t3 and tentative 

i
sc taken by the process Ps at t5. (t3< t5 by 

assumption 1)   
ii. Message ‘m’ is received at t4 and 

tentative 1−i
rc   taken by the process Pr at t2. (t2 

< t4 by assumption 2)   
iii. When process Ps takes CP at t5 (by 

assumption 1 and step i).  
a. Ps has reached line 17 and recorded 

sent of message ‘m’ (by assumption 1 
and step i) via lines 12-16 of 
algorithm checkpoint. 

b. Ps has checked its consistency with 
other (n-1) processes including Pr 
using algorithm CP_Consistency. 

iv. Similarly, when Pr takes CP at t2.   
a. Pr reaches line 6 using algorithm 

CP_Consistency. 
b. Pr has checked its consistency with 

other (n-1) processes including Ps 
using lines 1-5 of algorithm 
CP_Consistency. 

c. Pr finds that message ‘m’ from Ps is 
yet to be received by it. (by step i). 

d. Pr checks the system consistency in 
line 16 via lines 12-16. But the 
message ‘m’ is not actually received 
in line 16 of algorithm Checkpoint. 

e. Therefore, Pr can’t reach line 17 and 
can’t take CP. 

f. Step iv.e. contradicts assumption 2.  
Therefore, there can’t be any message ‘m’ that is 
recorded ‘sent’ but not recorded ‘received’ in the 
same GCP protocol. 
 

5. PERFORMANCE EVALUATION 
The experiments were performed on a cluster of 

PCs under Linux 2.4.18.  The cluster consists of 8 
nodes connected by a 100 MBPS Ethernet and 
equipped with AMD processors running at 1.2GHz 
with 128KB catch, 256MB of main memory and 
20GB of stable storage. 

A Dense matrix multiplication (MM) application 

[8] is used for the performance evaluation of the 
proposed algorithm. The program implementations 
use the LAM/MPI version 1.2.5 and the program 
was compiled using the GNU GCC version 2.96. 
The same application is executed using distributed 
check pointing (DCP), coordinated check pointing 
(CCP) and communication induced check pointing 
(CICP) protocols for the comparison study.   

 

  
Fig. 3 - Execution Time Vs No. of Processors 

 
The Figure 3 illustrates the execution time under 

different CP protocols performance, when the 
numbers of processors are varied in the cluster. With 
the increasing synchronization overhead and failures 
with the increase in number of processors gets 
degraded in CCP and CICP. Hence, the execution 
times are found to be higher by about (38%, 
25.04%), (69.46%, 47.34%), (147.25 %, 69.6%), 
(158.7%, 103.04%) and (196.4%, 143.6%) than 
those observed in the present DCP model using 
1,2,3,4 and 8 processors in action.  

 

 
Fig. 4 - Performance of different checkpointing 

protocols 
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Due to the possible occurrences of domino effect 
and the dependent processes overheads in CICP and 
CCP, the failures are increases with proportional to 
the number of processors. This is clearly described 
in Figure 4. The performance of DCP variations are 
qualitatively similar until 3 processors are in action 
and increases drastically when 4 or more processes. 
The performance (in Mega Flops) of DCP is (48% 
and 30%), (54.5% and 50.34%) and (56.19% and 
58.59%) higher during compression with CCP and 
CICP protocols when 1, 4 and 8 processors are in 
action. 

 
6. COMPARISON WITH THE EARLIER 

WORK  
Table 1 summarizing the comparison of different 

checkpointing techniques that are discussed in the 
survey paper [6, 10]. The following notations are 
used to compare the present work: 

 

Cuni: Cost of sending a message from one 
process to another process. 

Cbrd: Cost of broadcasting a message to all 
processes. 

Tch: The checkpointing time. i.e, 
Tch=Tmsg+Tdata+Tdisk . 

Tdisk : Delay incurred in saving a checkpoint on 
the stable storage. 

Tdata: Delay incurred in transferring a 
checkpoint to the stable storage. 

Tmsg: Delay incurred by system messages 
during a checkpointing process. 

Nmin : The number of processes that need to 
take checkpoints. 

n: The total number of dependent processes 
in the system. 

Ntmp: The number of tentative checkpoints 
during a checkpointing process. 

Ndep: The average number of processes on 
which a process depends. 

 
Table 1. Comparison of various checkpointing approaches 

 Uncoordinated 
Checkpointing 

Coordinated 
Checkpointing 

Communication 
induced 

Checkpointing 

Distributed 
Checkpointing 

Checkpoint 
Initiator Process 

Must be a 
Separate Process 

May or may not 
be a separate process 

May or may not 
be a separate 

process 

Any of the n 
processes 

Domino effect 
and useless CP 

Possible [3] Possible [4,14,16] Possible 
[12,19,20,21] 

Absent 

Total Number 
of CPs 

Not possible 
to say 

Nmin Nmin n 

Blocking 
Time 

0 Nmin*Tch Nmin+(Tch*Ntmp) n*Tch 

Checkpointing 
Cost 

Not possible 
to say 

3*Nmin*Ndep+Cbrd Nmin+Ndep+Cuni 2*(n+Cuni) 

Total number 
of messages 
required for 

synchronization 

System is not 
set to be 

synchronized 

3 messages. 
(Request, reply 

and 
Acknowledgement) 

Not a separate 
message 

2 (Request 
and Reply) 

Vast Network 
Traffic while 

synchronization 

Towards to 
the monitor 

process 

Towards to the 
coordinated process 

Piggybacked 
with the 

application 
message 

Distributed 

 
7. CONCLUSION 

The check-pointing algorithm proposed in this 
paper constructs consistent distributed checkpoints, 
without useless checkpoints. Also, the occurrences 
of missing and orphan messages, hidden and Zigzag 
paths are avoided. The need for a separate 
coordinator process doesn’t arise.  

Further, only a consistent global checkpoint is 
used and this result in significant performance 
improvement as the increasing synchronization 
overhead and failures with the increase in number of 
processors gets minimized in this approach. 
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