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1. INTRODUCTION 
Much is still unknown about how the brain trains 

and self-organizes itself to process so complex 
information. However, the recent advances in 
“neurobiology” allowed highlighting some of key 
mechanisms of animal (and human) intelligence. In 
fact, our simple and inappropriate binary technology 
remains too primitive to reproduce the biological 
complexity of these marvels mechanisms, but a 
number of those highlighted points could already be 
sources of inspiration for higher level intelligent 
artificial systems. Among interesting features of 
animal’s and human’s brain, one can emphasize its 
“modular” structure and it’s “self-organizing” 
capabilities. If it is still early to state on “concurrent” 
or “cooperative” nature of ways that these complex 
features interact, they could already be considered as 
basic features in emergence of higher level artificial 
intelligent behavior. 

On the other hand, overcoming limitations of 
conventional approaches thank to their learning and 
generalization capabilities, Artificial Neural 
Networks (ANN) made appear a number of 
expectations to design “intelligent” information 
processing systems. If learning and generalization 
capabilities of these bio-inspired connectionist 
models appear as central requirements in intelligent 
systems’ design, nowadays, it is well admitted that 
intelligent behavior requires more sophisticated 
mechanisms than those performed by these “simple” 
models. 

The main goal of this paper is to show how these 

primary supplies could be exploited and combined in 
the frame of “soft-computing” issued techniques in 
order to design intelligent artificial systems 
emerging higher level intelligent behavior than 
conventional Artificial Neural Networks (ANN) 
based structures. These foremost features have 
inspired a set of implementations dealing with real-
world applications and covering several different 
areas as: robotics, image processing and pattern 
recognition, classification and dynamic nonlinear 
behavior modeling (identification and prediction). 

The present paper is organized in following way: 
the next section will briefly introduce the general 
frame of modular modeling. Section 3 will describe 
a first applicative implementation dealing with 
“biometric face recognition” dilemma in the 
challenging frame of “mass biometry”. In section 4, 
a different self-organizing tree-like modular system, 
taking advantage from a “complexity estimation” 
loop, will be described. Section 5 will present a 
modular Fuzzy-CMAC architecture dealing with 
fully autonomous biped robot’s walking dilemma. 
Section 6 will give an additional applicative example 
of a self-organizing modular connectionist system 
dealing with nonlinear dynamic systems’ behaviour 
identification. Finally, the last section will conclude 
the present article and discuss a number of 
perspectives. 
 

2. GENERAL FRAME OF MODULAR 
MODELING 

From a general point of view, a multi-model is 
composed of several models each of which is valid 
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in a well defined interval which corresponds to a 
part of the operation range of the system or covers a 
part of the whole feature space of the problem to be 
solved. The local validity of a model in a well 
defined interval is specified by using functions with 
limited supports which tend to significantly increase 
the contribution of the local models in that zone and 
tend to decrease it elsewhere. The combination of all 
local models allows description of the whole 
system’s behavior. The local models participations 
in the multi-model’s output are determined by 
“activation degree” associated to each local model. 
The action of “activation degrees” on multi-model’s 
response could be seen as some kind of local models 
responses weighting fashioning its response in order 
to approximate the modeled behavior. In a general 
way, modular (or multiple models) structures could 
be classified according to two main classes: 
“predefined” structures and “adaptive” 
(evolutionary) architectures. In the first class of such 
systems, as well the numbers of modules as the 
whole system response’s criterion (modules’ 
responses aggregation criterion) are defined 
regarding the treated problem and remain 
unchanging. While in the second class of such 
systems as well the numbers of modules as the 
whole system response’s criterion (modules’ 
responses aggregation criterion) could evaluate 
regarding the treated dilemma adapting the system to 
the treated ask. 

Consider a system described by the general 
equation (or transfer function), expressed by relation 
(1), where ( )⋅F  represents a global unknown model 
(complex task to be performed, complex system to 
be identified, complex behavior to be described, 
etc…) and ( )tϕ  is a feature vector (characteristic 
vector composed by a number of features related to 
data to be processed, regression vector composed by 
a number of delayed system’s inputs and outputs, 
etc…). β  is a parameter vector. 

  
( ) ( )( )βϕ ,tFty =              (1) 

 
The associated multi-model, composed by M 

local models (or processing units) approximating 
(describing) the system’s complex behavior 
(expressed by relation (1)) is defined by relation (2) 
with condition given by relation (3) where ( )( )tfi ϕ  
represents the i-th local model (or local processing 
unit), β  is a parameter vector and S (.) represents a 
fusion operator or a selection function. ε  is the 
approximation error which is supposed to be as 
small as possible. 

 
( ) ( )( )βϕ ,ˆ tSty =              (2) 

( ) ( ) ε+= tyty ˆ              (3) 
 

A number of works dealing with modular 
computing and issued architectures have been 
proposed since 1993 associating a set of ANN in a 
modular structure in order to process a complex task 
by dividing it into several simpler sub-tasks. One 
can mention neural networks ensemble concept 
proposed by [1], intelligent hybrid systems [2], 
Mixture of experts concept proposed by [3] and [4] 
or structures based on dynamic cells [5]. In the same 
years, a number of authors proposed multi-modeling 
concept for nonlinear systems modeling ([6] to [12]) 
in order to avoid difficulties (modeling complexity). 
In fact, taking advantage from “modularity”, multi-
modeling concept reduces considerably modeling or 
processing complexity by dividing the initial 
complex problem (or task) into a set of local models 
(or local processing modules). It is important to 
remind that the most of proposed works (excepting 
those described in the four latest references) remain 
essentially theoretical and limited to a general frame 
work. In fact, if a relatively consequent number of 
different structures have been proposed, a very few 
of them have been applied to real-world dilemmas 
solution. 

The main problems related to such kind of 
architectures, are linked, on the one hand to structure 
construction (appropriated number of modules 
determination) criteria, modules’ nature 
determination and on the other hand to modules’ 
interactions (organization) criteria determination. 
These major points could be defeated by adding self-
organizing skill to a multi-model (or to a modular 
architecture) leading to powerful structure, 
especially if local models (or local modules) are 
ANN based units. A number of such self-organizing 
multiple ANN structures have been proposed and 
described in [9], [10], [12] and [13]. These works 
could be divided into two main directions.  
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Fig. 1 - General bloc diagram of weighted contribution 
based modular connectionist system 

The first one, described in [9] and [10], takes 
advantage from a weighted contribution of several 
local models. Figure 1 gives the general bloc 
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diagram of this kind of modular connectionist 
systems. The fusion operator is the weighted sum 
function. In this case, the associated multi-model, 
composed by M local models (or processing units) 
and their weights ( )( )ii t βϕρ , , is defined by the 
weighted average expressed in the relation (4), with 

( )( ) 0≥ii t βϕρ  (for all i) and ( )( ) 0,
1

>∑
=

M

j

ii t βϕρ  (for 

all ( )tϕ ). In this relation iβ  is a parameter related to 
the validity function iρ .  
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In fact, in this approach, the number of local 

models (modules), the “contribution rate” (called 
also “activation degree”, setting the contribution 
degree of each local model in whole modular 
system’s output), local models’ natures and other 
parameters are adjusted in order to minimize either 
the whole modular system’s output error (global 
learning criterion) or the local models’ output errors 
(local learning criterion). Different tuning 
mechanisms, based essentially on feature space 
partitioning (splitting) techniques, have been 
described and implemented in [10]. Two of the most 
promising of them are “output error based decision 
tree” and “output error based Fuzzy partitioning” 
mechanisms (described and implemented in [10]). 
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Fig. 2 - General bloc diagram of expert selector based 

modular connectionist system 

The second one, described in [12] and [13], 
represented by the general bloc-diagram of figure 2, 
takes advantage from a “complexity estimation” unit 
acting as supervisor in multi-model’s structure 
construction. In this kind of connectionist modular 
architecture, the output is computed on the basis of a 
selection functions (expressed by (5)), which 
depends on ( )tϕ  and on some parameters p and/or 

conditions ξ. pk represents some particular values of 
parameter p and ξk denotes some particular value of 
condition ξ, respectively. 

 
( ) ( )( )

( )⎢
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0ˆ
,,ˆ ξξξϕ    (5) 

 
In fact, the modular structure is fashioned 

according to a “decision tree” based criterion 
regarding the data complexity, estimated from the 
problem’s (task’s) representative data. At the end of 
tuning process (adaptation process) an “experts’ 
selector” (called also “scheduler unit”) and a number 
of specialized models (experts), called also “sub-
models” are constructed. In operation phase (after 
tuning process), a new data (unlearned data) is 
processed according to following principle: first the 
data (pattern, image, etc...) is classified by the 
scheduler unit regarding the available (generated) 
experts; then, the most appropriated expert processes 
that data. 

However, the evolutionary natures of both of 
them are based on “data driven” criteria, meaning 
that the structure, number of modules, local models’ 
parameters and other adjustable parameters features 
are tuned from data (learning database) representing 
the treated problem or processed task. 

 
3. MODULAR FACIAL RECOGNITION 
SYSTEM USING KERNEL FUNCTIONS 

ANN AS LOCAL UNITS 
Contrary to “individual biometry” where both 

authentication and identification operations assume a 
precise biometrical characterization of concerned 
individuals, the main goal in “mass biometry” is to 
authenticate or identify an unusual (suspect) 
behavior within a flow of mass customary behaviors. 
That’s why, in “mass biometry” the chief 
requirements concern on the one hand, the ability of 
handling patterns containing relatively poor 
information and on the other hand, the skill of high 
speed processing in order to treat a mass number of 
patterns in a reasonably acceptable delay (real-time). 
The solution we propose [14] includes three main 
stages. The two firsts are a video (image flow) 
acquisition device, which could be a standard digital 
video camera and an image processing stage 
performing a set of image pre-processing operations 
and extracting a number of facial biometric features. 
The last stage is a modular stage composed by a set 
of kernel functions based ANN ([15] to [18]) units 
carrying out classification and decision operations. 
Figure 3 shows the block diagram of the proposed 
modular architecture. 

A prototype of such modular facial recognition 
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system has been realized using three ANNs (figures 
3 and 5). Each ANN is specialized in processing of a 
specific kind of biometric feature extracted from the 
input image. Then a decision logic based procedure 
performs (on the basis of classification results 
relative to each biometric feature) the identification 
of the concerned individual. The implementation has 
been done on the basis of ZISC-036 neuro-processor 
based board composed by 16 chips, each one 
including 36 neurons ([19] to [21]). 

 
 

Output

Pre-processing Stage Kernel Functions ANN Stage 

Input Image 

2nd “64 components” 
biometric feature 

3rd “64 components” 
biometric feature 

1st “64 components” 
biometric feature 

Digital Video Device  
Fig. 3 - Bloc diagram of the implemented modular face 

recognition system 
 

 Input Image Eyes area “64 components” 
biometric feature 

Nose area “64 components” 
biometric feature 

Mouth “64 components” 
biometric feature  

Fig. 4 - Example of “localized biometric features” 
processed by each module composing the 

classification-decision stage 
 

 
Fig. 5 - Photographs, showing the implemented system 

(upper-left picture), the ZISC-036 neuro-processor 
based board (upper-right), and the screen of the 

implemented modular face recognition system (lower-
left and lower-right pictures) 

The proposed solution takes advantage at the 
same time from kernel functions based ANN’s 
image processing ability implemented by ZISC-036 
and from the massively parallel architecture of this 
neuro-processor allowing very high processing 
speed. The obtained promising results show 
feasibility and effectiveness of the proposed solution 
reaching 85% correct identification involving a 
relatively weak number of learned samples (5 
samples per face). The experimental validation has 
been done using the ORL (Olivetti Research 
Laboratory, Cambridge) faces database. This 
database is composed of 400 images representing 40 
individuals. In other words, the database offers 10 
different pictures of a set of 40 faces (corresponding 
to different individuals), each one representing a 
different situation: different mimics, with and 
without glasses, different degrees of rotation, 
etc….Figure 6 gives an example of images set 
corresponding to a given individual (face) of ORL 
database. The database has been divided into two 
equal parts. The first one including 5 pictures of the 
whole individuals (40 individuals) has been used for 
learning phase. The other 5 images (unlearned 
pictures) of each individual have been used for 
testing phase. 

 

 
Fig. 6 - Example of images set offered by ORL 

database for a same face (individual). 
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Fig. 7 - Obtained “identification error” versus the 
number of learned patterns (images) for the whole 

system and for each of the three neural nets 
composing the “Classification / Decision” stage 
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Results (shown in figure 7) concern identification 
using the KNN mode of ZISC-036 neuro-processor. 
They show the obtained “identification error” as 
well for the whole system as for each of three neural 
nets composing the “Classification / Decision” stage. 
The experimental validation protocol consists in 
progressive enlargement of the number of learned 
samples. The first comment concerns the 
significantly improved identification rate, reaching 
85% for 5 leaned samples (of each face) and more 
than 98% (e.g. less than 2% “identification error”) 
for 9 learned samples. The second interesting remark 
related to this figure concerns the comparison of 
whole system’s “identification errors” with those 
obtained for each neural net composing the system. 
In fact, as it could be remarked from figure 6, the 
“identification error” of the whole system remains 
lower than “identification errors” affecting each 
individual neural network composing the system: 
especially (and even) when the number of learned 
samples remains relatively small (3 to 5 learned 
samples). For example, in the case of 4 learned 
samples of each face, first, second and third (ANN-
1, ANN-2 and ANN-3) commit 27%, 31% and 23% 
“identification errors”, respectively, while the whole 
system’s “identification error” remains about 17% 
(e.g. 83% of correct identification). Finally, it is 
pertinent to remain the relative poorness of the 
processed information characteristic of the “mass-
biometry” context. These promising results open a 
number of auspicious perspectives concerning as 
well the proposed solution as the “mass biometry” 
related applications in general. We are working now 
on two directions. On the one hand we are 
investigating new “64 components biometric 
features” (representations), and on the other hand we 
develop more sophisticated learning strategies on 
ZISC-036. 
 

4. TREE-LIKE MULTIPLE NEURAL 
NETWORKS MODELS GENERATOR 
WITH A COMPLEXITY ESTIMATION 

BASED DECOMPOSER 
In a very large number of cases dealing with real 

world dilemmas and applications (system 
identification, industrial processes, manufacturing 
regulation, optimization, decision, pattern 
recognition, systems, plants safety, etc), information 
is available as data stored in files (databases etc.). 
So, the efficient data processing becomes a chief 
condition to solve problems related to above-
mentioned areas. In the most of those cases, 
processing efficiency is closely related to several 
issues among which are: 

• Data nature: including data complexity, data 
quality and data representative features. 

• Processing technique related issues: 
including model choice, processing 
complexity and intrinsic processing delay. 

One of the key points on which one can act is the 
complexity reduction. It concerns not only the 
problem solution level but also appears at processing 
procedure level. An issue could be model 
complexity reduction by splitting a complex 
problem into a set of simpler problems: multi-
modelling where a set of simple models is used to 
sculpt a complex behaviour ([9] and [10]). Another 
promising approach to reduce complexity takes 
advantage from hybridization [22].  

We designed and implemented an ANN based 
data driven treelike Multiple Model generator, that 
we called T-DTS (Treelike Divide To Simplify), 
able to reduce complexity on both data and 
processing chain levels ([9], [10], [23]). T-DTS and 
associated algorithm construct a tree-like 
evolutionary neural architecture automatically where 
nodes, called also “Splitting Units” (SU), are 
decision units, and leafs, called also “Neural 
Network based Models” (NNM), correspond to 
neural based processing units. 

The T-DTS includes two main operation modes. 
The first is the learning phase, when T-DTS system 
decomposes the input data and provides processing 
sub-structures and tools for decomposed sets of data. 
The second phase is the operation phase (usage the 
system to process unlearned data). There could be 
also a pre-processing phase at the beginning, which 
arranges (prepare) data to be processed. Pre-
processing phase could include several steps 
(conventional or neural stages). Figure 8 gives the 
general bloc diagram of T-DTS operational steps. As 
shows this figure, T-DTS could be characterized by 
three main operations: “data pre-processing”, 
“learning process” and “generalization process” (or 
“working process”). 
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Fig. 8 - General bloc diagram of DTS, presenting main 
operation levels 
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The complexity estimation based splitting could 
be performed according to two general strategies: 
“static” splitting strategy and “adaptive” (dynamic) 
one. In both cases, the issued could be binary or 
multiple branches tree-like structure. The main 
difference between two strategies remains in nature 
of the complexity estimation indicator and the 
splitting decision operator used in splitting process. 

The learning phase is an important phase during 
which T-DTS performs several key operations: 
splitting the learning database into several sub-
databases, constructing (dynamically) a treelike 
Supervision/Scheduling Unit (SSU) and building a 
set of sub-models (NNM) corresponding to each 
sub-database. Figure 9 represents the division and 
NNM construction process bloc diagrams.  As this 
figure shows, after the learning phase, a set of neural 
network based models (trained from sub-databases) 
are available and cover (model) the behaviour 
region-by-region in the problem’s feature space. In 
this way, a complex problem is decomposed 
recursively into a set of simpler sub-problems: the 
initial feature space is divided into M sub-spaces. 
For each subspace k, T-DTS constructs a neural 
based model describing the relations between inputs 
and outputs. If a neural based model cannot be built 
for an obtained sub-database, then, a new 
decomposition will be performed on the concerned 
sub-space, dividing it into several other sub-spaces. 
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Fig. 9 - General bloc diagram of T-DTS learning phase 

and its tree-like splitting process 

A software implementation of T-DTS including 
different splitting strategies, different complexity 
estimation methods and different ANN models has 
been achieved. The implementation has been 
performed under MathLab environment. Very 
promising results, obtained for different areas: 
classification problems, industrial process 
identification and prediction, pattern (biomedical 

signal) recognition, etc… show efficiency of such 
self-organizing multiple model structure. 

 
5. BIPED ROBOT’S ADAPTIVE WALKING 

USING INTUITIVE HYBRID MODULAR 
CONTROLLER 

One of the most challenging topics, over the 
recent decades, in the field of robotics concerned the 
design and the control of biped robots. Several 
potentialities make this foremost research area 
particularly appealing in the frame of middle and 
long term projection. On the fundamental side, 
advances in this research area can lead to a better 
comprehension of the human locomotion 
mechanisms. From, the applicative point of view, it 
could concern a wide spectrum of applications 
among which: the design of more efficient prosthesis 
and the construction of more sophisticated humanoid 
robots for interventions in hostile environments. 

Two main control strategies are generally used in 
the field of biped robots’ locomotion: one is based 
on a kinematics and dynamic modeling of the whole 
robot’s mechanical structure, and another takes 
advantage from soft-computing techniques (fuzzy 
logic, neural networks, genetic algorithm, etc…) and 
heuristically established rules resulting from the 
expertise of the walking human. Additionally to 
requirements related to high precision measurement 
and to a fine interaction forces’ evaluation, the first 
strategy needs the modeling of whole biped robot’s 
real environment remaining a very complex task. 
That is why the computing of the on-line trajectories 
are generally performed using simplified models 
([22] to [27]), making this first strategy not always 
well adapted when biped robot moves in real 
environment. Taking advantages from soft-
computing skills, the second solution doesn’t need 
the aforementioned requirements: firstly, it is not 
necessary to know perfectly the mechanical structure 
and secondly, this category of techniques takes 
advantage from learning capabilities ([24] to [28]). 

Investigating soft-computing based fully 
autonomous biped robot’s walking, we proposed a 
new approach taking advantage simultaneously from 
local and global generalization. Our approach [29] is 
based on a modular Fuzzy-CMAC architecture: a set 
of CMAC ANN (see [30] to [32])) based modules 
and a fusion stage. The fusion is carried out by using 
Takagi-Sugeno FIS (Fuzzy Inference System). The 
main task of Fuzzy-CMAC based modular part of 
the system is to compute the swing leg’s trajectory 
(using a Fuzzy Inference System fusion of several 
CMAC neural networks’ outputs). The second one 
allows regulating the average velocity from a 
modification of the desired pitch angle at each new 
step. Figure 10 gives the bloc diagram of the 
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proposed hybrid architecture. 
Figure 10 shows the bloc diagram of the training 

strategy. The trajectories of the swing leg (in terms 
of joint positions and velocities) are learned by four 
"single-input/single-output" CMACk with k=1,..,4 
neural networks (four trajectories to learn). The 
learned trajectories are joint angles 1iq  and 2iq , and 
the two corresponding angular velocities 1iq&  and 

2iq& . 1iq  and 2iq  are respectively the measured 
angles at the hip and the knee of the leg i. 

 

Fig. 10 - Bloc- diagram of the Fuzzy-CMAC based 
hybrid control strategy 

 

 
Fig. 11 - Learning strategy principle’s bloc diagram 

In the same way, 1iq&  and 2iq&  are respectively the 
measured angular velocities at the hip and the knee 
of the leg i (see figure 11). During the training stage, 
five trajectories corresponding to five different 
average velocity values ( MV  measured in m/s) 
included in [0.4 , 0.8] interval are learned by five 
CMAC based modules. Each module 
(labelled lCMAC , with { }5,4,3,2,1∈l ) includes four 
CMACk neural networks (corresponding to the four 
above-mentioned robot’s trajectories). MV  is 
computed by using relation (6) where stepL  is the 
distance between the two feet at the moment of 
double impact and stept  is the duration of the step 
(from takeoff to landing of the same leg). 

step

step
M t

L
V =        (6) 

 
The Fuzzy Inference System is obtained from the 

five following rules, where lY corresponds to the 
output of lCMAC with { }5,4,3,2,1∈l : 

 
• IF MV  IS VerySmall THEN 1YY =  
• IF MV  IS  Small THEN 2YY =  
• IF MV  IS Medium THEN 3YY =  
• IF MV  IS Big THEN 4YY =  
• IF MV  IS VeryBig THEN 5YY =  

 
Figure 12 gives the membership functions 

corresponding to the upper-indicated FIS rules. The 
average velocity is modelled by five fuzzy sets 
(“VerySmall”, “Small”, “Medium”, “Big”, 
“VeryBig”). 

The validation of proposed approach has been 
done on an under-actuated robot: RABBIT [33], 
[34]. This robot constitutes the central point of a 
project, within the framework of CNRS (Centre 
Nationale de la Recherche Scientifique) ROBEA 
(ROBotique et Entité Artificielle) program [35], 
concerning the control of walking and running biped 
robots, involving several French laboratories. This 
robot is composed of two legs and a trunk and has 
no foot as shown on figure 13. The characteristics 
(masses and lengths of the limbs) of this biped robot 
are summarized in table 1. 

 
Fig. 12 - Membership functions used by Fuzzy 

Inference stage of Fuzzy-CMAC 
 

Table 1. Masses and lengths of the robot’s limbs 

Limb Weight (kg) Length (m) 
Trunk 12 0.2 

Thigh 6.8 0.4 

Shin 3.2 0.4 

 
If it is true, from design point of view, that 

RABBIT is simpler compared to a robot with feet, 
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from the control theory point of view, the control of 
this robot is a more challenging task, particularly 
because, in phase of single support, the robot is 
under-actuated. A numerical model of the previously 
described robot has been implemented within the 
ADAMS software. This software is able to simulate 
RABBIT’s dynamic behavior and namely to 
calculate the absolute motions of the platform and 
the relative motions of the limbs when torques are 
applied on the joints by the virtual actuators.  

The model used to simulate the interaction 
between feet and ground is exposed in [36]. Figure 
14 gives the stick diagram of the biped robot’s 
walking sequence when the desired average velocity 
increases. It must be noticed that the control strategy 
allows adapting automatically the pitch angle and 
the step length as the human being. 

 

Fig. 13 - RABBIT prototype’s photograph 
 

 

Fig. 14 - Stick diagram showing a walking sequence of 
the biped robot with increasing 

average velocity increases 

The main interest of this approach is to proffer to 
the walking robot autonomy and robustness. The 
obtained results show the adaptability of the walking 
step length. Furthermore, the Fuzzy-CMAC 
approach allows decreasing the memory size in 
comparison to the traditional multi-input CMAC 
ANN. Future works will focus firstly on the 
extension of the Fuzzy-CMAC approach in order to 

increase the autonomy of the walking robot 
according to the nature of the environment (get up 
and down stairs for instance), avoidance and 
dynamic crossing obstacles and secondly on the 
experimental validation of our approach. 

 
6. IDENTIFICATION OF NONLINEAR 

DYNAMIC SYSTEMS’ BEHAVIOR USING 
SELF-ORGANIZING MODULAR 

STRUCTURES 
Identification of nonlinear systems behavior is an 

important task in a large number of areas dealing 
with real world requirements and issued 
applications. Among numerous areas concerned by 
this task, one can mention model based control and 
regulation, systems design, complex systems 
simulation, complex systems’ behavior prediction, 
fault diagnosis, etc... The identification task involves 
two essential steps: structure selection and parameter 
estimation. These two steps are linked and generally 
have to be performed in order to achieve the best 
compromise between the identification (or 
prediction) error minimization and the number of 
parameters increase in the issued model. In real 
world applications (real world situations), strong 
nonlinearity and large number of related parameters 
make the realization of those steps challenging, and 
so, the identification task difficult. 

To overcome the above-mentioned difficulties, 
we propose to take advantage simultaneously from 
multi-modeling concept’s modularity (described in 
section 2) and self-organizing clusters construction, 
making the proposed solution self-adaptive 
regarding the system’s (nonlinear system to be 
identified) nonlinearity. Concerning the self-
organization, the proposed identifier benefits from a 
self-organizing clusters construction, based on 
concurrent minimization of both identification error 
and number of local models. Regarding partitioning 
strategy, two promising partitioning strategies have 
been investigated: “decision tree construction” (DTC 
- a deterministic partitioning approach) and “fuzzy 
clustering” (FC – a fuzzy based partitioning 
approach [37]). 

 
 

System 

local model 1 Π  

)(1 tω  

local model M Π  

)(tMω  

local model 2 Π  

)(2 tω  

Σ  

u(t) )(tys

)(ˆ ty

+ 
- 

Corrector 

 
Fig. 15 - Learning bloc diagrams of EE multi-model 
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The identification could be performed using an 
“Equation Error” (EE) multi-model, known also as 
NARX (Nonlinear Autoregressive with eXogenous 
Inputs) multi-model, with “decision tree 
construction” or “fuzzy clustering” partitioning (to 
split the system’s feature space in a number of 
operating ranges) [38]. Figure 15 shows the bloc 
diagram of an EE multi-model based identifier. As 
one could remark from this figure, the EE multi-
model based identifier identifies the system by using 
both system’s inputs and outputs. 

In the case of a deterministic partitioning 
strategy, the “activation degree” of the i-th local 
model is defined conformably to the relation (7), 
where ( ).iρ , called the “validity function” of the the 
i-th local model, is defined by the relation (8). In 
relation (8), ( ).kµ  represents the “membership 
function” defined for the k-th variable of the 
regression vector ( )tϕ  and Q  is the number of 
variables in the regression vector. In our approach, 
we use Gaussian membership functions expressed in 
(9), where: ( )tz ik  is the value of the k-th variable of 
the regression vector ( )tϕ  involved in the i-th local 
model, ikc  is the center of the partition 
corresponding to the ( )tz ik  and kσ  is the dispersion 
of the Gaussians for all partitions of the k-th 
variable. It is interesting to note that the parameters 
vector iβ  contains all the dispersion of the 
Gaussians. 
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The FC partitioning strategy uses the “fuzzy-c-

mean” clustering algorithm. Conformably to the 
fuzzy nature of the clustering, the issued intervals 
(operating ranges) could share some overlapping 
region (with different membership degree). Feature 
space decomposition is performed in each dimension 
(for each input variable) according to concurrent 
minimization of both identification error and “intra-
clusters” error defined by relation (10), where dij 
expressed by relation (11) denotes the distance 

between the j-th value of the variable z (which could 
take Q different values) and the center ci of the i-th 
cluster (among M possible clusters). µij in relation 
(12) represents the membership degree relative to 
the variable z regarding the i-th cluster (among M 
possible clusters), defined by relation (12). The 
“activation degree” is the given by the values of ijµ . 
The center ci of the i-th cluster is defined 
conformably to the relation (13). Finally, the 
parameter m, known as “fuzzy exponent”, is a 
parameter representing overlapping shapes between 
clusters. Generally, this parameter is set to m=2. But 
in our solution the value of this parameter will be 
optimized during the multi-model’s self-
organization process (learning process). 

The learning procedure (identification process) 
operates as follows: an observation matrix, including 
inputs and outputs (EE based multi-model’s 
estimated outputs) is updated progressively until the 
output’s value stabilizes. 
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The self-organization could either be done 

according to “decision tree construction” (DTC) or 
be performed using “fuzzy clustering” (FC) 
partitioning strategies. The FC partitioning has been 
based on FCM (Fuzzy Centers Mean) algorithm. 
The feature space partitioning is accepted if it 
reduces the global error. The learning process stops 
if the feature partitioning process doesn’t lead to a 
new lower error between estimated and system’s 
outputs. The EE based multi-model uses the linear 
criterion. 

An example concerning a dynamic non linear 
system’s behavior prediction, described by relation 
(14), is reported in figure 16. ui(t) are system’s 
inputs and Ys(t) its output. ui(t) take random value in 
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interval [0 , 1]: [ ]990.0,01 ∈u , [ ]985.0,02 ∈u  and 
[ ]294.0,703.0−∈sy . 
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Fig. 16 - Identification (upper) and prediction (lower) 

results obtained for EE based modular “identifier / 
predictor” in the case of the nonlinear dynamic 

behavior described by relation (14) 

A database, including systems inputs and outputs, 
is generated using the relation (14). The obtained 
database has been divided into two databases. One 
of them, considered as known, is used for learning 
phase (system’s behaviour identification) and the 
other one (supposed as unknown) is used for 
prediction. 

 
7. CONCLUSION 

If learning and generalization capabilities of 
ANN models appear as central requirements in 
intelligent systems’ design, nowadays, it is well 
admitted that intelligent behavior requires more 
sophisticated mechanisms than those performed by 

these “simple” models.  
On the other hand, a number of appealing 

features of animal’s and human’s brain, as its 
“modular” structure and it’s “self-organizing” 
capabilities, could be sources of inspiration in 
emergence of higher level artificial intelligent 
behavior. The main goal of this paper was to show 
how these primary supplies could be either exploited 
individually or combined in the frame of “soft-
computing” in order to design intelligent artificial 
systems emerging higher level intelligent behavior 
than conventional ANN. These foremost features 
have inspired a set of implementations dealing with 
real-world applications and covering several 
different areas as: robotics, image processing and 
pattern recognition, classification and dynamic 
nonlinear behavior modeling (identification and 
prediction).  The presented examples and issued 
results show the significant potentiality of modular 
connectionist architectures for designing higher level 
intelligent functions. 
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