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Abstract: In this paper we consider methods for computing the necessary parameters when constructing the optimal 
scalar quantizers for Laplacian source. We investigate two approaches to the problem of finding the sets of optimal 
parameters. The first approach requires solving the transcendental equations, but provides nearly optimal values of the 
scalar quantizers’ parameters on successive manner. The proposed approach is an approximation method that 
linearizes transcendental equations providing simple and fast computing of scalar quantizers’ parameters. We 
demonstrate that the proposed technique provides parameters values that are very close to the optimal ones. 
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1. INTRODUCTION 
Quantizers play an important role in theory and 

practice of contemporary signal processing. A vast 
amount of research has been performed in the area 
of quantization. One of the most important issues 
from the engineers’ point of view is the design and 
implementation of quantizers to meet performance 
goals. Considerable work has been focused on the 
design of optimal quantizers for source coding of 
images, speech, etc. [1,2]. Lloyd [3] and Max [4] 
independently proposed an algorithm to compute 
optimal quantizers using mean-square error 
distortion measure. They provided the nonlinear 
quantization procedure in order to minimize the 
quantization noise. The primary goal when 
designing an optimal Lloyd-Max's quantizer is to 
select the representation levels and the decision 
thresholds in order to provide the minimum possible 
average distortion for a fixed number of quantization 
levels N. Particularly, Lloyd-Max's algorithm is an 
iterative algorithm, which in each iteration performs 
calculation of all representation levels and decision 
thresholds of the N levels scalar quantizer. The 
amount of necessary calculations and the number of 
iterations are the deficiencies of this algorithm, and 
they typically increase with the number of 
quantization levels N. 

Consequently, this paper considers methods for 
finding the necessary parameters for construction of 
optimal scalar quantizers for Laplacian source. 

Namely, in order to determine the scalar quantizers’ 
parameters for Laplacian source it is necessary to 
solve the transcendental equations. This problem 
was considered in [5] and was resolved by 
introducing the Lambert W function and some 
approximations. We suggest one very fast and 
simple approximation that comprises new efficient 
method for solving transcendental equations. By 
linearizing the transcendental equations, the 
proposed method provides nearly optimal 
parameters’ values, [1,2] that are necessary for 
designing scalar quantizers. 

 
2. SCALAR QUANTIZATION 

Scalar quantizers are most commonly defined in 
terms of their decision thresholds {t0, t1,…, tN} and 
real-valued quantization points {y1, y2,…, yN}. We 
define the N-level quantizer in terms of its cells 
widths {α1, α2,…, αN} and the distances from the 
representative levels to the nether decision 
thresholds, i.e., reconstruction offsets {δ1, δ2,…, δN}. 
The negative thresholds and the quantization points 
are symmetric to their nonnegative counterparts. 
Symbolically, the decision thresholds are: 
 

 
and the cells withs are given by: 

 ∞=<<<<−∞= − NN tttt 110 ...   (1)

 ],( 1 jjj tt −=α  Nj ,...,2,1= .  (2)

 

computing@tanet.edu.te.ua 
www.tanet.edu.te.ua/computing 

ISSN 1727-6209 
International  Scientific  

Journal  of  Computing 



Zoran Peric, Jelena Nikolic, Dragoljub Pokrajac / Computing, 2006, Vol. 5, Issue 2, 50-54 
 

 51

  

 
 

Fig. 1 - Illustration of the inner region and the outer region of the scalar quantizer 
 

The cells α2,..., αN-1 are referred to as the inner cells, 
while α1 and αN are referred to as the outer cells. The 
outer cells are unbounded (t0=-∞ and tN=∞) and are 
also called overload cells, while the inner cells are 
bounded and are called granular cells. The overload 
cells (α1 and αN) comprise the overload region, 
(outer region), while the set of all granular cells 
(α2,..., αN-1), is called granular region, (inner region), 
as depicted in Fig.1. A quantized signal has value yj

 

when the original signal belongs to the quantization 
cell αj. Therefore, N-level scalar quantizer, Q, can be 
defined as a functional mapping of an input value x 
onto an output representation, such that: 
 

 
Formally, the reconstruction offsets are defined as: 
 

 
The quality of a quantizer can be measured by the 

distortion of the output representation yj when 
compared to the original signal x. The primary goal 
of quantizer design is to select the reconstruction 
offsets and cells widths so as to provide the 
minimum possible average distortion for a fixed 
number of levels N. The quantizer distortion can be 
defined as [5]: 
 

 
where p(x) is probability density function of 
continuous random variable (corresponding to the 
source signal) and d(x-yj) is the measure of distortion 
between an input signal x and quantized signal yj. 
The most convenient and widely used measure of 

distortion is the average mean-squared error (dmse), 
i.e., quantization noise: 
 

 
where ∆=x-yj. 
The discrete probability of each quantization point yj 
is given by [5]: 
 

 
These probabilities determine the output entropy of 
the quantizer as follows: 
 

 
A quantizer is optimal when no other N-level scalar 
quantizer can provide lower distortion with equal or 
lower output entropy. Quantizer optimization can be 
achieved by using unconditional optimization of 
extended function, known as objective function J, 
given by [5]:  
 

 
where λ is the Lagrange multiplier. 
When the distortion measure defined in Eq. (6) is 
used, optimal values of the reconstruction offsets are 
given by [5]:  
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The second necessary condition for optimality [5] 
considers the optimality of the objective function 
Eq. (9). According to this condition, the decision 
thresholds tj that define the cells widths αj-1 and αj 
can be achieved when the two nearest reconstruction 
levels have the same rate-distortion penalties: 
 

 
In this paper we consider case λ =0, thereby Eq. (11) 
becomes: 
 

 
If we use mean-square error distortion measure, Eq. 
(6), then the condition for optimality becomes: 
 

 
3. NEW METHOD 

In this paper we combine two conditions for 
optimality. Namely, for particular probability 
density function (pdf) we derive the expression for 
the reconstruction offsets and substitute it in the 
second condition for optimality, Eq. (11). The result 
is an equation that enables numerical computation of 
the cells widths which are necessary for construction 
of scalar quantizers. 

 In this section the aforementioned idea is 
demonstrated in case of the Laplacian source. 
Particularly, we consider the Laplacian source with 
memoryless property. In such a case, assuming unit 
variance, the probability density function of 
continuous random variable can be expressed by the 
Laplacian distribution defined as [5]:  
 

 
Without loss of generality, due to symmetry of 
scalar quantizer’s parameters that are necessary for 
construction of scalar quntizers, we may observe a 
one-sided pdf, where x≥0. Using Eq. (14), the

 

memoryless property of the Laplacian pdf allows the 
substitution: 

  

 
By substituting Eq. (15) into Eq. (10), the expression 
for determining optimal values of the reconstruction 
offsets δj as a function of the cells width αj is derived 
as: 
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Substitution of Eq. (16) into Eq. (13) through simple 
mathematical transformations yields the following 
the transcendental equation: 
 

 
The problem of solving transcendental equations 
was considered in [5] and was resolved by 
introducing the Lambert W function and some 
approximations. In this paper we suggest more 
efficient solution to this problem.  

In order to simplify the Eq. (17) we can introduce 
coefficient cj that depends on the cell width αj, such 
that: 
 

 
Now, the Eq. (17) can be given by: 
 

 
From this equation it is possible to resolve αj-1, on 
successive manner, using αj obtained in the previous 
computation step. In order to find nearly optimal 
solutions of the transcendental equations, we suggest 
an approximation by the first term of Taylor 
expression as follows: 
 

 
Combining this approximation with Eq. (19), it is we 
can compute the cell widths using the following 
iterative equation: 
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where i is counter of iterations. 
Let us summarize the proposed new method: 

Step 1. Initialization: αN=∞ δN= 2 /2  αN-1
(0)= 2  

Step 2. Computation of αj-1
(i+1) for i=0,1 and 

j=N,…,2 from Eq. (21). 
Step 3.   Stopping criterion check: 
 

 
where  ε=5·10-4 [9]. 
Step 4. If the algorithm break is satisfied then 
αj

new=αj
(i+1) and δj

new=δj(αj) , Eq. (16), for j=N-1,…,1, 
otherwise go to Step 2.  
 

4. NUMERICAL RESULTS 
Considering the facts that αN=∞ and analyzing an 

Eq. (16) we can make two following assumptions 
δ(αN-1)< 2 /2 and αN-1-δ(αN-1) is slightly greater 
than δ(αN-1). Therefore, we can assume that the 
initial value of the cell width αN-1 is αN-1

(0) 2≈ . 
Our experiments demonstrate that such choice of 
initial values lead to fast convergence. It is very 
important to point out that the quantization points yj 
are not obtained as an arithmetical mean of the 
decision thresholds that determine the quantization 
cells, as in the case of Lloyd-Max quantizers [3,4]. 

Let us describe the first computation step in more 
details. Considering the facts that αN=∞, 
δ(αN)= 2 /2 and αN-1

(0) 2≈ , and using Eq. (21), it 
is easy to calculate αN-1 and this value is marked here 
as αN-1

(1). Substituting αN-1
(0) with αN-1

(1) in Eq. (21) 
the new value for αN-1 can be obtained and that value 
is the final value of αN-1

new. The procedure of 
determining subsequent values of the step sizes αj

new, 
j=N-2,…,1 identically repeats as shown for αN-1

new. It 
is very important to point out that for calculation of 
the cell width, αj-1

new, we use, as an initial value, the 
value of the priviously callculated cell width αj

new. 
Table 1. for N=8 compares the values of the cell 

widths αj (due to the symmetry shown only for 
j=N/2+1,…,N) calculated from the transcendental 
equations (here referred to as Method I) and widths 
αj

new obtained by using the proposed new method 
(the Method II), with the optimal values αj

opt [1,2]. 
From the Table 1., it is obvious that the values of the 
cells width obtained by using both methods are 
nearly optimal. Table 2. compares the values of the 
reconstruction offsets that are calculated by using 
both methods δj  and δj

new, for  j=N/2+1,…,N (N=8) 
with the optimal values δj

opt, [1,2]. Considering the 
Table2., one can notice that appropriate values of the 
reconstruction offsets are almost identical. 

Table 1.The cells widths, for scalar quantizers with 
N=8 levels 

 

Table 2. The values of the reconstruction offsets, for 
scalar quantizers with N=8 levels 

Method I Method II Optimal values [1,2]

δ8=0.7071 δ8
new=0.7071 δ8

opt=0.707

δ7=0.4197 δ7
new=0.4198 δ7

opt=0.420

δ6=0.2998 δ6
new=0.2998 δ6

opt=0.300

δ5=0.2334 δ5
new=0.2334 δ5

opt=0.233
 

5. CONCLUSION 
The approach presented in this paper makes 

possible obviating very important problem of 
determining maximal amplitude of the input signal 
i.e., problem of determining granular region 
[6,7].The proposed method makes possible simpler 
construction of optimal scalar quantizers demanding 
less memory space to store parameter values. 
Namely, the exact solutions of the transcendental 
equations can be successively obtained (as in 
Method I discussed here). However, using the 
linearization of the transcendental equation we 
could, as in the proposed novel method (Method II), 
get the solutions very close to the exact solutions but 
much faster. Analysis presented in this paper has the 
practical importance since it could be of great help 
to engineers. Particularly, it provides fast and 
efficient design of scalar quantizers that are used for 
source coding of images [8] and speech [2]. In 
comparison to the Lloyd-Max's algorithm that 
requires the existence of 2N+1 initial values (where 
N is the number of quantization levels) the proposed 
approach requires only one initial value. 
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