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Abstract: This paper examines different approaches to remote sensing images classification. Included in the study are 
statistical approach, in particular Gaussian maximum likelihood classifier, and two different neural networks 
paradigms: multilayer perceptron trained with EDBD algorithm, and ARTMAP neural network. These classification 
methods are compared on data acquired from Landsat-7 satellite. Experimental results showed that to achieve better 
performance of classifiers modular neural networks and committee machines should be applied. 
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1. INTRODUCTION 
Recent advances in technologies made it possible 

to develop new satellite sensors with considerably 
improved parameters and characteristics. For 
example, the spectral resolution increased up to 144 
channels as in Hyperion sensor; radiometric 
resolution increased up to 14 bits as in MODIS 
sensor, etc. In turn, the use of such space-borne 
satellite sensors enables acquisition of valuable data 
that can be efficiently used for various applied 
problems solving in agriculture, natural resources 
monitoring, land use management, environmental 
monitoring, etc. 

Land cover classification represent one of the 
most important and typical applications of remote 
sensing data. Land cover corresponds to the physical 
condition of the ground surface, for example, forest, 
grassland, artificial surfaces etc. To this end, various 
approaches have been proposed, among which the 
most popular are neural networks [1] and statistical 
[2] methods. 

In this paper different approaches to remote 
sensing images classification are examined. The 
following approaches are included in the study: 
statistical approach, namely Gaussian maximum 
likelihood (ML) classifier [2], and two different 
types of neural networks: feed-forward multilayer 
perceptron (MLP) and ARTMAP neural network 
[3]. MLP is trained by means of Extended-Delta-
Bar-Delta (EDBD) algorithm [4] which represents a 
fast modification of standard error backpropagation 
algorithm [5]. In turn, ARTMAP belongs to the 
family of adaptive resonance theory (ART) networks 

[6], which are characterized by their ability to carry 
out fast, stable, on-line learning, recognition, and 
prediction. 

Comparative analysis of classification methods is 
done on data acquired by Enhanced Thematic 
Mapper Plus (ETM+) sensor of Landsat-7 satellite 
[7], and land cover data from European Corine 
project [8]. 

 
2. OVERVIEW OF RELATED WORKS 
Nowadays, various approaches have been 

proposed to land cover classification of remote 
sensing data. In past classification has traditionally 
been performed by statistical methods (e.g., 
Bayesian and k-nearest-neighbor classifiers). In 
recent years, the remote sensing community has 
become interested in applying neural networks to 
data classification. Neural networks provide an 
adaptive and robust approach for the analysis and 
generalization of data with no need of a priori 
knowledge on statistical distribution of data. It is 
particularly important for remote sensing image 
classification since information is provided by 
multiple sensors or by the same sensor in many 
measuring contexts. It is the main problem 
associated with most statistical models, since it is 
difficult to define a single model for different types 
of space-bourn sensors [9]. In this section we give a 
brief overview of approaches to remote sensing data 
classification. 

In [10] classification of remote sensing data was 
done using MLP. The main goal was the 
investigation of applicability of MLP to the 
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classification of terrain radar images. MLP 
performances were compared with those of a 
Bayesian classifier, and it was found that significant 
improvements can be obtained by the MLP 
classifier. 

Benediktsson et al. [9] applied MLP to the 
classification of multisource remote sensing data. In 
particular, Landsat MSS and topographic data were 
considered. Classification performances were 
compared with those of a statistical parametric 
method that takes into account the relative 
reliabilities of the sources of data. They concluded 
that the relative performances of the two methods 
mainly depend on priori knowledge about the 
statistical distribution of data. MLPs are appropriate 
for cases where such distributions are unknown, for 
they are data-distribution-free. The considerable 
training time required is one of the main drawbacks 
of MLP, compared with statistical parametric 
methods. 

Bischof et al. [11] reported the application of a 
three-layer perceptron for classification of Landsat 
TM data. They compared MLP performances with 
those of Bayesian classifier. The obtained results 
showed that the MLP performs better then Bayesian 
classifier. 

Dawson and Fung [12] reviewed examples of the 
use of MLP to classification of remote sensing data. 
In their study they proposed an interesting 
combination of clustering algorithms and scattering 
models to train MLP when no ground truth is 
available. 

Roli et al. [13] proposed a type of structured 
neural networks (treelike networks) to multisource 
remote sensing data classification. This kind of 
architecture allows one to interpret the network 
operations. For example, the roles played by 
different sensors and by their channels can be 
explained and quantitatively assessed. The proposed 
method was compared with fully connected MLP 
and probabilistic neural networks on images 
acquired by synthetic aperture radar (SAR) sensor. 

Carpenter et al. [14] described the ARTMAP 
information fusion system. The fusion system uses 
distributed code representations that exploit the 
neural network’s capacity for one-to-many learning 
in order to produce self-organizing expert systems 
that discover hierarchical knowledge structures. The 
fusion system infers multi-level relationships among 
groups of output classes, without any supervised 
labeling of these relationships. The proposed 
approach was tested on two testbed images, but not 
limited to the image domain. 

In [15] various algorithms are examined in order 
to estimate mixtures of vegetation types within 
forest stands based on data from the Landsat TM 
satellite. The following methods were considered in 

that study: maximum likelihood classification, linear 
mixture models, and a methodology based on the 
ARTMAP neural network. The reported experiments 
showed that ARTMAP mixture estimation method 
provides the best estimates of the fractions of 
vegetation types comparing to others.  

Hwang et al. [16] described a structured neural 
network to classify Landsat-4 TM data. A one-
network one-class architecture is proposed to 
improve data separation. Each network is 
implemented by radial basis function (RBF) neural 
network. The proposed approach outperformed other 
methodologies, such as MLP and a Bayesian 
classifier. 

 
3. METHODOLOGY 

In this section we give a brief overview of 
methodologies that will be compared for remote 
sensing image classification. 

MLP trained with EDBD. MLP represents a 
kind of feed-forward neural networks in which all 
the connections are unidirectional. MLP consists of 
an input layer, output layer, and at least one hidden 
layer of hidden neurons. Unidirectional connections 
exist from the input layer to hidden layer and from 
hidden layer to output neurons. There are no 
connections between any neurons within the same 
layer. 

Error backpropagation algorithm [5] is a popular 
method for MLP training, i.e. for neural networks 
weights adjustment. However, despite its widespread 
use for many applications, it has a drawback of 
considerable training time required. That is why in 
this study we use a fast modification of error 
backpropagation method Extended-Delta-Bar-Delta 
(EDBD) rule [4]. This algorithm is based on the 
following heuristics: 

— On each step of training process learning rate 
and momentum factor are automatically estimated 
for each neural network weight. On the first step 
initial and maximum values for learning rates and 
momentum are set, and remain constant during the 
whole training process. 

— If partial derivative of error preserves its sign 
(positive or negative) within some training steps, 
then learning rate and momentum for corresponding 
weight increases.  

— If partial derivative of error changes its sign 
within some training steps, then learning rate and 
momentum for corresponding weight decreases. 

More detailed description of EDBD algorithm 
can be found in [1, 4]. In this study for EDBD 
simulations we use MNN CAD software [17]. 

ARTMAP neural networks. ARTMAP belongs 
to the family of ART networks [6], which are 
characterized by their ability to carry out fast, stable, 
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on-line learning, recognition, and prediction. These 
features differentiate ARTMAP from the family of 
feed-forward MLPs, including backpropagation, 
which typically require slow learning. ARTMAP 
systems self-organize arbitrary mappings from input 
vectors, representing features such as spectral values 
of remote sensing images and terrain variables, to 
output vectors, representing predictions such as 
vegetation classes or environmental variables. 
Internal ARTMAP control mechanisms create stable 
recognition categories of optimal size by 
maximizing code compression while minimizing 
predictive error. 

ARTMAP is already being used in a variety of 
application settings, including industrial design and 
manufacturing, robot sensory motor control and 
navigation, machine vision, and medical imaging, as 
well as remote sensing [14, 15]. A more detailed 
description of ARTMAP neural networks can be 
found in [3]. For ARTMAP simulations we use 
ClasserScript v1.1 software [18] from 
http://profusion.bu.edu/techlab/. 

Gaussian Maximum Likelihood Classification. 
The ML classifier is one of the most popular 
methods of classification in remote sensing, in 
which a pixel with the maximum a posteriori 
probability is classified into the corresponding class. 
In the case of multivariate Gaussian distribution a 
posteriori probability is defined as follows: 
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where µi and Σi are ith class mean vector and 
covariance matrix, respectively, L is the number of 
classes and input x∈Rp. Assuming equally likely 
classes, the ML classification rule then is given by: 
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The ML method has an advantage from the view 

point of probability theory, but care must be taken 
with respect to the following items: 

— Sufficient ground truth data should be 
sampled to allow estimation of the mean vector and 
the variance-covariance matrix of population. 

— The inverse matrix of the variance-covariance 

matrix becomes unstable in the case where there 
exists very high correlation between two bands or 
the ground truth data are very homogeneous.  

— When the distribution of the population does 
not follow the Gaussian distribution, the ML method 
cannot be applied. 

 
3. DATA DESCRIPTION 

An image acquired by ETM+ sensor of Landsat-7 
satellite was used for comparative analysis of above-
described methods (Fig. 1, a). Parameters of image 
in World Reference System (WRS) [19] are 
path=186, row=25. Date of image acquisition is 
10.06.2000. Dimensions: 4336x2524 pixels (30 m 
resolution) = 130x76 km. 

 

(a) Landsat-7 image 

(b) Corine data 

Fig. 1 – (a) Image acquired by ETM+ sensor of 
Landsat-7 satellite (spatial resolution: 30 m). Area 
covers south-eastern part of Poland that borders 
with Ukraine. (b) Data for the same area provided by 
Corine project (spatial resolution: 100 m). The study 
area is dominated by forests, arable lands, and 
pastures. © EEA, Copenhagen, 2000. 

 
 
ETM+ sensor provides data in 6 visible and infra-

red spectral ranges with spatial resolution 30 m 
(bands 1-5 and 7); in thermal spectral range with 
spatial resolution 60 m (band 6), and in 
panchromatic range with spatial resolution 15 m 
(band 8). In this study we use as input to 
classification methods the six spectral bands 1-5 and 
7. 

In raw Landsat-7 images pixel values are digital 
numbers (DN) ranging from 1 to 255 (8 bits per 
pixel). Since these values are influenced by solar 
radiation [20], a procedure of converting DNs to at-
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satellite reflectance was applied according to [21]. 
In such a case pixel values lie in range [0; 1]. 

Since in this study we examine methods of 
supervised classification we need to provide so 
called ground truth data (sample pixels) in order to 
estimate weights and parameters of neural networks 
and statistical models. Unfortunately, we didn’t have 
a possibility of gathering corresponding independent 
field (in-situ) data. In this case we use data provided 
by European Corine project for land cover 
classification. In particular, we use CLC 2000 
version of this project (Fig. 1, b). 

Additionally, the following information was also 
used to distinguish land cover classes on Landsat-7 
image. 

— Estimated Normalized Difference Vegetation 
Index (NDVI): 

NDVI=(ETM4-ETM3)/(ETM4+ETM3) 
where ETM3 and ETM4 are at-satellite reflectance 
values for spectral bands 3 and 4 respectively; 

— Tasseled Cap transformation [20] that is based 
on principal component analysis (PCA) algorithm 
[22], and allows one to have decorrelated 
components. Moreover, in tasseled cap 
transformation first three major components has the 
following physical meaning: brightness, greenness, 
and wetness. 

In this study eight target output classes were 
specified (Table 1). 

 
Table 1. Class titles, Corine code levels, and number of 

sample pixels for each class* 

# Class Title Corine 
Code 
Level 

Number 
of pixels 

1 Broad-leaved forest 311 17890 
2 Coniferous forest 312 20025 
3 Mixed forest 313 10110 
4 Non-irrigated arable 

land 
211 25588 

5 Pastures 231 9177 
6 Inland waters 51x 7379 
7 Artificial surfaces 1xx 12369 
8 Open spaces with little 

or no vegetation 
33x 2799 

 Total  105337 
* x symbol is used to denote lower level classes that cannot be 
discriminated on Landsat-7 images. For example, it is hardly 
possible to distinguish water courses (e.g. rivers) from water 
bodies (e.g. lakes), or different types of artificial surfaces since 
their spectral characteristics do not differ. For this purpose, 
additional information should be provided 

 
5. RESULTS OF EXPERIMENTS 

Performance Measures and Training and 
Testing Protocols. For comparative analysis of 
neural networks and statistical models for Landsat-7 
image classification we use the same measure and 

the same training and testing sets. Performance of 
classification methods was evaluated in terms of 
classification rate. Both overall classification rate for 
all sample pixels and classification rate for each 
class separately were estimated. 

Training and testing was done using five-fold 
cross-validation procedure [1, 23] as statistical 
design tool for methods assessment. According to 
this procedure available set of sample pixels is 
divided into five disjoint subsets; i.e. each subset 
consists of 20% of data. Models are trained on all 
subsets except for one, and classification rate is 
estimated by testing it on subset left out. All 
reported results reflect values averaged across 5 
training/testing runs. So, this procedure produces 
robust performance measures while ensuring that no 
test sample pixels were ever used in training. 

From table 1 it can be seen that number of 
sample pixels among target classes varies 
considerably. For example, there are 25588 sample 
pixels labeled “Non-irrigated arable land”, and 7379 
sample pixels labeled “Inland waters”. In order to 
prevent imbalances of exemplars for neural 
networks models, we copied existing sample pixels 
for each class to be the same size. Such procedure 
allows one to “generate” training sets of the same 
size. 

Input and Output Representation. Six channels 
from ETM+ sensor, namely 1-5 and 7, were selected 
to form feature vector for each pixel. Components of 
such vector represent at-satellite reflectance values 
lying in the range [0; 1]. 

Considering output coding for neural networks 
models, both MLP and ARTMAP have 8 output 
neurons corresponding to 8 target classes. During 
training target output is set to 1 for pixels belonging 
to such a class; otherwise, they are set to 0. 

Classification with MLP. Five-fold cross-
validation procedure was repeated at different MLP 
architectures: with 5, 15, 20, 25, 35, and 45 hidden 
neurons. Only one hidden layer was used in this 
study. For MLPs training EDBD algorithm was 
applied. Training was stopped after 500 epochs. 
Save best mode was applied during training process. 
Within this mode training and testing are 
sequentially applied to neural network. After each 
test the current classification rate is compared with 
previous results, and neural network is saved as the 
best one if current result is better than previous. 

In all simulations initial values for learning rate 
and momentum factor in EDBD algorithm were set 
to 0.7 and 0.5 respectively. 

Table 2 shows averaged classifications rates on 
testing sets for different MLP architectures. 
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Table 2. Averaged cross-validation results for MLP 
trained with EDBD algorithm* 

 MLP Architecture 
(number of hidden neurons) 

Class 
no. 

5 15 20 25 35 45 

1 97.63 98.78 98.99 99.02 99.15 98.97 
2 80.95 83.57 83.99 84.20 84.64 85.67 
3 67.09 68.70 68.12 68.38 68.00 67.37 
4 85.44 87.72 88.24 89.03 89.84 89.56 
5 86.16 90.42 91.55 90.41 91.01 91.43 
6 97.14 97.71 97.66 97.75 97.63 97.64 
7 69.09 83.45 84.09 83.99 83.46 83.56 
8 95.57 96.82 96.28 96.53 96.79 96.52 

Total 84.88 88.40 88.62 88.68 88.81 88.85 
* the best estimates are indicated in boldface type 

 
The best value of classification rate was obtained 

for MLP with 45 hidden neurons. 
Classification with ML. Mean vectors and 

covariance matrixes were estimated for each class 
using each of five training sets. For this purpose we 
use the following standard estimates 
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where j

ix  is jth sample of ith class, and Mi is 
number of sample pixels in ith class. 

Averaged classifications rates on testing sets for 
Gaussian ML classifier are shown in Table 3. 

Table 3. Averaged cross-validation results for ML 
classifier 

Class 
no. 

 

1 98.73 
2 83.68 
3 67.68 
4 89.66 
5 92.82 
6 96.57 
7 82.18 
8 96.75 

Total 88.02 
 
Classification with ARTMAP. Five-fold cross-

validation procedure was repeated for different 
vigilance parameters of ARTMAP network: 0.1, 0.2, 
0.3, 0.5, and 0.95. The obtained results are shown in 
Table 4. 

The best value of classification rate was obtained 
for ARTMAP with vigilance parameter set to 0.95. 

 

Table 4. Averaged cross-validation results for 
ARTMAP neural network* 

 Vigilance parameter 
Class 
no. 

0.1 0.2 0.3 0.5 0.95 

1 98.92 99.68 99.56 98.52 99.88 
2 79.58 80.86 80.34 79.16 80.88 
3 69.14 68.16 68.66 69.36 68.14 
4 81.50 81.50 81.72 81.88 83.50 
5 76.48 74.26 75.34 74.10 78.94 
6 96.70 96.60 96.76 97.40 93.76 
7 79.38 77.28 78.32 77.12 76.78 
8 96.42 97.36 97.00 97.54 98.24 

Total 83.68 83.80 83.74 83.24 84.22 
* the best estimates are indicated in boldface type 

 
Comparison of classification methods. The 

comparative analysis of best results obtained by 
neural networks models with ML classifier show no 
preferences of one method on others (Table 5). 

Table 5. Comparison of classification methods* 

 Method 
Class 
no. 

MLP ML ARTMAP 

1 98.97 98.73 99.88 
2 85.67 83.68 80.88 
3 67.37 67.68 68.14 
4 89.56 89.66 83.50 
5 91.43 92.82 78.94 
6 97.64 96.57 93.76 
7 83.56 82.18 76.78 
8 96.52 96.75 98.24 

Total 88.85 88.02 84.22 
* the best estimates are indicated in boldface type 

 
The best overall classification rate of 88.85% (on 

all sample pixels) was achieved by using MLP. 
Considering classification rates obtained for classes 
separately, different methods performed better on 
different classes. For class no. 2, 6, and 7 MLP 
outperformed ARTMAP and ML classifier. In turn, 
ARTMAP neural network was better for classes 1, 3, 
8, and ML classifier was better for classes 4 and 5. 

The worst performance of all classification 
methods was achieved for class no. 3, “Mixed 
forest” (maximum 68.14% by ARTMAP). This is 
due to the fact that mixed forests (class 3) consist of 
both broad-leaved (class 1) and coniferous forests 
(class 2), and its corresponding spectral properties 
mix up. 

 
6. CONCLUSIONS AND FUTURE WORKS 

In this paper we examined different neural 
networks models, in particular MLP and ARTMAP 
networks, and statistical approach, namely 
maximum likelihood method, for classification of 
remote sensing images. For comparative analysis of 
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these methods data acquired by ETM+ sensor of 
Landsat-7 satellite and land cover data from 
European Corine project were used. The best overall 
classification rate for all classes (88.85%) was 
achieved by using MLP. While considering 
classification rates obtained for classes separately, 
different methods performed better on different 
classes. This, probably, is due to the complex 
topology of data that were used in this paper, and, 
thus, for different classes different classification 
methods are appropriate. The analysis of available 
data set represents a separate task, and is not covered 
in this article. 

In order to improve performance of methods for 
remote sensing image classification future works 
should be directed to the use of modular neural 
networks and committee machines. It envisages the 
use of different models within a single architecture 
(e.g. neural networks with various parameters, or 
neural networks combined with statistical methods) 
allowing one to exploit advantages of different 
classification methods. 
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