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Abstract: Static and dynamic simulation models of a section of a mine ventilation network in order to research a 
sequential neural control scheme of mine airflow are developed in this paper. The techniques of neural network 
training set creation for both simulation models, a structure of neural network and its training algorithm are described. 
The simulation modeling results using static and dynamic models have showed good potential capabilities of neural 
control approach. 
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1. INTRODUCTION 
A problem of allowable concentration control of 

dangerous gases CH4 and CO is very urgent in coal 
mines and other closed environments due to safety 
of the people working in such areas. For instance, 
coal mining industry is a tough industry in every 
country. For example, in 2001 there were 6.63 
fatalities per million tons of coal equivalent (mtce) 
produced in China's mines, 0.02 fatalities per mtce 
in Australia, 0.83 in Russia, and 0.48 in India [1]. 
Therefore development of an Automated Control 
Systems for coal-mine ventilation in order to prevent 
fatalities is a crucial issue today. It is obvious, that 
recent advances in science and technology should be 
used to fulfill this task. Thus we should account two 
properties of such automatic ventilation control 
system at least: (i) the sensors must supply the 
system by accurate information in order to provide 
precise ventilation control and (ii) the system should 
provide adaptive ventilation control in normal and 
unexpected exploitation conditions. 

Usage of multi-parameter sensors based on SnO2 
twin film, for example produced by Figaro Inc [2], is 
economically desirable for fulfillment of the first 
task. A high accuracy of a measurement system 
could be reached by using neural networks to 
recognize the output signal of the multi-parameter 
sensor [3-4].  

A complexity of the second task is caused by (i) 
stochastic character of aerogasdynamic processes in 
mine ventilation networks (MVN), (ii) changing the 

MVN topology and parameters, (iii) huge 
distribution of the control system and large number 
of measurement sensors [5, 6]. The MVN 
aerogasdynamic processes are characterized as 
objects with distributed parameters where airflow 
dynamics is described by a system of differential 
equations with partial derivatives [6]. A solution of 
such a system for real objects requires high 
qualification of the mathematician and considerable 
computing power. It is expedient to note, than 
nonlinear characteristics make worse MVN 
modeling, in particularly airflow speed and foil 
gases concentration. Moreover additional factors 
such as noise, handicaps and plurality of feedbacks 
have complicated the control strategies. From the 
point of view of control theory coal mine ventilation 
is a multivariable control problem where acting in 
one MVN branch affects the airflow and 
concentration in the other branches in an unexpected 
way [7,8].  

Most of the today’s control strategies are based 
on an idea of system’s linearization [9]. First of all it 
is necessary to develop adequate mathematical 
model for a practical implementation of this 
approach. However the mathematical modeling 
based on hypothesis of a linearity of the control 
object does not reflect its true properties. Non-linear 
mathematical models [6, 8] quite enough reflect real 
properties of the object, but they are quite 
complicated and, therefore, practically could not be 
used effectively for a control. Statistical models [10] 
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can be classified as good models, but their 
assumptions often do not provide enough accuracy 
of the control system. Nowadays there are several 
well-known approaches to mine ventilation control 
such as prediction on methane emission by 
mathematical methods [11-12], analysis of 
ventilation control systems by operational research 
[13] and modeling of ventilation processes by 
correlation approach [14]. 

Against the mentioned above methods, adaptive 
control approaches [15-18] provides better control at 
reducing of complexity of mathematical model 
describing control object in terms of artificial neural 
network. A neural network-based approach can 
provide better results in comparison with other 
approaches due to high generalized properties, self-
training and self-adaptation of neural network. 
Adaptive neural control is widely used in different 
areas, for example in aircraft industry [19], nonlinear 
[20] and robotic systems [21], chemistry [22], 
energy management [23], chaotic processes [24], 
medical science [25] etc. 

The goal of this paper is to estimate neural-based 
method of airflow control for the section of mine 
ventilation network using two simulation models 
which describe a behavior of aero-gas processes in 
static and dynamic modes. 

2. A SEQUENTIAL NEURAL CONTROL 
SCHEME 

Preliminary analysis shown [15-18], that 
sequential neural control scheme (Fig. 1) could 
provide enough control efficiency due to absence of 
additional control branches such as additional 
controllers. The control is provided by the following 
way [18]: getting the reference signal r  on the input, 
preliminary trained neural network (NN) recovers it 
to the control influence u  for the control object. 
According to this control influence the control object 
changes own state and its output signal y  which 
might be close to the reference signal r . If the state 
of control object is changed under external influence 
factors, then this changing goes to NN input. NN 
forms new control influence u  in order to 
compensate the change of output signal y . In 
general case NN might have several inputs and 
outputs, therefore the variables described above 
might be considered as sets 
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It is seen from Fig. 1, the NN transforms input 

space of control object’s states y  into output space 
of control influences u .  
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Fig. 1 – Sequential neural control scheme 

 
3. NEURAL NETWORK MODEL 

The multi-layer perceptron can be used for this 
research with nonlinear activation functions because 
this kind of NN has the advantage of being simple 
and widely used for the control problems [26-28]. 

The output value of three-layer perceptron (Fig. 
2) can be formulated as:  
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where N  is the number of neurons in the hidden 
layer, 3iw  is the weight of the synapse from neuron 

i  in the hidden layer to the output neuron, ih  is the 
output of neuron i , T  is the threshold of the output 
neuron and 3F  is the activation function of the 
output neuron.  

The output value of neuron j  in the hidden layer 
is given by: 
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where ijw  are the weights from the input neurons to 
neuron j  in the hidden layer, ix  are the input values 
and jT  is the threshold of neuron j . The logistic 
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activation function is used for the neurons of the 
hidden layer and the linear activation function, 
having a coefficient k , is used for the output neuron 
[29].  
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Fig. 2 – Structure of neural network 

The back propagation error algorithm [30] is used 
for the training algorithm. It is based on the gradient 
descent method and provides an iterative procedure 
for the weights and thresholds updating for each 
training vector p  of the training sample: 
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where α  is the learning rate, 
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are the gradients of the error function on each 
iteration t  for the training vector p  with 

},...,1{ Pp∈ , where P  is the size of the training set. 
The Sum-Squared Error (SSE), for training 

iteration t , is calculated as: 
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where for the training vector p , )(ty p  is the output 
value on iteration t  and )(td p  is the target output 
value. 

During training, the total error is calculated as: 
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The steepest descent method for calculating the 

learning rate [29] is used for removing the classical 
disadvantages of the back propagation error 
algorithm. Thus, the adaptive learning rate for the 
logistic and linear activation functions are given, 
respectively, by: 
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where, for the training vector p  and iteration t , 

)(tp
jγ  is the error of neuron j  and )(th p

i  is the input 
signal of the linear neuron. 

The error of neuron i  with logistic activation 
function can be determined by the relation: 
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where )()()(3 tdtyt ppp −=γ  is the error of the output 

neuron, )(3 twi  is the weight of the synapses between 
the neurons of the hidden layer and the output 
neuron. 

A slight modification of the back propagation 
error algorithm, called multiple propagation error, 
has been implemented in order to stabilize the 
training process [31]. This approach consists in 
modifying the weights of only one layer of the 
neural network during a single training iteration. 
This algorithm includes thus the following steps: 

1. Set the desired value of SSE to minE ; 
2. Initialize the weights and the thresholds of 
the neurons by values in the range (0-0.5); 
3. Set a counter for the number of neural 
network layers, LAYERS ; 
4. If 2=LAYERS  then calculate the output 
value )(ty p  using expression (3.2) for the training 
vector p  and perform the steps 5 and 6; 
5. Calculate the error of the output neuron: 

)()()(3 tdtyt ppp −=γ ; 
6. Update the weights and the thresholds of the 
output neuron by (3.3) using the adaptive 
learning rate given by (3.6); 
7. Decrease the number of current layer 
LAYERS  by one unit; 
8. If 1=LAYERS  then calculate the error )(tp

jγ  
of the neurons of the hidden layer by (3.7);  
9. Update the weights and the thresholds of the 
neurons of the hidden layer by (3.3) using the 
adaptive learning rate (3.6) for the logistic 
activation function; 
10. Calculate the SSE for the training iteration t  
using (3.4); 
11. Repeat the steps from 3 to 10 for all the 
other vectors in the training set; 
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12. Calculate the total SSE, )(tE  of the neural 
network using (3.5); 
13. If )(tE  is still greater than the desired error 

minE  then go to step 3, otherwise stop the 
training process. 

 
4. AIRFLOW CONTROL MODEL OF 
 MINE VENTILATION NETWORK IN 

STATIC MODE 
 

4.1 SIMULATION MODEL OF MVN 
SECTION 

The main task of MVN is to provide ventilation 
modes of mine sections taking into account high 
intensity of gas emission according to safety 
requirements [7]. The ventilation modes are 
characterized by airflow Q  and methane 
concentration c  within required MVN section. Safe 
concentration of methane c  is provided by airflow 
adjustment Q∆ , which should be considered as a 
control influence in relation to the concentration c .  

In static ventilation mode parameters Q  and c  
are related by the following equation [6]: 
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where mQ  is a methane emission to section’s 
atmosphere. 

The airflow adjustment 12 tt QQQ −=∆  can be 
estimated by a concentration change 12 tt ccc −=∆  at 
two sequential moments of time 2t  and 1t . Then the 
mine section can be divided on several parts which 
should be indexed by index s . Substituting the 
variables 2tc  and 1tc  in (4.1), we can derive an 
expression for concentration change  
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where QQQ ms +=  is the change of methane and air 
mixture which form appropriate methane 
concentration in the MVN section with index s .  

For example, the fragment of MVN section, 
where indexes 2, 3, 4, 5 are numbering the parts of 
MVN, is presented on Fig. 3. Let us suppose that 
sensor S1 is installed in main ventilation drift 2, 
sensors S2 and S3 are installed in longwall 3, 4, 
sensor S4 is installed in main entry 5. Sensors S1-S4 
measure methane concentrations on the mentioned 
parts of MVN section. The numerical parameters of 
the simulation model are based on the real data of 

MVN sections gathered from work [6]. Thus the 
airflow adjustment for s -part of MVN section can 
be defined from equation (4.2) 
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Fig. 3 – A fragment of mine ventilation network 

section used to design a simulation model 

 
4.2 AIRFLOW NEURAL CONTROL 

MODEL 
Let us suppose for the simulation model on Fig. 

3, that methane concentration c  can take the values 
from the set %6.0{ , %8.0 , %0.1 , %2.1 , %}4.1 . The 
methane concentration c =1.5% is a maximum 
allowable value (all people should be evacuated 
from the coal mine at ≥c 1.5%) and methane 
concentration c =0.5% is a minimal with no 
necessity to ventilate. Then concentration change 

c∆  will take the values from the set %1.0{ , %3.0 , 
%5.0 , %7.0 , %}9.0  respectively. According to the 

sequential neural control scheme described in 
section 2, the concentrations 41... cc ∆∆  from each of 
s -parts of MVN section should be the input data of 

NN, necessary airflow ∑
=

Σ =∆
4

1i
iQQ  (Fig. 4) should 

be the output value of NN (control sequence).  
The algorithm for NN training set forming for the 

simulation model in Fig. 3 can be described as 
following: 

1. To define all possible combinations of 
concentrations change 41... cc ∆∆  according to 
possible values from the set above ; 
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2. To calculate the value of control influences 
41... QQ ∆∆  using (4.1) and (4.3) for each s -part of 

MVN section and to calculate ∑
=

Σ =∆
4

1i
iQQ  for all 

possible combinations 41... cc ∆∆  from point 1 
above; 
3. To save obtained NN training vectors according 
to the Table 1. 
 

Table 1. Structure of the NN training vector within 
static simulation model 

Input values 

1c  2c  3c  4c  

Output 

0.6 0.6 0.6 0.6 106.4 
… … … … … 
1.4 1.4 1.4 1.4 957.6 
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Fig. 4 - Airflow neural control model in static mode 

 

4.3 SIMULATION MODELING RESULTS 
Simulation modeling should show experimentally 

the optimal choice of NN structure and its training 
parameters from the point of view of accuracy of 
control influences recovering and real time operation 
[32]. 

During the experiments the NN is trained on 400 
vectors. It tested on 225 testing vectors which did 
not included in the training set. Simulation modeling 
results with different number of the hidden layer 
neurons are shown on Fig. 5. The relative error of 
control influences recovering is increasing from 
0.1% to 8% at increasing the number of hidden layer 
neurons from 5 to 30. Also the training time is 
increased from 8 to 15-20 seconds. Therefore, NN 
structure 4-5-1 provides better result, i.e. minimal 
relative error of control influence recovering and 
minimal training time. 

Therefore let us use this NN model further to 
investigate the training parameters. Simulation 
modeling results with different values of SSE are 
shown on Fig. 6. The relative error of control 
influences recovering does not exceed 1% and 
decreases till 0.07% at increasing of SSE till 10-8, 
the training time is increasing from 5 to 30 seconds 
respectively. The relative error of control influences 

recovering is allowable for all values of SSE 
according to the safety rules of mine ventilation. 
Therefore necessary SSE values for the training 
should be chosen to provide needed real working 
time of mine ventilation system. 
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Fig. 5 – Dependencies of relative recovering error 
and training time from the number of hidden layer 

neurons 
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Fig. 6 – Dependencies of relative recovering error and 

training time from the SSE values 

 
5. AIRFLOW CONTROL MODEL OF MINE 
VENTILATION NETWORK IN DYNAMIC 

MODE 
 

5.1 SIMULATION MODEL OF MVN 
SECTION 

In order to build a simulation model of MVN 
section in dynamic mode it is necessary to consider 
one of the most distributed ventilation scheme of 
coal-mine section [7] with trilateral fitting of mined-
out space (forward way) to entry, longwall and 
ventilation drift (Fig. 7). 
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space 

vpQ  

Longwall

Entry 
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Fig. 7 - Ventilation scheme of coal-mine section with 

trilateral fitting of mined-out space 

The coal-mine section as a control object in 
general is described by differential equation [6] of 
transient aerodynamic process of airflow Q  forming 
in the entry caused by a depression H  provided by 
main ventilation fans and aerodynamic resistances of 
the section R  and the gate RR , which adjusts 
outgoing airflow from ventilation drift (see Fig. 7). 
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1 , (5.1) 

where 
S

lk ⋅
=
ρ  is inertia coefficient, which can be 

defined by air density ρ , section length l  and 
equivalent cross-section S  of the coal-mine section. 

Danger methane concentration in coal-mine 
section is caused by methane debits of the following 
components: mined-out space, longwall and 
ventilation drift. However the ventilation process 
changes the values of methane concentrations in 
these components. Therefore it is necessary to create 
the simulation models, which describe the debits and 
charges of each component in order to develop the 
simulation model of whole MVN section. 

A model of aerogas environment of mined-out 
space should describe transient aerodynamic 
processes in the open area, which remains after 
mining the coal banks, and therefore it should be 
considered as filtration space. Airflow filtration in 
this case is caused by distributed difference of 
pressures among the shafts and non-linear 
aerodynamic resistance of mined-out space. 
Dynamics of methane debit mQ  from mined-out 
space is described by model [6] 
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where mT  is a time constant, mQ0  is initial methane 
volume in mined-out space, β  is specific 
aerodynamic resistance of mined-out space. 

However the expression (5.2) is not convenient 

for creation of simulation software because of 
dt

dQ 2

 

part of the expression. Therefore it is necessary to 
integrate both left and right parts of the expression 
and remove the differential at 2Q  
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The methane, which gets out from the sources in 

the mined-out space, is mixed with the airflow that 
creates the debit of air-methane mixture vpQ  on the 
all length of ventilation drift with methane 
concentration vpC . The dynamics of this process is 
described by expression [6] 
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where vpV  is a volume of mined-out space. 
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The longwall is the place of direct coal mining. 
The slope angle of the longwall is equal of the 
occurrence angle of the coal banks. A model of 
aerogas environment of longwall should account 
transient process of longwall atmosphere saturation 
by the methane. It can be described by the following 
differential equation [6]  

 

( )lmllml
l

l CQQQ
Vdt

dC
⋅+−= )(1 ,  (5.5) 

 
where lV  is a volume of longwall, mlQ  is a volume 
of the methane in longwall, lQ  is a volume of the air 
in the mixture, lC  is a methane concentration in the 
longwall. 

The debit of air-methane mixtures from mined-
out space vpQ  and longwall mll QQ +  forms the 
resulting flow of air-methane mixture shQ  in the 
ventilation drift with methane concentration shC . A 
model of aerogas environment of ventilation drift is 
described by the following differential equation [6]  
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where mdQ  is a volume of methane gets out from the 
mined-out space, mldQ  is a volume of methane gets 
out from the longwall, shV  is a volume of ventilation 
drift. 

Let us use this simulation model for neural-
control system described in the following section. 

5.2 AIRFLOW NEURAL CONTROL 
MODEL 

The main difference of a control system based on 
dynamic simulation model against previous static 
model is usage of a simulated time on the NN input 
(Fig. 8). Because NN training and NN-based control 
is fulfilled on the simulation model developed in the 
section 5.1. It is obvious, that real time will be used 
on the NN input in real exploitation conditions of the 
control system.  

During training the training set, consisting from 
several curves, which describe the dynamics of aero-
gas environment of coal-mine section, is putted on 
NN input. These curves are obtained during 
simulation modeling of models (5.1)-(5.6) in 
MATLAB/Simulink tool. The structure of NN input 
training vector is presented in Table 2. 

The goal of training is decreasing of appropriate 
concentrations shlvp CCC ,,  to safe level without 
methane outbursts in the parts of coal-mine section 
by changing airflow )(tQ . These outbursts are 
caused by airflow )(tQ  jumps during the control and 
they outperform allowable limit concentrations. The 
NN training process, characterized by iterative 
modifications of NN synapses and thresholds, is 
depicted by stroke line in Fig. 8.  

In the control mode NN recovers desirable curve 
of airflow )(tQ  for appropriate values of input 
concentrations shlvp CCC ,,  and their absolute errors 

shlvp CCC ∆∆∆ ,, . In the control mode the synapses and 
thresholds of NN do not change, the stroke line on 
Fig. 8 does not work. 
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Fig. 8 - Airflow neural control system in dynamic mode 

Table 2. Structure of NN training vector within dynamic simulation model 

Input NN values Output NN value 
)(tCvp  )(tCl  )(tCsh  )(tCvp∆  )(tCl∆  )(tCsh∆  t  )(tQ  

% % % % % % seconds m3/seconds 
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5.3 SIMULATION MODELING RESULTS 

The response of the system (changing methane 
concentrations shlvp CCC ,, ), caused by step junction 
of the airflow at point-to-point control is showed on 
Fig. 9. As it is shown the point-to-point control 
approach does not provide necessary allowable 
limitations of the control object. We can see huge 
methane outbursts (up to 11% concentration in the 
mined-out space and up to 3.5% concentration in the 
ventilation drift) at airflow jump. These outbursts 
are caused by accumulation of the methane in places 

with low quantity of air circulation and methane 
blowing at jumped changing of the section’s airflow 
[6]. 

The response of the system does not have 
methane concentration outbursts (Fig. 10) at usage 
of neural control system. It is caused by non-linear 
airflow changing that is provided by non-linear 
internal synapses and thresholds of NN. Usage of 
NN provides necessary airflow dynamics at different 
values of methane concentrations shlvp CCC ,,  and its 
absolute errors shlvp CCC ∆∆∆ ,, . 
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Fig. 9. Changing methane concentrations in mined-out space (b), longwall (c) and  

ventilation drift (d) at point-to-point airflow control (a) 

 
6. CONCLUSIONS 

The simulation models of coal-mine section in 
static and dynamic modes are developed in this 
paper. The simulation model in static mode allows 
just estimate the potential capabilities of artificial 
neural networks for airflow control in mine 
ventilation networks. The dynamic simulation model 
adequately represents the dynamics of aerogas 
processes in the sections of mine ventilation 

networks [6]. Simulation modeling results gathered 
on dynamic model is showed better control quality 
in comparison with widely used point-to-point 
approach. However neural control method is 
considerably increased the transient process time of 
airflow control. For future research it is necessary to 
optimize the neural network method towards 
decreasing the transient process time. 
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Fig. 10. Changing methane concentrations in mined-out space (b), longwall (c) and 

 ventilation drift (d) at neural airflow control (a) 
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