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Abstract: The work of Alan Turing and John von Neumann on machine intelligence and artificial automata is 
reviewed. Turing's proposal to create a child machine with the ability to learn is discussed. Von Neumann had doubts 
that with teacher based learning it will be possible to create artificial intelligence. He concentrated his research on the 
issue of complication, probabilistic logic, and self-reproducing automata. The problem of creating artificial intelligence 
is far from being solved. In the last sections of the paper I review the state of the art in probabilistic logic, complexity 
research, and transfer learning. These topics have been identified as essential components of artificial intelligence by 
Turing and von Neumann. 
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1. INTRODUCTION 
Computer based research on machine intelligence 

started about 60 years ago, parallel to the 
construction of the first electronic computers.  
Therefore it seems to be time again to compare 
todays state-of-the art with thoughts and proposals at 
the very beginning of the computer age. I have 
chosen Alan Turing and John von Neumann as the 
most important representatives of the first concepts 
of machine intelligence.  Both researchers actually 
designed electronic computers, but they also 
reflected about what the new electronic computers 
could be expected to solve in addition to numerical 
computation. Both discussed intensively the problem 
how the performance of the machines will ultimately 
compare to the power of the human brain. 

In this paper I will first review the work of Alan 
Turing, contained in his seminal paper "Computing 
Machinery and Intelligence" [17] and in the not so 
well known paper "Intelligent Machinery" [18]. 
Then I will discuss the most important paper of John 
von Neumann concerning our subject "The General 
and Logical Theory of Automata" [22].  All three 
papers have been written before the first electronic 
computers became available. Turing even wrote 
programs for paper machines. 

I will describe the thoughts and opinions of 
Turing and von Neumann in detail, without 
commenting them using todays knowledge. Then I 
will try to evaluate their proposals in answering the 
following questions  

• What are their major ideas for creating 
machine intelligence?  

• Did their proposals lack important 
components we see as necessary today? 

• What are the major problems of their 
designs and do their solutions exist 
today? 

This paper extends my research started in [12]. 
 

2. TURING AND MACHINE 
INTELLIGENCE 

The first sentences of the paper "Computing 
machinery and intelligence" have become famous. "I 
propose to consider the question ‘Can machines 
think?’ This should begin with definitions of the 
meaning of the terms ‘machine’ and ‘think’ ... But 
this is absurd. Instead of attempting such a 
definition I shall replace the question by another, 
which is closely related to it and is expressed in 
relatively unambiguous words. The new form of the 
question can be described in terms of a game which 
we call the imitation game." 

The original definition of the imitation game is 
more complicated than what is today described as 
the Turing test. Therefore I describe it shortly. It is 
played with three actors, a man (A), a woman (B) 
and an interrogator (C). The object of the game for 
the interrogator is to determine which of the other 
two is the man and which is the woman.  It is A's 
objective in the game to try and cause C to make the 
wrong identification. Turing then continues: "We 
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now ask the question ‘What will happen when a 
machine takes the part of A in the game?’ Will the 
interrogator decide wrongly as often when the game 
is played as this as he does when the game is played 
between a man and a woman? These questions will 
replace our original "Can machines think?" 

Why did Turing not define just a game between a 
human and a machine trying to imitate a human, as 
the Turing test is described today? Is there an 
additional trick in introducing gender into the game?  
There has been a quite a lot of discussions if this 
game characterizes human intelligence at all. Its 
purely behavioristic definition leaves out any 
attempt to identify important components which 
together produce human intelligence. I will not enter 
this discussion here, but just state the opinion of 
Turing about the outcome of the imitation game. 

"It will simplify matters for the readers if I 
explain first my own beliefs in the matter.  Consider 
first the more accurate form of the question. I 
believe that in about fifty years' time it will be 
possible to programme computers with a storage 
capacity of about 109 bits to make them play the 
imitation game so well that an average interrogator 
will not have more than 70% chance of making the 
right identification after five minutes of 
questioning." 

The accurate form of the question is obviously 
artificial definite: Why a 70% chance, how often has 
the game to be played, and why a duration of five 
minutes? In the next section I will discuss what 
Turing lead to predict 50 years. The prediction is 
derived in section 7 of his paper [17].  
 

3. TURING’S CONSTRUCTION OF AN 
INTELLIGENT MACHINE 

In section 7 Turing discusses how to build an 
intelligent machine. In the sections before Turing 
mainly refuses general philosophical arguments 
against the possibility of constructing intelligent 
machines. "The reader will have anticipated that I 
have no very convincing argument of a positive 
nature to support my views. If I had I should not 
have taken such pains to point out the fallacies in 
contrary views. Such evidence as I have I shall now 
give." What is Turing's evidence? 

"As I have explained, the problem is mainly one 
of programming. Advances in engineering will have 
to be made too, but it seems unlikely that these will 
not be adequate for the requirements. Estimates of 
the storage capacity of the brain vary from 1010 to 
1015 binary digits1. I incline to the lower values and 

                                                 
1 At this time the number of neurons was estimated as 
being between 1010 to 1015. This agrees with the estimates 
using todays knowledge. 

believe that only a small fraction is used for the 
higher types of thinking. Most of it is probably used 
for the retention of visual impressions. I should be 
surprised if more than 109 was required for 
satisfactory playing of the imitation game. Our 
problem then is to find out how to programme these 
machines to play the game. At my present rate of 
working I produce about a thousand digits of 
programme a day, so that about sixty workers, 
working steadily through fifty years might 
accomplish the job, if nothing went into the 
wastepaper basket." 

The time to construct a machine which passes the 
imitation game is derived from an estimate of the 
storage capacity of the brain2 and the speed of 
programming. Turing did not see any problems in 
creating machine intelligence purely by 
programming, he just found it too time consuming. 
So he investigated if there exist more expeditious 
methods. He observed:  

"In the process of trying to imitate an adult 
human mind we are bound to think a good deal 
about the process which has brought it to the state 
that it is in. We may notice three components. 

1. The initial state of the brain, say, at 
birth. 

2. The education to which it has been 
subjected. 

3. Other experience, not to be described as 
education, to which it has been 
subjected. 

Instead of trying to produce a program to 
simulate an adult mind, why not rather try to 
produce one which simulates the child's. Presumably 
the child brain is something like a notebook. Rather 
little mechanism, and lots of blank sheets. Our hope 
is that there is so little mechanism in the child brain 
that something like it can easily be programmed. 
The amount of work in the education we can assume, 
as a first approximation, to be much the same as for 
the human child."    
 

3.1 TURING ON LEARNING AND 
EVOLUTION 

In order to achieve a greater efficiency in 
constructing a machine with human like intelligence, 
Turing divided the problem into two parts. 

1. The construction of a child brain. 
2. The development of effective learning 

methods. 
Turing notes that the two parts remain very closely 

                                                 
2 It was of course a big mistake to set the storage capacity 
equal to the number of neurons! We will later show that 
von Neumann estimated the storage capacity of the brain 
to be about 1020. 
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related. He proposes to use experiments: teaching a 
child machine and see how well it learns. One 
should then try another and see if it is better or 
worse. "There is an obvious connection between this 
process and evolution, by the identifications 

1. structure of the machine = hereditary 
material. 

2. changes of the machine = mutations. 
3. Natural selection = judgment of the 

experimenter. 
Survival of the fittest is a slow process of 

measuring advantages. The experimenter, by the 
exercise of intelligence, should be able to speed it 
up." Turing then discusses learning methods. He 
notes [17, p.454]: "We normally associate the use of 
punishments and rewards with the teaching 
process... The machine has to be so constructed that 
events which shortly proceeded the occurrence of a 
punishment signal are unlikely to be repeated, 
whereas a reward signal increased the probability of 
repetition of the events which lead to it." But Turing 
observes the major drawback of this method: "The 
use of punishments and rewards can at best be part 
of the teaching process. Roughly speaking, if the 
teacher has no other means of communicating to the 
people, the amount of information which can reach 
him does not exceed the total number of rewards and 
punishments applied." 

In order to speed up learning Turing demanded 
that the child machine should understand some 
language. In the final pages of the paper Turing 
discusses the problem of the complexity the child 
machine should have. He proposes to try two 
alternatives: either to make it as simple as possible 
to allow learning or to include a complete system of 
logical inference. He ends his paper with the 
remarks: "Again I do not know the answer, but I 
think both approaches should be tried. We can see 
only see a short distance ahead, but we can see 
plenty there that needs to be done." 
 

3.2 TURING AND NEURAL NETWORKS  
In the posthumously published paper Intelligent 

Machinery [18] Turing describes additional details 
how to create an intelligent machine. First he 
discusses possible components of a child machine. 
He introduces unorganized machines of type A, B, 
and P. A and B are artificial neural networks with 
random connections. They are made up from a rather 
large number N of similar units, which can be seen 
as binary neurons. Each unit has two input terminals 
and one output terminal which can be connected to 
the input terminals of 0 (or more) other units. The 
connections are chosen at random. All units are 
connected to a central synchronizing unit from 
which synchronizing pulses are emitted. Each unit 

has two states. The dynamics is defined by the 
following rule: 

The states from the units from which the input 
comes are taken from the previous moment, 
multiplied together and the result is subtracted 
from 1. 

This rule gives an unusual transition table. I 
doubt that this rule is powerful enough. The state of 
the network is defined by the states of the units. 
Note that the network might have lots of loops, it 
continually goes through a number of states until a 
period begins. The period cannot exceed 2N cycles. 
In order to allow learning the machine is connected 
with some input device which can alter its behavior. 
This might be a dramatic change of the structure, or 
changing the state of the network. Maybe Turing had 
the intuitive feeling that the basic transition of the 
type A machine is not enough, therefore he 
introduced the more complex B-type machine. I will 
not describe this machine here, because neither for 
the A or the B machine Turing defined precisely 
how learning can be done. 

A learning mechanism is introduced with the 
third machine, called a P-type machine. The 
machine is an automaton with a number of N 
configurations. There exist a table where for each 
configuration is specified which action the machine 
has to take. The action may be either 

1. To do some externally visible act A1, …, Ak.. 
2. To set a memory unit Mi. 

The reader should have noticed that the next 
configuration is not yet specified. Turing 
surprisingly defines: The next configuration is 
always the remainder of 2s or 2s+1 on division by 
N. These are called the alternatives 0 and 1. The 
reason for this definition is the learning mechanism 
Turing defines. At the start the description of the 
machine is largely incomplete. The entries for each 
configuration might be in five states, either U 
(uncertain), or T0 (try alternative 0), T1 (try 
alternative 1), D0 (definite 0) or D1 (definite 1).  

Learning changes the entries as follows: If the 
entry is U, the alternative is chosen at random, and 
the entry is changed to either T0 or T1 according to 
whether 0 or 1 was chosen. For the other four states, 
the corresponding alternatives are chosen. When a 
pleasure stimulus occurs, state T is changed to state 
D, when a pain stimulus occurs, T is changed to U. 
Note that state D cannot be changed. The proposed 
learning method sounds very simple, but Turing 
surprisingly remarked: 

“I have succeeded in organizing such a (paper) 
machine into a universal machine.” 

Today this universal machine is called the Turing 
Machine. Turing even gave some details of this 
particular P-type machine. Each instruction 
consisted of 128 digits, forming four sets of 32 
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digits, each of which describes one place in the main 
memory. These places may be called P, Q, R, S. The 
meaning of the instruction is that if p is the digit at P 
and q that at Q then 1 - pq is to be transferred to 
position R and the next instruction will be found at 
S. The universal machine is not the solution to the 
problem, it has to be programmed!  
 

3.3 DISCIPLINE AND INITIATIVE 
We now turn to the next important observation of 

Turing. Turing notes that punishment and reward are 
very slow learning techniques. So he requires: 

“If the untrained infant's mind is to become an 
intelligent one, it must acquire both discipline and 
initiative. 

Discipline means strictly obeying the punishment 
and reward.  But what is initiative? The definition of 
initiative is typical of Turing's behavioristic attitude.  
"Discipline is certainly not enough in itself to 
produce intelligence. That which is required in 
addition we call initiative. This statement will have 
to serve as a definition. Our task is to discover the 
nature of this residue as it occurs in man, and to try 
and copy it in machines." 

With only a paper computer available Turing was 
not able to investigate the subject initiative further. 
Nevertheless he made the bold statement [18]: "A 
great positive reason for believing in the possibility 
of making thinking machinery is the fact that it is 
possible to make machinery to imitate any small part 
of a man. One way of setting about our task of 
building a thinking machine would be to take a man 
as a whole and to try to replace all parts of him by 
machinery... Thus although this method is probably 
the 'sure' way of producing a thinking machine it 
seems to be altogether too slow and impracticable. 
Instead we propose to try and see what can be done 
with a 'brain' which is more or less without a body 
providing, at most organs of sight, speech, and 
hearing. We are then faced with the problem of 
finding suitable branches of thought for the machine 
to exercise its powers in." 

Turing mentions the following fields as 
promising: 

1. Various games, e.g. chess, bridge. 
2. The learning of languages. 
3. Translation of languages. 
4. Cryptography. 
5. Mathematics. 

Turing remarks: "The learning of languages would 
be the most impressive, since it is the most human of 
these activities. This field seems however to depend 
rather too much on sense organs and locomotion to 
be feasible." Turing seems here to have forgotten 
that language learning is necessary for his imitation 
game! 

4. VON NEUMANN’S LOGICAL THEORY 
OF AUTOMATA 

Alan Turing was for a short time in 1938 
assistant of John von Neumann. But later they 
worked completely independent from each other, not 
knowing the thoughts the other had concerning the 
power of the new electronic computers. A 
condensed summary of the research of John von 
Neumann concerning machine intelligence, or in his 
more low-key term "artificial automata," is 
contained in his paper "The General and Logical 
Theory of Automata" [22]. This paper was presented 
in 1948 at the Hixon symposium on: Cerebral 
mechanism of behavior. Von Neumann was the only 
computer scientist at this symposium. His invitation 
indicates his interdisciplinary research. This is 
clearly expressed in the first page: “Natural 
organisms are, as a rule, much more complicated 
and subtle, and therefore much less well understood 
in detail, than are artificial automata. Nevertheless, 
some of the regularities which we observe in the 
former may be quite instructive in our thinking and 
planning of the latter; and conversely, a good deal 
of our experiences and difficulties with our artificial 
automata can be to some extent projected on our 
interpretations of natural organisms.” 

Von Neumann notices three major limits of the 
present size of artificial automata  

• The size of componentry. 
• The limited reliability. 
• The lack of a logical theory of automata. 

There have been tremendous achievements in the 
first two areas. Therefore I will concentrate on the 
theory problem. The new theory of logical automata 
has to investigate the following topics. 
     The logic of automata will differ from the present 
system of formal logic in two relevant respects.  

1. The actual length of "chains of 
reasoning", that is, of the chains of 
operations, will have to be considered. 

2. The operations of logic will all have to 
be treated by procedures which allow 
exceptions with low but non-zero 
probabilities. 

Von Neumann tried later to formulate probabilistic 
logic. His results appeared in [23]. But this research 
was more or less a dead end, because von Neumann 
did not abstract enough from the logical hardware 
components and introduced time into the analysis. 
But in [22] he remarked prophetically: 

“This new system of formal logic will move 
closer to another discipline which has been little 
linked in the past with logic. This is 
thermodynamics, primarily in the form it was 
received from Boltzmann, and is that part of 
theoretical physics which comes nearest in some of 
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its aspects to manipulating and measuring 
information.”  

 
4.1 MCCULLOCH-PITTS THEORY OF 

FORMAL NEURAL NETWORKS 
In [9] McCulloch and Pitts had described the 

brain by a formal neural network, consisting of 
interconnected binary neurons. Von Neumann 
summarizes their major result follows: "The 
‘functioning’ of such a network may be defined by 
singling out some of the inputs of the entire system 
and some of its outputs, and then describing what 
original stimuli on the former are to cause what 
ultimate stimuli of the latter. McCulloch and Pitts' 
important result is that any functioning in this sense 
which can be defined at all logical, strictly, and 
unambiguously in a finite number of words can also 
be realized by such a formal system."  

McCulloch and Pitts had derived this result by 
showing that their formal neural network connected 
to an infinite tape is equivalent to a Turing machine. 
But even given this result, von Neumann observes 
that at least two problems remain  

1. Can the network be realized within a 
practical  size? 

2. Can every existing mode of behavior 
really be put completely and 
unambiguously into word?   

Von Neumann informally discusses the second 
problem, using the example visual analogy. He 
remarks prophetically:  

“There is no doubt that any special phase of any 
conceivable form of behavior can be described 
"completely and unambiguously" in words... It is, 
however an important limitation, that this applies 
only to every element separately, and it is far from 
clear how it will apply to the entire syndrome of 
behavior.”  

This severe problem has not been noticed by 
Turing. Using the example visual analogy von 
Neumann argues: "One can start describing to 
identify any two rectilinear triangles. These could be 
extended to triangles which are curved, whose sides 
are only partially drawn etc...  We may have a vague 
and uncomfortable feeling that a complete catalogue 
along such lines would not only be exceedingly long, 
but also unavoidingly indefinite at its boundaries. 
All of this, however, constitutes only a small 
fragment of the more general concept of 
identification of analogous geometrical objects. 
This, in turn, is only a microscopic piece of the 
general concept of visual analogy." Thus von 
Neumann comes to the conclusion: 

“Now it is perfectly possible that the simplest and 
only practical way to say what constitutes a visual 
analogy consists in giving a description of the 

connections of the visual brain… It is not at all 
certain that in this domain a real object might not 
constitute the simplest description of itself.”  

Von Neumann ended this section with the 
sentence: "The foregoing analysis shows that one of 
the relevant things we can do at this moment is to 
point out the directions in which the real problem 
does not lie." Instead of investigating the above 
complexity issue directly, von Neumann turned to 
the more fundamental problem of the complexity 
needed for automata solving difficult problems.  

 
4.2 COMPLICATION AND SELF-

REPRODUCTION 
Von Neumann starts the discussion of complexity 

with the observation that if an automaton has the 
ability to construct another one, there must be a 
decrease in complication. In contrast, natural 
organisms reproduce themselves, that is, they 
produce new organisms with no decrease in 
complexity. So von Neumann tries to construct a 
general artificial automata which could reproduce 
itself. The famous construction works as follows:  

1. A general constructive machine, A, which can 
    read a description Φ(X) of another machine,                    
    X, and build a copy of X from this      
    description:  

 
A + Φ (X) ~> X 

  
2. A general copying machine, B, which can copy 
    the instruction tape: 
    

B + Φ (X) ~> Φ (X) 
 
3. A control machine, C, which when combined      
     with A and B, will first activate B, then A,       
     link X to Φ (X) and cut them loose from    
     A + B + C 
 

A + B + C + Φ (X) ~> X + Φ (X) 
 
      Now choose X to be A + B + C 
    

A + B + C + Φ (A + B + C) 
~> A + B + C  + Φ (A + B + C) 

 
4. It is possible to add the description of any  
    automaton D 

A + B + C + Φ (A + B + C + D) 
~> A + B + C + D + Φ (A + B + C + D) 

 
    Now allow mutation on the description 
    Φ (A + B + C + D) 
 

A + B + C + Φ (A + B + C + D') 
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~> A + B + C + D' + Φ (A + B + C + D') 
  

Mutation at the D description will lead to a different 
self-reproducing automaton. This might allow to 
simulate some kind of evolution as seen in natural 
organisms.  

Von Neumann later constructed a self-
reproducing automata which consisted of 29 states 
[24]. This convinced von Neumann that 
complication can also be found in artificial 
automata. Von Neumann ends the paper with the 
remark:  

“This fact, that complication, as well as 
organization, below a critical level is degenerative, 
and beyond that level can become self-supporting 
and even increasing, will clearly play an important 
role in any future theory of the subject.”  
 

5. DISCUSSION OF THE DESIGNS OF 
TURING AND VON NEUMANN 

I have reviewed only a small part of the research 
of Turing and von Neumann concerning machine 
intelligence and artificial automata. But one 
observation strikes immediately: both researchers 
investigated the problem of machine intelligence on 
a very broad scale. The main emphasis of Turing 
was the design of efficient learning schemes. For 
Turing it was obvious that only by learning and 
creating something like a child machine an 
intelligent machine could be developed. The attitude 
of Turing was purely that of a computer scientist. 
Using mainly an estimate of the memory capacity of 
the human brain, he firmly believed that machine 
intelligence equal to or surpassing human 
intelligence can be created. 

Von Neumann's approach was more 
interdisciplinary, using also results from the analysis 
of the brain.  He had a similar goal, but he was much 
more cautious concerning the possibility to create an 
automaton with intelligence. He investigated 
important problems one by one which appeared him 
on the road to machine intelligence. 

Both researchers investigated formal neural 
networks as a basic component of an artificial brain. 
This component was not necessary for the design, it 
was used only to show that the artificial automata 
could have a similar organization as the human 
brain. Both researchers ruled out that a universal 
theory of intelligence could be found, which would 
make it possible to program a computer according to 
this theory. So Turing proposed to use learning as 
the basic mechanism, von Neumann self-
reproducing automata. Von Neumann was more 
radical because he was convinced that learning leads 
to the curse of infinite enumeration. Turing also saw 
the limitations of teacher based learning by reward 

and punishment, therefore he required that the 
machine needs initiative in addition. 

The designs of Turing and von Neumann contain 
all components considered necessary today for 
machine intelligence. Turing ended his investigation 
with the problem of initiative, which is still an 
unresolved issue today. Von Neumann's idea to use 
self-reproducing automata has not yet lead to an 
automata with interesting behavior. The problem of 
von Neumann's approach is the following: In order 
that his automaton does something besides 
reproducing one has to input a program D for each 
task. How can the machine develop more complex 
programs starting with an initial program? 

There seem to be no major failure in their 
designs, but at least two major issues are not yet 
resolved 

1. The memory capacity of the brain. 
2. Can every problem which is computable 

be learned from examples? 
I will discuss the capacity problem first.   

 
6. MEMORY CAPACITY OF THE BRAIN 

Von Neumann also estimated the capacity of the 
brain. His estimate can be found in the book  "The 
Computer and the Brain.” [23, p. 63] 

"However, certain rough orienting estimates can, 
nevertheless, be arrived at. Thus the standard 
receptor (neuron) would seem to accept 14 distinct 
digital impressions per second. Allowing 1010 nerve 
cells gives a total input of 14×1010 bits per second. 
Assuming further, for which there is some evidence, 
that there is no true forgetting in the nervous system 
– an estimate for the entirety of a normal human 
lifetime can be made. Putting the latter equal to, say, 
60 years ≈ 2×109 seconds, the total required 
memory capacity would turn out to be 2.8×1020." 

Note that this estimate is 1010 times larger than 
the estimate of Turing! There is still no agreement 
on the memory capacity of the brain.  The brain is 
highly redundant and not well understood: the mere 
fact that a great mass of synapses exists does not 
imply that they are in fact all contributing to 
memory capacity. 

A totally different method to estimate the 
capacity has been pursued by Landauer [4]. He 
reviewed and quantitatively analyzed experiments 
by himself and others in which people were asked to 
read texts, look at pictures, and hear words, short 
passages of music, sentences, and nonsense 
syllables. After delays ranging from minutes to days 
the subjects were tested to determine how much they 
had retained. The tests were quite sensitive – they 
did not merely ask "What do you remember?" but 
often used true/false or multiple choice questions, in 
which even a vague memory of the material would 
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allow selection of the correct choice. Because 
experiments by many different experimenters were 
summarized and analyzed, the results of the analysis 
are fairly robust; they are insensitive to fine details 
or specific conditions of one or another experiment. 
Finally, the amount remembered was divided by the 
time allotted to memorization to determine the 
number of bits remembered per second. 

The remarkable result of this work was that 
human beings remembered very nearly two bits per 
second under all the experimental conditions.  
Visual, verbal, musical, or whatever – two bits per 
second. Continued over a lifetime, this rate of 
memorization would produce somewhat over 109 
bits, or a few hundred megabytes. This estimate is 
surprisingly identical to Turing's estimate. But the 
issue is far from being resolved. I will only mention 
an estimate nearer to the estimate of von Neumann.  
Moravec [10] recently tried to compare computer 
hardware and the brain. He estimated the memory 
capacity as 100 million megabytes, which are about 
1015 bits. 

 
7. COMPUTATIONAL LEARNING 

THEORY 
Complexity issues are dealt with in the areas 

computability theory, complexity theory, theory of 
inductive inference, and computational learning 
theory.  Computability theory investigates what can 
be computed, the theory of inductive inference what 
can be learned at all.  They are historically prior to 
and part of their polynomially-obsessed younger 
counterparts. In fact, Turing founded computability 
theory and made the major contribution. 

In this section I will concentrate on 
computational learning theory, because it fulfills von 
Neumann's requirement to investigate the space and 
the number of steps to learn a problem. The 
following review is based on the survey of Angluin 
[1]. He defines the goals of the field as: Give a 
rigorous computationally detailed and plausible 
account of how learning can be done. 

These goals are far from being achieved. There is 
even not an agreement on a precise definition of 
learning. So far the emphasis has been on inductive 
learning and particular PAC (probably 
approximately correct learning) introduced by 
Valiant [20] in 1984. In this framework the learner 
gets samples that are classified according to a 
function from a certain class. The aim of the learner 
is to find an approximation of the function with high 
probability. We demand the learner to be able to 
learn the concept given any arbitrary approximation 
ratio, probability of success or distribution of the 
samples. 

 

More precisely: 
Algorithm A PAC-identifies concepts from C in 
terms of the hypothesis space H if and only if for 
every distribution D and every concept c∈C, for all 
positive numbers ε and δ and access to the example 
oracle, it eventually halts and outputs a concept h∈H 
that with probability at least 1 - δ and error D(cΔh) < 
ε, where cΔh is the symmetric difference between 
the subsets of X characterizing the concepts c and h.  
The model was further extended to treat noise 
(misclassified samples). 

There have been lots of interesting results 
achieved. But until today many problems are open. I 
just mention the problem if distributed normal forms 
DNF in Boolean space are PAC-learnable in 
polynomial time. This result supports von 
Neumann's feeling that simple learning mechanisms 
lead to the curse of exponential enumeration. 

 
8. HOW TO GET COMMON SENSE INTO 

A MACHINE  
Turing's idea of creating first a child machine 

was reinvented by John McCarthy [8] in 1999. He 
wrote an essay on an artificial child brain as a step 
towards creating human like intelligence. He writes 
in the abstract:  

"The innate mental structure that equips a child 
to interact successfully with the world includes more 
than universal grammar. The world itself has 
structures, and nature has evolved brains with ways 
of recognizing them and representing information 
about them. For example, objects continue to exist 
when not being perceived, and children (and dogs) 
are very likely ‘designed’ to interpret sensory inputs 
in terms of such persistent objects. Moreover, 
objects usually move continuously, passing through 
intermediate points, and perceiving motion that way 
may also be innate. What a child learns about the 
world is based on its innate mental structure." 

Thus McCarthy notices in contrast to Turing that 
the innate mental structure is not a sheet of blank 
paper, but it is very complicated shaped by 
evolution. McCarthy tries to design adequate mental 
structures including a language of thought. "This 
design stance applies to designing robots, but we 
also hope it will help understand universal human 
mental structures. We consider what structures 
would be useful how the innateness of a few of the 
structures might be tested experimentally in humans 
and animals." The proposal was never finished and 
remained a paper proposal. Therefore the issue of 
creating a suitable child machine is still unsolved. At 
this time nobody seems working on this problem.  

I also tried to combine evolution and learning for 
automatic programming [14]. But good results have 
been obtained only in the separate domains, neural 
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networks [25] and optimization by simulating 
evolution [11]. 

The other approach to machine intelligence is 
still pursued in a big project. This means coding all 
the necessary common sense knowledge into some 
computer understandable description. We remind the 
reader, that this method was considered as too 
inefficient, both by Turing and von Neumann. Von 
Neumann even doubted if this method would work 
at all. The project was started in 1984 with the name 
Cyc, the goal of which was to specify in a well-
designed language common sense knowledge. Cyc is 
an artificial intelligence project that attempts to 
assemble a comprehensive ontology and database of 
everyday common sense knowledge, with the goal 
of enabling AI applications to perform human-like 
reasoning. The original knowledge base is 
proprietary, but a smaller version of the knowledge 
base, intended to establish a common vocabulary for 
automatic reasoning, was released as OpenCyc 
under an open source license. 

Typical pieces of knowledge represented in the 
database are "Every tree is a plant" and "Plants die 
eventually." When asked whether trees die, the 
inference engine can draw the obvious conclusion 
and answer the question correctly. The Knowledge 
Base (KB) contains over a million human-defined 
assertions, rules or common sense ideas. These are 
formulated in the language CycL, which is based on 
predicate calculus and has a syntax similar to that of 
the Lisp programming language. 

Much of the current work on the Cyc project 
continues to be knowledge engineering, representing 
facts about the world by hand, and implementing 
efficient inference mechanisms on that knowledge. 
Increasingly, however, work at Cycorp involves 
giving the Cyc system the ability to communicate 
with end users in natural language, and to assist with 
the knowledge formation process via machine 
learning. Currently the knowledge base consists of 

• 3.2 million assertions (facts and rules). 
• 280,000 concepts. 
• 12,000 concept-interrelating predicates. 

I cannot evaluate Cyc in detail, but despite its 
huge effort the success is still uncertain. Up to now 
Cyc has not been successfully be used for any broad 
AI application.  

 
9. THE PROBLEM OF INITIATIVE OR 

META-LEARNING  
From all the research in this very challenging 

area I will only review the work done in connection 
with neural networks. Even today learning in neural 
networks is typically done "from scratch" without 
using previous knowledge. This follows from the 
fact that learning begins from initially random 

connection weights. A first step to using previous 
knowledge was cascade correlation (CC) [2]. It 
creates a network topology by recruiting new hidden 
units into a feed-forward network in order to reduce 
the error. 

This algorithm has been extended to knowledge-
based cascade correlation (KBCC) which recruits 
whole sub-networks that it has already learned, in 
addition to the untrained hidden units recruited by 
CC [16]. KBCC trains connection weights to the 
inputs of its existing sub-networks to determine 
whether their outputs correlate well with the 
network's error on the problem it is currently 
learning. The previously learned networks compete 
with each other and with conventional untrained 
candidate hidden units to be recruited into the target 
network learning the current problem. 

The general idea sounds convincing, but for an 
implementation a number of difficult decisions have 
to be made. If, for instance, all previously learned 
sub-networks compete with each other, the learning 
will slow down with the number of problems to be 
learned. The current results of KBCC are still very 
preliminary. In [16] an evaluation is done using only 
two problems. In the first setting it is evaluated 
whether KBCC can find and use its relevant 
knowledge in the solution of a new problem similar 
to the first one. In the second setting it is 
investigated whether KBCC can find and combine 
knowledge of components to learn a new, more 
complex problem comprised of these components. 
The results indicate that it is worthwhile to develop 
KBCC further, but it is unclear how KBCC would 
perform on larger problems. Thus Turing's initiative 
problem remains unsolved.   

 
10. PROBABILISTIC LOGIC 

The theory of probabilistic logic has been fully 
developed in the last 20 years. Uttley invented a 
conditional probability computer as early as 1958 
[19]. The major drawback of his design was that in 
order to classify an input of n binary items, the 
number of neurons had to be exponential 2n. It took 
quite a while to solve this problem and to see the 
connection of probabilistic logic to probability 
theory. A very popular instance of probabilistic logic 
is Bayesian networks.  

The problem of the exponential explosion has 
been solved in the 80's. For singly connected 
Bayesian networks exact inference is possible in one 
sweep of Pearl's belief propagation algorithm [15]. 
A very interesting extension for incomplete data is 
done by the maximum entropy principle [3]. This 
theory can be seen as a realization of von Neumann's 
prophesy. 

Probabilistic logic is now used in many fields. To 
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give just one example, I have applied Bayesian 
networks to population based global optimization 
[13]. 

 
11. COMPLICATION AND COMPLEXITY 

The complication problem formulated by von 
Neumann has still not been formulated in a precise 
scientific manner. For the reader I restate the 
problem: "It is possible that the connection pattern 
of the visual brain itself is the simplest logical 
expression or definition of this principle (visual 
analogy)".  In this section I will just mention 
important contributions to the solution of this 
problem which might later lead to a scientific theory. 
Nearest to the thinking of von Neumann comes 
algorithmic complexity (also known as descriptive 
complexity, Kolmogorov-Chaitin complexity) [5]. 

 The Kolmogorov complexity of an object such 
as a piece of text is a measure of the computational 
resources needed to describe the object. To define 
Kolmogorov complexity, we must first specify a 
description language for strings. Such a description 
language can be based on a programming language 
such as Lisp, C++, or Java virtual machine byte-
code. If P is a program which outputs a string x, then 
P is a description of x. The length of the description 
is just the length of P as a character string. In 
determining the length of P, the lengths of any 
subroutines used in P must be accounted for. The 
length of any integer constant n which occurs in the 
program P is the number of bits required to represent 
n, that is (roughly) log2n. We could alternatively 
choose an encoding for Turing machines (TMs), 
where an encoding is a function which associates a 
bit-string M to each TM. If M is a TM which on 
input w outputs string x, then the concatenated string 
M, w is a description of x. For theoretical analysis, 
this approach is more suited for constructing detailed 
formal proofs and is generally preferred in the 
research literature. Note that Kolmogorov 
complexity is valid for a single string only. 

We cite some important results. Let K(s) denote 
the complexity of string s. Obviously K(s) cannot be 
too much larger than the string itself. 

 

 
 
A string s is compressible by c if it has a 

description whose length does not exceed |s| - c. 
This is equivalent to saying K(s) ≤ |s| - c. Otherwise 
s is incompressible by c. A string incompressible by 
one is said to be simply incompressible; by the 
pigeonhole principle, incompressible strings must 
exist, since there are 2n bit strings of length n but 
only 2n-1 shorter strings, that is, strings of length n-1. 

For the same reason, "most" strings are complex in 
the sense that they cannot be significantly 
compressed: K(s) is not much smaller than |s|, the 
length of s in bits. To make this precise, fix a value 
of n. There are 2n bit strings of length n. The 
uniform probability distribution on the space of 
these bit strings assigns to each string of length 
exactly n equal weight 2-n. 

Theorem 1: With the uniform probability 
distribution on the space of bit strings of length n, 
the probability that a string is incompressible by c is 
at least 1 - 2-c+1 + 2-n. 

This means that "most" strings cannot be 
compressed. Thus in this limited domain (just a 
single string) this result is almost the opposite to the 
conjecture of von Neumann. Kolmogorov 
complexity has been extended to sets of strings and 
functions. In [21] a generalization of Kolmogorov 
complexity is described which unifies some of the 
most important principles of machine learning, like 
the minimum description length MDL, Occam's 
razor and Shannon's entropy. This topic is far too 
difficult to be discussed here. 

 
12. CONCLUSION AND OUTLOOK  

I hope the reader is as astonished as I was when 
reading the papers of Turing and von Neumann. In 
my opinion they have discussed all aspects and 
components which seem necessary to develop 
human like artificial intelligence. Both researchers 
had no doubts that any problem which can be 
precisely formulated can also be programmed. 
Turing concentrated his design for machine 
intelligence on the construction of a child machine 
and learning. Von Neumann had doubts that it will 
be possible to construct machine intelligence by 
programming or by learning. It leads to the curse of 
infinite enumeration. Therefore he asked the bold 
question if it is possible that automata could develop 
to higher complexity without too much human 
intervention. He succeeded to construct a self-
reproducing automata, but did not have time to 
investigate the next step, namely simulating 
evolution to breed automata of higher complexity. 

Turing identified the following major problems 
on the road to human like machine intelligence: 

• What are the minimal requirements for a 
child machine to allow efficient  
learning?  

• How can learning be made more efficient 
than using punishment and reward? 

• What has to be done that the machine 
actively learns using initiative? 

     Von Neumann formulated the following 
problems: 
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• The lack of a logical theory of automata. 
• The limited complexity of artificial 

automata. 
• A rigorous concept of what constitutes 

"complication." 
      From these problems only the logical theory is 
solved, the other five are still open. But for the 
construction of complex automata the theoretical 
results are often negative if we require that the 
"chains of reasoning" (von Neumann) are finite, e.g. 
polynomial. A major achievement has been the 
precise formulation of probabilistic logic. Despite a 
number of efforts there has been no progress in 
extending von Neumann's self-reproducing automata 
with some evolution mechanism so that they become 
substantial more complex. 

In the sixty years after the ground braking work 
of Turing and von Neumann a lot of impressive 
systems have been built which solve precisely 
defined problems. These are too many to cite here. 
But there is no system in sight which comes near to 
passing the Turing test. In current competitions the 
machine is identified after a few questions. What 
might be the reason for the slow progress? The 
simple answer is that there has been no substantial 
progress to solve the remaining five problems 
identified by Turing and von Neumann. 

A machine with human like intelligence needs 
common sense reasoning, the sort of reasoning we 
would expect a child easy to do. The relative paucity 
of results in this field does not reflect the 
considerable effort that has been expended, starting 
with McCarthy's paper "Programs with Common 
Sense" [6]3. Forty years after the first paper 
McCarthy notices that the knowledge needed to 
solve a commonsense reasoning problem is typically 
much more extensive and general than the 
knowledge needed to solve difficult scientific 
problems in mathematics or physics [7].  There the 
knowledge is bounded. In contrast, there are no a 
priori limitations to the facts that are needed to solve 
commonsense problems: the given information may 
be incomplete; one may have to use approximate 
concepts and approximate theories; and one will 
need some ability to reflect upon one's own 
reasoning process. 

What recommendations I can give to young 
scientists working in this area? First, try to make 
contributions to the open problems before trying a 
general architecture. Most important topics are 

                                                 
3 In the discussion of the paper Bar-Hillel said: "Dr. 
McCarthy's paper belongs in the Journal of Half-Baked 
Ideas...” The gap between McCarthy's general 
programme and its execution seems to me so enormous 
that much more has to be done to persuade me that even 
the first  step in bridging this gap has already been taken. 

higher learning methods like meta-learning or even 
transfer learning, Turing called this providing the 
machine with initiative. Second, von Neumann's 
proposal to start with self-reproducing automata is 
also worthwhile to investigate further. But here I am 
very skeptical that this way will ever lead to human 
like intelligence. But it will certainly give new 
insights to biological problems. 
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