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Abstract: Failure analysis and prevention are important to all of the engineering disciplines, especially for the 
aerospace industry. Aircraft accidents are remembered by the public because of the unusually high loss of life and 
broad extent of damage. In this paper, the artificial neural network (ANN) technique for the data processing of on-line 
fatigue crack growth monitoring is proposed after analyzing the general technique for fatigue crack growth data. A 
model for predicting the fatigue crack growth by ANN is presented, which does not need all kinds of materials and 
environment parameters, and only needs to measure the relation between a (length of crack) and N (cyclic times of 
loading) in-service. The feasibility of this model was verified by some examples. It makes up the inadequacy of data 
processing for current technique and on-line monitoring. Hence it has definite realistic meaning for engineering 
application. 
 
Keywords: Artificial neural network, fatigue crack growth, on-line monitoring. 
 
 

1. INTRODUCTION 
In spite of decades of investigation, fatigue 

response of materials is yet to be fully understood. 
This is partially due to the complexity of loading at 
which two or more loading axes fluctuate with time. 
Examples of structures experiencing such complex 
loadings are automobile, aircraft, off-shores, 
railways and nuclear plants. Fluctuations of stress 
and/or strains are difficult to avoid in many practical 
engineering situations and are very important in 
design against fatigue failure. There is a worldwide 
need to rehabilitate civil infrastructure. New 
materials and methods are being broadly 
investigated to alleviate current problems and 
provide better and more reliable future services. 

While most industrial failures involve fatigue, the 
assessment of the fatigue reliability of industrial 
components being subjected to various dynamic 
loading situations is one of the most difficult 
engineering problems. This is because material 
degradation processes due to fatigue depend upon 
material characteristics, component geometry, 
loading history and environmental conditions. 

Fatigue is one of the most important problems of 
aircraft arising from their nature as multiple-
component structures, subjected to random dynamic 

loads. The analysis of fatigue crack growth is one of 
the most important tasks in the design and life 
prediction of aircraft fatigue-sensitive structures (for 
instance, wing, fuselage) and their components (for 
instance, aileron or balancing flap as part of the 
wing panel, stringer, etc.). 

An example of in-service cracking from B727 
aircraft (year of manufacture 1981; flight hours not 
available; flight cycles 39,523) [1] is given on Fig.1. 
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Fig. 1 − Example of in-service cracking  
from B727 aircraft. 

 

 
A test program carried out at DSTO in the early 

1970s involved the full-scale testing of a Mirage 
wing. Final failure and collapse of the wing occurred 
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after 32,372 flights (31,230 simulated test flights 
plus 1,142 pre-test equivalent flights) at a blind hole 
in the AU4SG aluminum alloy lower boom of the 
main spar. This crack surface was measured using 
QF [2]. A simple crack prediction was also carried 
out using a Paris growth law together with a look-up 
table of da/dN data and cycle-by-cycle addition, 
although with no retardation or closure allowances. 
The two curves are presented in Fig. 2. As can be 
seen the measured growth appears to be exponential, 
while the handbook solution is not. A picture of the 
fracture surface is also included. The hole from 
which the crack initiated was about 10 mm in 
diameter. 
 

 
         15,000             25,000             35,000     

 

Flight No. 
 

Fig. 2 − Crack growth in Mirage 1110  
full-scale fatigue test wing. 

 
Fatigue is a mechanism of crack growth. Fatigue 

cracks occur by cyclic loading under lower stress 
condition than the maximum allowable stress. The 
fatigue lifetime prediction of materials subject to 
fatigue crack propagation and the calculation of 
defect tolerance are related with the relationship 
between the crack’s growth rate per cycle (da/dN) 
and the stress intensity factor range ΔK (Fig. 3). 

 

 
                  ΔK (MPa.m)1/2 

 

Fig. 3 − Result of the fatigue crack growth experiment 
on a aluminum alloy. 

The fatigue crack growing process is classified in 
three regions according to the change of fatigue 
crack growth rate, da/dN (Fig. 3, where the result of 
the fatigue crack growth experiment on a aluminum 
alloy obtained by [3] is presented).  

Region I is a state of crack initiation. The value 
of the stress intensity factor (K) is as low as the 
fatigue threshold (Kth), and the crack growth rate is 
very slow.  

In region II, the crack growth rate increases 
according to the crack length. The crack growth 
condition in region II is the so-called stable crack 
growth.  

In region III, the crack-growth rate quickly 
increases and failure of the material occurs. It is 
called unstable crack growth.  

The boundary between regions II and III is the 
transition point (KTr) [4], and the stress intensity 
factor at failure is known as the fracture toughness 
(Kc).  

The stress intensity factor defines the amplitude 
of the crack tip singularity and is a function of the 
applied nominal stress (σ), the crack length (a), and 
a geometric function (F) [5]: 
 

.πaFK σ=  (1) 
 

In region I, in order to characterize the time-to-
crack initiation (TTCI), X, it may be used the 
following probability density functions (PDF) [6]: 

• Gaussian PDF: 
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where μ and σ are the location and scale parameters, 
respectively; 

• 2 parameters lognormal PDF: 
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where σ and ϑ are the shape and scale parameters, 
respectively; 

• 3 parameters lognormal PDF: 
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where σ, ϑ and γ are the shape, scale and threshold 
parameters, respectively; 

• 2 parameters Weibull PDF: 
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where β and δ are the scale and shape parameters, 
respectively; 

• 3 parameters Weibull PDF: 
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where β, δ and γ are the scale, shape  and threshold 
parameters, respectively. 

From an engineering standpoint, crack initiation 
is considered to be one of the two major periods (I 
and II) in the fatigue life of a component or 
structure. The period of crack initiation or the time-
to-crack initiation (TTCI) is defined as the time in 
cycles or flights or flight hours it takes for a non-
detectable crack from the beginning of fatigue 
loading to grow to a reference crack size a°. The 
reference-crack-size is commonly selected on the 
basis of a detectable crack by the nondestructive 
inspection (NDI) technique. The TTCI distribution is 
physically observable and can be obtained by 
experiments and tests results. Fatigue crack initiation 
and early crack growth in a SENT specimen tested 
with the Fokker 100 Reduced Basic (RB) gust 
spectrum [7] is shown in Fig. 4. The spacings of the 
bands on the fracture surface above the fatigue 
origin correspond to blocks of 5000 flights. 
 

 
                                           fatigue origin 

 
Fig. 4 − Fatigue crack initiation and early crack 

growth in a SENT specimen. 

In region II stable fatigue crack growth 
conditions prevail and the fatigue crack growth rate 
(FCGR) is given by the well-known Paris-Erdogan 
relation [8-10]. In this region, generally, the Paris–
Erdogan formula: 
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is used to analyze fatigue crack growth process data 
and predict remaining life, where da/dN is the crack 
growth per cycle, a is the crack length, N is the 
number of loading cycles, ΔK is the stress intensity 
range, and C and m are material constants that are 
determined experimentally. 

In the linear region II (see Fig. 3), the Paris-
Erdogan Equation (7) is used as follows. Integrating 
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Thus, the crack growth equation representing the 
solution of the differential equation for the Paris-
Erdogan law is given by 
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It should be remarked that (10) could be obtained 

immediately from the Paris−Erdogan law written in 
the form: 
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in which q and b are parameters depending on 
loading spectra, structural/material properties, etc. 

The initial crack size, a0, is usually either found 
by inspection (in this case, a0=a°) or a reasonable 
minimum size of crack is assumed for the analysis 
(in this case, a0 is approximately between 0.02 and 
0.05 mm that was found through quantitative 
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fractography for typical aircraft metallic materials 
[11]). 

The critical crack size, ac, is found from: 
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where Kc is the critical value of stress intensity, K, 
which at the point of fracture is known as fracture 
toughness. When the combination of stress and 
crack size reach the fracture toughness of the 
material, failure occurs. Knowing the fracture 
toughness, Kc, of the material, we can use the stress 
intensity solution (13) to determine the critical crack 
length ac (if we know the stress level σ), or the stress 
level σmax (if we know the crack size a). For 
example, progression of small crack growth with 
cycling is shown in Fig. 5. 
 

 
N = 110,000 cycles N = 130,000 cycles 

 
N = 140,000 cycles N = 160,000 cycles 

 
N = 170,000 cycles N = 180,000 cycles 

 
Fig. 5 − Progression of small crack growth  

with cycling. 

 
The traditional analytical method of engineering 

fracture mechanics (EFM) usually assumes that 
crack size, stress level, material property and crack 
growth rate, etc. are all deterministic values which 
will lead to conservative or very conservative 
outcomes. However, according to many 
experimental results and field data, even in well-
controlled laboratory conditions, crack growth 

results usually show a considerable statistical 
variability (as shown in Fig. 6).  

There are many factors influencing fatigue crack 
growth, including random material inhomogeneities, 
loading frequency, stress ratio, loading waveform, 
geometric size of components and specimens, 
composition, concentration and temperature of 
environment mediums, metallurgical composition 
and heat treatment of materials and many other 
factors. 

From experimental investigations [12-13], fatigue 
crack growth appears as a process with random 
properties. These random properties seem to vary 
both (1) from specimen to specimen and (2) during 
crack growth. 
 

 
                                                                      

Fig. 6 − Fatigue crack propagation curves. 

 
A great number of stochastic models that account 

for the random behavior have been proposed. They 
are based either on suitable “randomized” empirical 
crack growth laws or on data fitting [14-15]. There 
are several randomizations possible: q could be a 
random variable and b a constant; b could be a 
random variable and q a function of b; or both q and 
b could be random variables. This approach to the 
probabilistic modelling of material inhomogeneity 
captures the first type of inhomogeneous behavior, 
but not the second. A second probabilistic approach 
is to let the coefficients of the growth law be 
constants, but allow the fatigue crack growth rate to 
randomly deviate from the growth law from point to 
point along the crack path. This approach captures 
the second type of inhomogeneous behavior, but not 
the first. Models based on stochastic differential 
equations, in fact, are suited to account for this type 
of variability. E.g. Tsurui et al. [16] and Tang and 
Spencer [17] proposed crack growth equations with 
a time-correlated stochastic process. A model with a 
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jump process has been introduced by Lin et al. [18]. 
As the correlation should rather be attributed to the 
spatial dimension, Ortiz and Kiremidjian [19] 
proposed a model, where the correlation of the 
stochastic process depends on the crack length. 
Markov chain models [20] reflect the fact that the 
load process is often discretized into independent 
events. They can be directly fitted to experimental 
data. However, this makes predictions for other load 
conditions or geometrical configurations a difficult 
task. This problem can be circumvented by using a 
suitable stochastic crack growth model for the 
determination of the transition probabilities [21]. A 
combination of the two approaches described above 
allows one to capture both types of inhomogeneous 
behavior. 

The aircraft industry has leaded the effort to 
understand and predict fatigue crack growth. They 
have developed the safe-life or fail-safe design 
approach. In this method, a component is designed 
in a way that if a crack forms, it will not grow to a 
critical size between specified inspection intervals. 
Thus, by knowing the material growth rate 
characteristics and with regular inspections, a 
cracked component may be kept in service for an 
extended useful life. This concept is shown 
schematically in Fig. 7.  

 

 

 
 

Fig. 7 − Extended service life of a cracked component. 
 

 

It should be noted that it is very difficult to 
analyze and predict fatigue life of different fatigue 
structures under various surroundings. Even if a 
suitable formula can be applied, the calculated result 
will be conservative for its generality.  

In this paper, the authors attempt to forecast what 
will happen to the structure according to the current 
work condition, and to predict the fatigue life of 
structures during the continuous learning process by 
ANN technique. 

In recent years, an artificial neural network 
(ANN) has emerged as a new branch of computing, 
which tries to mimic the structure and operations of 

biological neural systems. An ANN is able to learn 
by example and does not have to know the theory 
behind a phenomenon. This quality is useful to 
describe problems where the relationships of inputs 
and outputs are not clear enough or the solutions are 
not easily formulated in a short time. 

Pidaparti and Palakal [22] developed an ANN 
model to represent the fatigue crack growth behavior 
under spectrum loading. The inputs were 
information about the features in the spectrum 
loading and crack growth behavior, and the output 
was the corresponding loading cycles. A material 
parameter network for modified Paris Law was also 
developed in their study.  

Haque and Sudhakar [23] described an ANN 
model to analyze corrosion fatigue crack growth rate 
in dual phase steel. The inputs were the stress 
intensity factor range, ΔK, and volume percent of 
martensite content and outputs were crack growth 
rate. Six groups of da/dN versus ΔK relationship 
corresponding to different martensite contents were 
trained, and the neural network (NN) analysis 
provided a good match with the experimental data.  

Aymerich and Serra [24] used a neural network 
to predict fatigue strength of a graphite-peek 
composite with 63% of fiber content. The input 
parameters were the number of cycles at failure and 
the stacking sequence of the laminate. The neural 
network used showed the capability of predicting 
fatigue life for laminated composites. 

Lee et al. [25] investigated the feasibility of using 
ANN to predict fatigue lives of five carbon and one 
glass fiber-reinforced laminates. A three-parameter 
Weibull distribution was used to estimate the 
number of cycles for various levels of failure 
probability from experimental data. The peak stress, 
minimum stress and the failure probability level 
were the most appropriate inputs from the root-
mean-square trials. They applied ANN to train 
fatigue data for four CFRP systems to predict the 
response of HTA/982. The results showed the log-
life was well within the normal experimental spread 
of data for composite materials.  

Artymiak et al. [26] applied ANN to estimate 
finite life fatigue strength and fatigue limit. The 
notch factor, tensile strength, yield strength and 
nominal stress were employed as input parameters. 
The output parameter was the endurable number of 
load cycles. The results showed that NN was capable 
of describing the expected S–N curve.  

Pleune and Chopra [27] studied the effect of light 
water reactor coolant environments on fatigue 
resistance of plain carbon steel and low alloy steel 
using ANN. The authors showed that ANN had a 
great potential of predicting environmentally 
influenced fatigue. The ANN output of the effects of 
sulfur content, strain rate and temperature on the 
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fatigue lives in air showed good agreement with the 
statistical model.  

Venkatesh and Rack [28] developed an ANN for 
predicting the elevated temperature creep fatigue 
behavior of Ni-based alloy INCONEL 690. Five 
extrinsic parameters (strain range, tensile strain rate, 
compressive strain rate, tensile hold time, and 
compressive hold time) and one intrinsic parameter 
(grain size) were training inputs. Fatigue life defined 
by complete fracture of the specimen was the 
predicted output. Close agreement between 
experimental and predicted life for the test points 
was observed with the NN approach.  

Fujii et al. [29] used a Bayesian NN for analysis 
of fatigue crack growth rate of nickel-based super-
alloys. The database consisted of 1894 combinations 
of fatigue crack growth and 51 inputs. The output 
was the logarithm of fatigue crack growth rate. A 
group of seven of the best models showed minimum 
test error and provided a close agreement with 
experimental data. This NN method demonstrated 
the ability of revealing new phenomena in cases 
where experiments cannot be designed to study each 
variable in isolation.  

Biddlecome et al. [30] developed an optimization 
based NN method to predict fatigue crack growth 
and fatigue life for multiple site damage panels. In 
the NN optimization each neuron represented a hole 
and contained pertinent information relevant to 
existing crack conditions. As the crack extended, the 
neuron gained energy. A set of energy functions was 
developed to define how the neurons gain energy as 
the system begins to converge to an optimal 
solution. The proposed NN was able to detect a 
panel failure and provide the path of crack 
propagation.  

Kang and Song [31] determined the crack 
opening load the input of 100 data points of the 
differential displacement signal on the loading stage. 
The accuracy and precision of the prediction of 
crack opening point by the NN were estimated for 
42 different cases, and the results were in good 
agreement with experiments.  

Al-Addaf and El Kadi [32] used ANN to predict 
fatigue life of unidirectional glass fiber/epoxy 
composite laminates with a range of fiber orientation 
angles under various loading conditions. The best set 
of inputs was the fiber orientation angle, stress ratio 
and maximum stress. The data points for different 
fiber orientation    angles    and    load   ratios   were   
tested. Although a small number of experimental 
data points were used for training, the results were 
comparable to other current methods for fatigue life 
prediction.  

Han et al. [33] discussed an ANN method aided 
by a special learning set to calculate the fatigue life 
of flawed structures. The input data included 

dimensions of the fracture section, defect 
information and stress value. The learning results 
from calculated fatigue life of the back propagation 
(BP) network alone and from BP network with a 
special learning set were compared with the 
experimental fatigue life. The results showed the 
feasibility of a NN in treating fatigue life calculation 
problems of flawed structures both for the special 
learning set and normal learning set.  

Choi et al. [34] presented models to predict the 
fatigue damage growth in notched composite 
laminates using an ANN, which was found to work 
better than the Power Law model as a predictive tool 
for split growth. ANN models showed the ability to 
capture more of the nonlinear characteristics. The 
linear cumulative damage rule worked well when 
combined with ANN models. 

Smith et al. [35] explored the use of the ANN to 
predict the plate end debonding in FRP-plated RC 
beams. The ANN trained with existing data showed 
relatively accurate predictions, and indicated 
capability to be applied in parametric study and 
structural design to provide new insights and 
predictions. 

In this paper, a model for predicting the fatigue 
crack growth by ANN is presented, which does not 
need all kinds of materials and environment 
parameters, and only needs to measure the relation 
between a (length of crack) and N (cyclic times of 
loading) in-service. The feasibility of this model was 
verified by some examples. It makes up the 
inadequacy of data processing for current technique 
and on-line monitoring. Hence it has definite 
realistic meaning for engineering application. 
 

2. ARTIFICIAL NEURAL NETWORKS 
An ANN can be considered as a black box that 

has the capacity to predict an output pattern when it 
recognizes a given input pattern [36].  

The neural network must first be “trained” by 
processing a large number of input patterns and 
evaluating the output that resulted from each input 
pattern. Once trained, the neural network is able to 
recognize similarities when presented with a new 
input pattern, and is able to predict an output pattern.  

Neural networks are based on models of 
biological neurons and form a parallel information 
processing array based on a network of 
interconnected artificial neurons (also called cells, 
units, nodes, or processing elements). The function 
of artificial neurons is similar to that of real neurons: 
they are able to communicate by sending signals to 
each other over a large number of biased or 
weighted connections. Each of these neurons has an 
associated transfer function which describes how the 
weighted sum of its inputs is converted to an output. 
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Computational models of a neural network try to 
emulate the physiology of real neurons. There are 
two principal functions for artificial neural networks. 
One is the input–output mapping or feature 
extraction. The other is pattern association or 
generalization. The mapping of input and output 
patterns is estimated or learned by the neural 
network with a representative sample of input and 
output patterns. The generalization of the neural 
network is an output pattern in response to an input 
pattern, based on the network memories that 
function like the human brain. Therefore, a neural 
network can learn patterns from a sample data set 
and determine the class of new data based on 
previous knowledge.  

Differing types of neural networks have evolved 
based on the neuron arrangement, their 
interconnections and training paradigm used. There 
are adaptive resonance theory, back-propagation, 
Boltzmann network, Hopfield network, general 
regression, learning vector quantization, modular 
neural network, neocognitron, probabilistic neural 
network, and so on. In general, the neural networks 
are trained either supervised or unsupervised 
learning paradigms. In the supervised learning case, 
the network is presented with pre-selected signals 
defining the various classes and is trained to 
recognize them. Back-propagation, Boltzmann, and 
Hopfield networks are prominent examples under 
this category. Neocognitron and adaptive resonance 
theory networks fall under the second category. The 
unsupervised learning algorithms are often used in 
pattern recognition applications. Patterns are 
recognized by the neural nets based on the features 
present in them.  

Among the various types of neural networks, the 
multi-layer perceptron trained with the back-
propagation algorithm (back-propagation neural 
network) has been proved to be most useful in 
engineering applications [37-45]. Thus back-
propagation neural network is used in this 
application study. The back-propagation network is 
given its name due to the way that it learns by back 
propagating the errors in the direction from output 
neurons to input neurons.  

The structure of a single artificial neuron is 
shown in Fig. 8. The weighted sum of input 
components are calculated as 
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where Sj is the weighted sum of the jth neuron for 
the input received from the preceding layer with n 
neurons, wij is the weight between the jth neuron and 
the ith neuron in the preceding layer, xi is the output 

of the ith neuron in the preceding layer, and θj is the 
intrinsic threshold that can be treated as an 
individual weight with a negative sign. Once the 
weighted sum Sj is computed, the output of the jth 
neuron yj is calculated with a sigmoid function as 
follows: 
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Fig. 8 − Schematic structure of an artificial  
neuron with input units. 

 
where η is a constant used to control the slope of the 
semi-linear region. The sigmoid nonlinearity 
activates in every layer except the input layer.  

The multi-layer perceptron network comprises an 
input layer, an output layer and a number of hidden 
layers. The presence of hidden layers allows the 
network to represent and compute more complicated 
associations between patterns. Many researchers 
proved that the multi-layer perceptron with three 
layers can perform arbitrarily complex classification 
while the complexity is dependent on the number of 
neurons in the hidden layer. The number of neurons 
in each layer may vary dependent on the problem. 
The basic structure of a feed-forward, back-
propagation network based on the multi-layer 
perceptron is shown in Fig. 9. Propagation takes 
place from input layer to the output layer. There is 
no connectivity between neurons in a layer. This 
type of neural network is trained using a process of 
supervised learning in which the network is 
presented with a series of matched input and output 
patterns and the connection strengths or weights of 
the connections automatically adjusted to decrease 
the difference between the actual and desired 
outputs. A gradient search technique is used to 
minimize a cost function which is equal to the mean 
square difference between the desired and the actual 
network outputs. The training of the network is 
carried out through a large number of training sets 
and training cycles (epochs). The criterion for 
convergence is determined by the root mean square 
error which adds up the squares of the errors for 
each neuron in the output layer, divides by the 
number of neurons in the output layer to obtain an 
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average, and then takes the square root of that 
average. The root mean square error is expressed as 
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where di and yi are the desired and actual output 
values for ith output neuron, and m is the number of 
neurons in the output layer. 
 

 
            Input layer         Hidden layer         Output layer 
 

Fig. 9 − A typical multi-layer 
percetron neural network. 

 

3. DEVELOPMENT OF AN ANN MODEL 
Under a given working condition and loading, the 

data monitoring for the given equipment without 
affecting its normal work is called on-line 
monitoring. Of all factors that affect corrosion 
fatigue crack growth, the one by one corresponding 
relation of a and N is the main display of fatigue life 
(a indicates the length of crack, N indicates the 
cyclic times of loading or action cycle of 
equipment). 

After lots of simulation and calculation, the 
authors adopted the three-layer back-propagation 
neural network as the model in this paper. There is 
one input element whose input value is the real 
length of crack growth and one output element 
whose output value is the cyclic times of loading.  

It only needs five or six data to construct the 
normal model. We should get a measure value 
continuously to build a predicting model for on-line 
monitoring, that is to say, new data should be taken 
as the reference point. If there are k−1 data to build a 
predicting model at the beginning, we can predict 
the kth and its following data. When we get the kth 
data and incorporate it into the original set as new 
information, we should delete old information and 
always keep k−1 data points to construct a predicting 
model for the next step. That is to say every data set 

learns a part of a ~ N curve similarly.      
The interval between two data should not be too 

long, if not, the precision and safety will not be 
guaranteed. 

The three-layer back-propagation neural network 
was constructed using MATLAB software [46].  

In this study, the fatigue crack growth data were 
divided into two groups, a training set and a test set. 
The training set of the fatigue crack growth data was 
used to train the network and the trained ANN was 
evaluated with the test set, exclusively. The 
performance of the trained ANN was tested by 
evaluating the coefficient of determination (R2), 
standard error of calibration (SEC), standard error of 
prediction (SEP), and bias [47].  

The coefficient of determination, R2, is used to 
measure the closeness of fit and can be defined as: 
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where y is the actual measured value, ypredicted is the 
predicted value by the trained ANN and ymean is the 
mean of the y values. Clearly, the coefficient of 
determination is a reasonable measure of the 
closeness of fit of the trained ANN, since it equals 
the proportion of the total variation in the dependent 
variable, in this study the number of cycles that is 
explained by the trained ANN. The coefficient of 
determination cannot be greater than 1. A perfect fit 
would result in R2=1, a very good fit near 1, and a 
poor fit would be near 0.  

The SEC measures the scatter of the actual 
measured values (y) about the values calculated by 
the trained ANN (ypredicted) and can be defined as 
[47]: 
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where n is the number of data and p is the number of 
variables.  

The trained ANN was then used to predict the 
number of loading cycles using the measured data 
that were not used in training the ANN.  

The bias and SEP represent the mean and 
standard deviation of the differences between the 
actual measured values of the number of loading 
cycles and the predicted values of number of loading 
cycles, and are given by the following equations 
[48]: 
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4. EXAMPLE 

The material used for the present example was 
0Cr18Ni9 austenitic stainless steel. Center crack 
tension specimens were machined for tests. Cyclic 
loading with sinusoidal waveforms at 5 Hz was used 
in tests. The pre-made crack length was 7.0 mm. 
Crack growing length was monitored by microscope.  

The testing results are shown in Table 1. Initial 
five couples of crack length and cyclic times of 
loading were selected in table as primary data sets 
before predicting the next. But only the next N is 
better-estimated value, and its follows only can be 
for reference.  

Table 1. Data of specimen 

a 
(mm) 

N 
(test) 

N 
(prediction) 

Absolute 
error 

7.000 0 − − 

7.810 6,080 − − 

8.570 11,520 − − 

9.330 16,580 − − 

10.05 20,680 − − 

10.58 23,680 23,715 35 

11.14 26,540 25,845 695 

11.88 29,480 28,323 1,157 

12.60 32,500 30,910 1,590 

13.20 34,760 33,543 1,217 

 
It will be noted that N (prediction) is the value 

predicted by the forward five data sets. 
From Table 1 we can see that the absolute error is 

in the normal region with the stochastic of fatigue 
problem. The feasibility is shown with better 
calculating result.  

The behavior of fatigue crack growth can be 
divided into two stages: stable crack growth stage 
and accelerating crack growth stage. To avoid 
damage to the testing machine caused by specimens 
fracturing, the upper tests were all stopped in the 
stable crack growth stage. According to the form of 
a∼N curve, we can judge whether the crack state is 

in accelerating growth stage or not by the following 
criterion: when continuous several estimated values 
are clearly bigger than measure values. This means 
the crack in the component may have been in 
accelerating stage. Its physical meaning is that the 
slope of the estimated curve is clearly a lot bigger 
than that of real curve (Fig. 10). This is an alarm for 
the supervisors that the component will possibly 
fracture, and some protective measures should be 
taken. 
 

 
Fig. 10 − Phisical meaning of the criterion. 

 
Using on-line data processing method the risk of 

equipment damage before reaching its design life is 
cut down, and it is a good monitoring method for 
extending in-service equipment, too. So material 
behaviors are brought into full play. It makes up for 
the inadequacy of causing material waste by 
considering safety factor in design.  

Applying ANN technique to predict the fatigue 
life of structures, complex calculation of ΔK and 
determination of the constant C, m are omitted, 
environment factor need not be thought about, and 
Paris formula need not be revised and integrated. All 
these make the predicting method simple. It 
especially fits for engineering application.  

ANN technique for data processing uses only one 
characteristic parameter. It does not consider the 
effect of the other parameters, in fact, the effect of 
all parameters were included in a N relation. So 
this method focuses on certain specimens, 
eliminating the effect of other cases for estimating 
the result.  

With the different effect of the changeable 
surroundings to the same component, the stable 
crack growth rate will change relevantly. So the 
constants C and m in Paris formula should often 
change, which makes Paris formula difficult to 
predict the correct remaining life. But they have the 
same loss-stability criterion to judge whether the 
crack is in accelerating growth stage or not by ANN 
technique. However, model of ANN can follow the 
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change, and make the right prediction. So this 
technique is especially fit for on-line fatigue crack 
growth monitoring.  

 
5. CONCLUSION 

High levels of uncertainty in current fatigue-life 
prediction techniques, and the often-catastrophic 
nature of fatigue failure, drive the continuing effort 
to develop techniques for detecting and 
characterizing fatigue damage. In this paper, an 
ANN technique for data processing of on-line 
fatigue crack growth monitoring was developed, 
which has a clear criterion and makes users employ 
it easily without enough special knowledge. This 
indicates that the proposed method has the potential 
for practical application in more complicated 
problems. But as an engineering technique it should 
be further tested and verified in factories.  
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