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Abstract: It is interesting to notice that from “problem’s formulation” point of view “Industrial Computer Aided 
Diagnosis” and “Biomedical Computer Aided Diagnosis” could be formulated as a same diagnosis riddle: “How point 
out a correct diagnosis from a set of symptoms?”. The only difference between the two above-mentioned groups of 
problems is the nature of the monitored (diagnosed) system: in the first group the monitored system is an artificial 
machinery (plant, industrial process, etc…), while in the second, the monitored system is a living body (animal or 
human).One of the most appealing classes of approaches allowing handling the Computer Aided Diagnosis Systems’ 
design in the frame of the aforementioned dual point of view is Soft-Computing based techniques, especially those 
dealing with neural networks and fuzzy logic. In this article, we present two soft-computing based approaches dealing 
with CADS design. One aims designing a biomedical oriented CADS and the other sets sights on conceiving a CADS to 
overcome a real-world industrial quality control dilemma. The goal of the first system is to diagnose the human’s 
auditory pathway’s health. The target of the second is to detect and diagnose the high tech optical devices’ defects. 
 
Keywords: Computer aided diagnosis systems (CADS), soft-computing, artificial intelligent systems, industrial CADS 
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1. INTRODUCTION 
A “Computer Aided Diagnosis System” (CADS) 

is basically one which is able to identify (diagnose) 
the nature of a dysfunction by examining the 
observed symptoms. The output of such a system is 
called “diagnosis”, defined as information 
identifying the type of faulty behavior. It may occur 
that diagnosis be complemented by additional 
information (such as an explanation or a 
justification) related to the pointed out diagnosis [1]. 
In a consequent number of CADS applications, it is 
desirable not only to identify the possible causes of 
the problem, but also to suggest suitable remedies 
(systems capable of advising) or to give a 
confidence rate of the possible causes’ identification.  

A Computer Aided Diagnosis System could be 
defined according to two different general points of 
view. The first one dissociates the faulty behavior’s 
detection task from the diagnosis task. Thus in the 
frame of this point of view, a Computer Aided 
Diagnosis System requires three main stages: a first 

stage detecting the faulty behavior, a second stage 
classifying the faulty behavior and a last stage 
deciding the final diagnosis. While, the second point 
of view aggregates the detection and diagnosis tasks. 
According to this point of view, the pointed out 
diagnosis (information) includes the fact that the 
resulting diagnosis corresponds to a detected faulty 
behavior. According to this point of view, two stages 
are needed to achieve the diagnosis operation: a first 
stage identifying symptoms (classifying behavior, 
analyzing pertinent indicators, etc…) and a second 
deciding the appropriated diagnosis. Both of two 
above-mentioned CADS may include (when it is 
required) a number of additional stages (mainly one 
or two) performing a number of preprocessing tasks 
such as data preparation (normalization, data’s 
adequate representation, etc…) or features’ 
extraction (indicators, etc…). 

Each of aforementioned frames corresponds to a 
number of advantages and disappoints. The main 
advantage of the CADS based on the first 
philosophy is to make available, independently from 
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the resulted diagnosis, information on faulty healthy 
state of the monitored system. However, the need of 
a fault detection stage could be seen as a drawback 
making such CADS more costly to implement. The 
main advantage of the second slant comes from the 
fact that in such approaches (CADS) it is not 
necessary to detect the faulty behavior of the 
monitored system. The “healthy state” of the 
monitored system is considered as a possible pointed 
out diagnosis and thus a diagnosis stating any 
monitored system’s faulty behavior means the 
presence (detection) of the corresponding fault. 
However, its main drawback is related to more 
complex information matching (more complex 
faults’ models, more complex decision strategy, 
etc…).  

Over past decades, several matching, 
classification and decision support systems taking 
advantage from bio-inspired Artificial Intelligence 
issued techniques have been developed [2], [3]. 
Recently a number of diagnosis approaches based on 
such intelligent artificial systems have been 
developed for industrial ([1], [4] and [5]) or 
biomedicine related purposes ([6], [7], [8], [9], [10] 
and [11]). It is interesting to note that from the point 
of view of the problem formulation “Industrial 
Computer Aided Diagnosis” (ICAD) and 
“Biomedical Computer Aided Diagnosis” (BCAD) 
could be formulated as a same diagnosis problem: to 
point out a diagnosis based on a number of 
symptoms. The only difference between the two 
above-mentioned groups of problems is the nature of 
the monitored system: in the first group the 
monitored system is an artificial machinery (plant, 
industrial process, etc…), while in the second, the 
monitored system is an alive body (animal or 
human). 

One of the most used classes of approaches for 
feature identification, patterns’ matching, 
classification and decision-making is soft computing 
based approaches, especially those dealing mainly 
with neural networks and fuzzy logic ([1], [3], [4], 
[5], [6], [9], [10], [11], [12], [13]). More recently, a 
number of research works dealing with above-
mentioned techniques leaded to a number of new 
soft-computing based solutions hybridizing those 
techniques aiming to solve real-world problems 
(complex systems’ modeling, multiple criteria 
decision-making, fine classification, and nonlinear 
functions approximation) [14], [15], [16], opening 
new perspectives in CADS area. 

In this article, we present two soft-computing 
based approaches dealing with CADS design. One 
aims designing a biomedical oriented CADS and the 
other sets sights on conceiving a CADS to overcome 
a real-world industrial quality control dilemma. The 
goal of the first system is to diagnose the human’s 
auditory pathway’s health. The target of the second 
is to detect and diagnose the high tech optical 
devices’ defects. 

The present paper is organized in following way: 
the next section will be dedicated to biomedical 
oriented CADS and related aspects. The first 
subsection of this section will introduce Auditory 
Brainstem Response (ABR) based clinical test. The 
second subsection of this second section will present 
the proposed CADS principle, its architecture and 
each of its three stages. The last sub-section of this 
section will give the obtained results. In section 3 of 
this paper we will present the industrial CADS and 
related investigations. The first sub-section of this 
section will introduce the problem to be solved, its 
industrial context and the proposed solution. The 
second sub-section will detailed the detection stage 
principle. The next sub-section will present pre-
processing and feature extraction. Sub-section 4 will 
deal with an unsupervised learning based diagnosis 
issue. Finally, the last section will conclude the 
present article and discuss a number of perspectives. 

 
2. BIOMEDICINE ORIENTED HYBRID 

INTELLIGENT DIAGNOSIS APPROACH 
A wide class of medical diagnosis, as those 

performed by general practitioners in general 
medicine, is mainly based on deductive processes. 
The deductive processes involved in such medical 
diagnosis tasks are generally based on a number of 
symptoms leading to the issued diagnosis according 
to a deductive procedure as one of the following 
ones: 

 
If symptom “A” Then disease “D”  
If symptoms “A” And “B” And “C” And … 

Then disease “D” 
 
A number of works, over past decades, have 

suggested conventional “expert systems” as potential 
solution in CADS design for this class of medical 
diagnosis. 

However, there exist in biomedicine a large 
number of cases where symptoms are not directly 
(or easily) discernable. In such cases, often, 
diagnosis is performed on the basis of clinical tests’ 
results which are generally available either as signals 
(for example electroencephalograms [7], 
electrocardiograms [8], etc…) or as images 
(obtained, for example, from X-rays imagery, echo-
graphical imagery, IRN imagery, etc…). If, from a 
very general point of view, the procedure performed 
by the specialist physician to point out the diagnosis 
remains somewhere a deductive process, it could no 
more be formulated in the frame of the previously 
mentioned deductive schemes. In fact, the process 
leading to the final diagnosis in this second category 
of biomedical cases looks more like a pattern 
recognition process than a conventional deductive 
flow. 

Concerning the CADS design relative to this 
second class of cases, the main difficulty remains the 
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specialist physician reasoning flow’s modeling 
which on the one hand is based on the expert’s 
(specialist physician) deep experience, and on the 
other hand, takes advantage from complex 
(subjective, visual, etc…) information. 

The present section deals with the design of a 
computer aided diagnosis system able to assert 
auditory pathologies using results issued from the 
Auditory Brainstem Response (ABR) based clinical 
test. ABR based clinical test takes advantage from 
Brainstem Auditory Evoked Potentials (BAEP) 
signals, which convey information related to hearing 
and brain (neurological) functioning [6], [17], [18], 
[19], providing an effective measure of the integrity 
of the auditory pathway. Based on what has been 
mentioned previously (concerning difficulty inherent 
to the expert’s reasoning flow’s modeling), the 
approach we adopt aggregates the detection and 
diagnosis tasks.  
 

2.1 BAEP SIGNALS AND ABR BASED 
CLINICAL TEST 

When a sense organ is stimulated, it generates a 
string of complex electrical responses related to its 
neurophysiology. BAEP are electrical response 
caused by the brief stimulation of a sense system. 
The stimulus gives rise to the start of a string of 
action's potentials that can be recorded on the nerve's 
course, or from a distance of the activated structures. 
The ABR clinical test, based on BAEP, is performed 
as follows (see Fig. 1): the patient hears clicking 
noise or tone bursts through earphones. The use of 
auditory stimuli evokes an electrical response. In 
fact, the stimulus triggers a number of 
neurophysiology responses along the auditory 
pathway. An action potential is conducted along the 
eight nerve, the brainstem, and finally to the brain. A 
few times after the initial stimulation, the signal 
evokes a response in the area of brain where sounds 
are interpreted [20]. 

Usually, the experts diagnose the pathology using 
a surface of 50 estimations called “Temporal 
Dynamic of the Cerebral” trunk (TDC) [20]. Figure 
2 shows an example of TDC obtained for a healthy 
patient and a patient with harmful auditory disorder 
pathology, respectively. 

 

 
Fig. 1 - General bloc diagram of ABR clinical test 

chain. 

 
Fig. 2 - Examples of obtained TDC Surfaces showing a 
healthy (A) and an auditory disorder (B), respectively. 

In general, for a healthy patient (normal 
audition), the ABR test leads to a regular TDC 
surface. However, it is not so easy to distinguish 
different TDC representations (surfaces) related to 
different type of pathologies. The results can vary 
for different test sessions for the same patient, 
because they depend on the person’s relaxation, the 
background, the test's conditions, the signal-to-noise 
ratio, etc. Also, depending to the stage of auditory 
disorder, ABR test’s results for two patients with 
different pathologies (for example one healthy and 
the second unwell) could look very similar. 
However, the expert (specialist physician) constructs 
his (or her) diagnosis from a visual analysis of the 
above-described TDC surfaces. 
 

2.2 PROPOSED CADS APPROACH 
Taking into account difficulty of modeling the 

expert’s intellectual process leading to the final 
diagnosis, the suggestion is to design a CADS taking 
advantage of expert’s knowledge (e.g. to use soft-
computing approaches in order to learn from expert). 
Also, taking into consideration the expert’s way to 
scrutinize the ABR clinical test’s results, we have 
opted for an image-like representation of the 
CADS’s input: the expert inspects TDC surfaces not 
as signals but looks at them as an image. 

So, conformably to what has been mentioned in 
section 1 of this paper, the proposed CADS includes 
three stages: pre-processing stage, classification 
stage and decision stage.  

The first stage converts the TDC surface to an 
image. The “Signal-To-Image” conversion is 
performed thanks to conventional threshold based 
interpolation techniques [21]. Fig. 3 depicts the bloc 
diagram of such transformation. As each BAEP 
signal is sampled and represented by 86 points 
(values) and a TDC surface includes 50 BAEP 
signals, consequently, each resulting image is 
formatted as a matrix of 50 rows and 86 columns. 
However, a finer analysis of these data leads us to 
consider a matrix of reduced dimensions: 40 rows by 
80 columns. In fact, a number of last rows and first 
columns include many zero values and/or very high 
values as shown in Fig. 4 (black parts left-down). 
Finally, the reduced image is spitted into 16 sub-
images.  
 



K. Madani, M. Voiry, V. Amarger, N. Kanaoui, A. Chohra, F. Houbre / Computing, 2006, Vol. 5, Issue 3, 43-53 
 

 46 

 
Fig. 3 - Bloc diagram of Signal-To-Image conversion. 

 
Fig. 4 - Example of TDC surface’s image 

representation showing complete image (left) and 
reduced one (right), respectively. 

The classification stage is based on a multiple 
neural networks structure [8], [12], [8], [9], [22]. It 
includes two kind of neural classifiers operating in 
an independent way: MLP and RBF [3], [14], [23], 
[24] and [25], as shown in Fig. 5. In this approach, 
16 local sub-images (S_I-1, ..., S_I-i, ..., S_I-16) of 
each TDC issued image are classified within three 
classes, representing each a possible pathological 
category: “Normal Category Patient” (NCP: 
corresponding to a healthy patient), “Retro-cochlear 
Category Patient” (RCP: corresponding to a first 
possible pathological patient) and  “Edo-cochlear 
Category Patient” (ECP: corresponding to a second 
possible pathological patient). The TDC image (e.g. 
all sub-images of a TDC issued image) is classified 
by both two kinds of the above-mentioned neural 
classifiers. 

 
Fig. 5 - Synopsis of dual neural classification. 

The last stage is composed of two fuzzy decision-
making stages: primary Fuzzy System (FS_1) and 
final Fuzzy System (FS_2). Fig 6 shows the bloc 
diagram of the decision stage’s architecture. Primary 
and final fuzzy decision-making stages consists of 
the Fuzzy System 1 (FS_1) and Fuzzy System 2 
(FS_2), respectively, see Fig. 6. These fuzzy 
decision-making systems are used to capture the 
decision-making behavior of a human expert while 
giving the appropriate diagnosis [2], [3], [29] and 
[30].  

 
Fig. 6 - Synopsis of the hybrid fuzzy system based 

decision stage. 

Note that both of two fuzzy inferences of FS_1 
and FS_2 are Mamdani-like fuzzy inferences and are 
developed as detailed in [2], [3], [9], [26] and [27], 
with the simplification detailed in [28]. From this 
simplification, the fuzzy rule base of FS_1, which is 
built of 36 = 729 rules, will operate only with 26 = 64 
rules in each inference. In the same way, the fuzzy 
rule base of FS_2, which is built of 34 = 81 rules, 
will make in use only 24 = 16 rules in each 
inference. Input parameters of FS 1, issued from the 
two neural classifiers, are RC_MLP, EC_MLP, 
NC_MLP, RC_RBF, EC_RBF, and NC_RBF. Its 
outputs are PORC, POEC, and PONC. The diagnosis’ 
reliability obtained from FS_1 is reinforced 
(enhanced) using an additional parameter, called 
Auditory Threshold (AT). This parameter is 
exploited by FS_2 in order to generate the final 
diagnosis result. Input parameters of FS_2, issued 
from FS_1, are AT, PORC, POEC, and PONC and its 
outputs are FORC, FOEC, and FONC with their 
Confidence Index (CI). 
 

2.3 EXPERIMENTAL RESULTS 
The experimental results presented in this sub-

section have been obtained using a database 
containing data of 206 patients characterized by one 
of the three possible diagnoses (obtained from an 
expert). 206 images are built using this database 
leading to 38 images representing Retro-Cochlear-
Patients, 77 images representing Endo-Cochlear-
Patients, and 91 images representing Normal-
Cochlear-Patients. 

Table 1. Fuzzy decision-making system FS_1 

Results Learning Generalization (FS_1) 
RC 100 % 10.52 %  
EC 100 % 15.78 %  
NC 100 % 77.77 %  
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Table 2. Fuzzy decision-making system FS_2 

Results Learning Generalization (FS_2) 
RC 100 % 21.05 % 
EC 94.87 % 57.89 % 
NC 100 % 82.22 % 

 
Obtained results are summarized in tables 1 and 

2. Table 1 gives resulting pre-diagnosis performed 
by FS_1 decider. Table 2 gives final diagnosis 
results.  
 

3. INDUSTRIAL PRODUCTION ORIENTED 
INTELLIGENT CADS 

Fault diagnosis in industrial environment is a 
challenging but crucial task, since it ensures 
products’ nominal specification and manufacturing 
control. Concerning High-Tech optical industry, a 
major step for high-quality optical devices’ faults 
diagnosis concerns scratches and digs defects 
detection and characterization in such products. 
These kinds of aesthetic flaws, shaped during 
different manufacturing steps, could provoke 
harmful effects on optical devices’ functional 
specificities, as well as on their optical performances 
by generating undesirable scatter light, which could 
seriously damage the expected optical features. A 
reliable diagnosis of these defects becomes therefore 
a crucial task to ensure products’ nominal 
specification. Moreover, such diagnosis is strongly 
motivated by manufacturing process correction 
requirements in order to guarantee mass production 
quality with the aim of maintaining acceptable 
production yield. Figure 7 gives an example of 
High-Tech optical products, showing four optical 
filters. 

 
Fig. 7 - Example of High-Tech optical devices 

performing optical filtering (left) and the visual fault 
detection, performed by an expert. 

Unfortunately, detecting and measuring such 
defects is still a challenging problem in production 
conditions and the few available automatic control 
solutions remain ineffective. That’s why, in most of 
cases, the diagnosis is performed on the basis of a 
human expert based visual inspection of the whole 
production. However, this conventionally used 
solution suffers from several acute restrictions 
related to human operator’s intrinsic limitations 
(reduced sensitivity for very small defects, detection 
exhaustiveness alteration due to attentiveness 
shrinkage, operator’s tiredness and weariness due to 
repetitive nature of fault detection and fault 

diagnosis tasks). 
 

3.1. PROPOSED SOLUTION 
To construct an automatic diagnosis system, we 

propose an approach based on three main operations: 
detection, classification and decision. Our 
motivation to adopt the approach dissociating 
detection and diagnosis tasks is based on 
requirement relative to the frame of industrial 
production. In fact, two complementary options 
could de required in industrial production 
environment. The first is inherent to mass 
production where it is not always necessary to 
diagnose whole manufactured products during the 
production, but it is crucial to detect the presence of 
defects in order to state if the number of defects is 
conform to the process’ intrinsic limitations. 
However, at the same time, diagnosis ability could 
help to state (offline) if detected defects are due to 
intrinsic limitations of the used manufacturing 
process or a number of them correspond to different 
derivations. The second situation is specific to High-
Tech products manufacturing requirements, where 
additionally to systematic defect detection it is 
crucial to state on nature of detected defects in order 
to reach high-quality specifications. 
 

3.2. DETECTION STAGE 
The detection stage is composed of two 

operations. The first operation is based on the 
Nomarski microscopy [29], [30], issued imaging 
(Nomarski microscope and a digital camera). The 
second operation incorporating the two following 
phases: 
• Pre-processing: Nomarski microscopy issued 

digital image transformation in order to reduce 
lighting heterogeneity influence and to enhance 
the aimed defects’ visibility,  

• Adaptive matching: adaptive process to match 
defects, 

is an image processing techniques based treatment of 
the Nomarski microscopy issued image in order to 
relieve defects’ presence exposure. Fig. 8 gives the 
bloc diagram of the detection stage. 

Three main advantages distinguishing Nomarski 
microscopy (known also as “Differential 
Interference Contrast microscopy” [30], [31] and 
[32]) from other microscopy techniques, have 
motivated our preference for this imaging technique. 
The first of them is related to the higher sensitivity 
of this technique comparing to the other classical 
microscopy techniques (Dark Field, Bright Field 
[29]). Furthermore, the DIC microscopy is robust 
regarding lighting non-homogeneity. Finally, this 
technology provides information relative to depth 
(3-rd dimension) which could be exploited to typify 
roughness or defect’s depth. This last advantage 
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offers precious additional potentiality to characterize 
scratches and digs flaws in high-tech optical devices. 
Therefore, Nomarski microscopy seems to be a 
suitable technique to detect surface imperfections. 
Issued images contain several items which have to 
be detected and then classified in order to 
discriminate between “false” defects (correctable 
defects) and “abiding” (permanent) ones. Indeed, 
because of industrial environment, a number of 
correctable defects (like dusts or cleaning marks) are 
usually present beside the potential “abiding” 
defects.  

 
Nomarski 

Microscope 
Digital 

Camera 
Image 

Processing
 

Fig. 8 - Bloc diagram of defects’ detection chain. 

In the pre-processing phase, as presented in [30] 
and [33], the intensity of every pixel in the image is 
modified according to the relation (1), where P 
(respectively P’) represents pixel’s intensity before 
(respectively after) the transformation. M and σ are 
the mean and the standard deviation of grey-level in 
a 5x5 neighborhood of considered pixel. 

σ+
=

M
PP'                              (1) 

 

 
Fig. 9 - Example of pre-processing effects showing 

DIC microscopy issued defect’s image (left) and the 
same captured defect after pre-processing phase. 

The first consequence of the aforementioned 
transformation is to balance the image dynamic: 
lighting heterogeneities (due to non-uniform 
floodlighting) and local contrast modifications (due 
to focus and material thickness variations, or 
microscope optics imperfections) are corrected. Its 
second consequence is to enhance defects visibility 
in the processed image. Fig. 9 gives an example of a 
pre-processed DIC microscopy issued image, 
obtained conformably to the described 
transformation. 

In order to perform defects detection, an adaptive 
thresholding operation is performed, exploiting 
physical considerations. To determine the effective 
threshold, we propose a technique based on the 
estimation of the roughness appearance. In our 
technique, the image (obtained after the pre-
processing operation) is initially divided into a set of 
8 by 8 pixels images. Then the number of 8 by 8 
images in which the weakest available intensity 
corresponds to the same grey-level is determined. 
The evolution of the shape (curve) of this umber 

versus grey-level values is then determined. Finally, 
the effective adaptive threshold T is experimentally 
set thanks to relation (2), where Max is the grey-
level corresponding to the maximum of the curve, 
and H the WDMH (width of middle high) of the 
curve.  

 

2
HMAXT −=                              (2) 

 

 
Fig. 10 - Example the curve expressing the number of 
8 by 8 images in which the weakest available intensity 

corresponds to the same grey-level. 

 
Fig. 11 - Example detection stage output image 

obtained from the DIC microscopy issued defect’s 
image depicted in Fig. 9. 

Fig. 10 gives an example of such curve for the 
images depicted by Fig. 9. An example of defect 
detection (e.g. detection stage’s output image) is 
given in Fig. 11. It corresponds to resulted adaptive 
thresholding  of the image shown in Fig. 9. The 
presented detection approach gives good and 
repetitive (robust) results, preserving sensitivity of 
DIC microscopy, since all of the defects deeper than 
roughness range are detected. Another interesting 
feature related to our approach is that the obtained 
curve is almost the same for any image. 
 

3.3. ITEMS IMAGES EXTRACTION 
The aim of this stage is to extract items images, 

taking into account DIC detector issued digital 
image, isolating different items. In shch way, an 
item (via its correponding image) will represent a 
pôtential defect to be diagnosed. To achieve this 
task, a new method is proposed, adding two new 
operations (phases) to the two previous ones (those 
described in detection stage): 
• Filtering and segmentation: noise removal and 

defects’ outlines characterization. 
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• Defects’ images extraction: correct defect 
representation construction. 

The first operation consists of conventional 
filtering and morphological erosion transformation 
on image issued from the detection stage. It leads to 
a new image containing (representing) defects 
outlines. Filtering consists in replacing each pixel P 
by the nth pixel in the sorted list of all pixels in the 
m-square neighborhood of P. For little n values, it is 
almost equivalent to a morphological dilatation but it 
filters isolated white pixels corresponding to noise. 
An example of resulted image, obtained using Fig. 
11 results is given in Fig. 12. 

 
Fig. 12 - Example of resulted image obtained after the 

“filtering-segmentation” operation performed on 
image depicted in Fig. 11. 

 
Fig. 13 - Examples of four detected items’ images 

corresponding (from left to right) to “scratch-like”, 
“dig-like”, “dust-like” and “cleaning mark-like” 

defects. 

Finally, images associated to all detected items 
are constructed performing the second operation. It 
is done considering a stripe of ten pixels around each 
“white” pixel of the detected item. Thus the obtained 
image gives an isolated (from other items) 
representation of the defect (e.g. depicts the defect in 
its immediate environment). Fig. 13 gives four 
examples of detected items images using the 
aforementioned principles, performed on raw images 
of an optical device in industrial environment. It 
shows different characteristic items which could be 
found on such device. 
 

3.4. DIAGNOSIS STAGE 
The diagnosis is performed by “clustering” 

(classification) then by comparison to the defects’ 
categories’ representative “specimens” (decision). 
The classification task is achieved thanks to an 
unsupervised learning based neural network which is 
a Kohonen Self-Organizing Map (SOM) [34] and 
[35]. However, before SOM based clustering, an 

additional operation is required. This additional 
operation consists on extracting a set of homogenous 
features in order to construct an invariant (regarding 
translation and rotation) representation of SOM’s 
input vector. In fact, because of different sizes of 
items’ images and their relative positions (due to 
translation and rotation) it is necessary to have a 
“normalize” representation for SOM’s input 
patterns.  

For that, we propose to use “Fourier-Mellin” 
transformation as it provides invariant descriptors, 
which are considered to have good coding capacity 
in classification tasks [36], [37] and [38]. A set of 
associated features, invariant with regard to 
geometric transformations, are proposed in [39]. In 
order to calculate efficiently Fourier-Mellin 
transform in discrete Cartesian coordinates, we 
perform the convolution of the image with an 
appropriate filters bench proposed in [42]. Finally, 
the extracted features have to be normalized. For this 
purpose we use the centring-reducing transformation 
modifying each feature iF  conformably to the 
relation (3), where M is the mean value of the 
feature iF  over the database and σ its standard 
deviation. 
 

σ
MF

F i
i

−
=                              (3) 

 
3.5. EXPERIMENTAL SET-UP AND 

VALIDATION RESULTS 
Three experiments called A, B, C were carried 

out, using two kind of optical devices (products). 
Table 3 shows the different parameters 
corresponding to these experiments. It’s important to 
note that, in order to avoid false classes learning, 
items images depicting microscopic field boundaries 
or two (or more) different defects are discarded from 
used database. 

Using the above described experimental protocol, 
we have diagnosed detected defects relative each 
above-mentioned experiment. Figures 14, 15 and 16 
show the lattice of neurons corresponding to the 
three experiments respectively. In these figures, the 
depicted defect for each node is chosen randomly 
among the examples of the database which are 
projected onto the node under consideration. The 
size of images is normalized, so the real scale is not 
respected. In the three cases, the similarities between 
adjacent nodes are apparent and some clusters of 
similar data are identified. Moreover, in major cases, 
database items projected in the same neurons have 
the same appearance. Such defects probably belong 
to the same class of defects. Thus, the performed 
clustering operation seems relevant. However, data 
projected onto neurons which are near “natural” 
class boundaries, are sometimes inhomogeneous. 
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Table 3. Experimental conditions and parameters 
Exp. 
Id. 

Optical 
device 

Id. 

Clearing Number 
scanned 
Fields  

Number of 
items in 
learning 

SOM 
grid size

A 1 No 1178 3865 15 X 7 
B 2 No 605 1910 20 X 8 
C 2 Yes 529 1544 10 X 8 

 

 
Fig. 14 - Representation of the Kohonen’s map 

corresponding to the experiment A. 

 

 
Fig. 15 - Representation of the Kohonen’s map 

corresponding to the experiment B. 

 
Fig. 16 - Representation of the Kohonen’s map 

corresponding to the experiment C. 

When observing obtained maps from experiments 
A and B, we notice the presence of clusters similar 
in nature. On the contrary, when comparing maps 
from experiments A and B with the result of the 
experiment C, we find that classes corresponding to 
big black items (see nodes 28, 29, 43, 44 from map 
A and nodes 17, 18, 19, 37, 38, 39 from map B) are 
absent in the third map. This is coherent with the 
fact that experiments A and B studied both non 
cleaned devices and therefore dealt with the same 
kind of defects, unlike experiment C. On the other 
hand, it implies that the mentioned defect classes 
would probably correspond to dusts. 

 
4. CONCLUSION 

Taking into consideration the fact that “Industrial 
Computer Aided Diagnosis” and “Biomedical 
Computer Aided Diagnosis” could be regarded as a 
same diagnosis riddle, we have presented two 
CADS, taking advantage from the most appealing 
abilities of ANN which are their “learning”, 
“generalization and for some of them  their “self-
organization” capabilities. Both of the two Computer 
Aided Diagnosis Systems operate on the basis of 
image-like information’s representation, covering a 
large number of real-world applications either in 
biomedicine or in industry.  

Based on a neural classifiers’ fusion (involving 
two different kind of neural networks) and a 
cascaded fuzzy decision-making strategy, the 
biomedical oriented CADS has been applied to 
overcome the difficult challenge of human’s 
auditory disorders’ diagnosis. While the target of the 
second, based on combination of a defects’ detection 
stage and a Kohonen-SOM-like unsupervised ANN, 
was to detect and diagnose the defects in High-Tech 
optical devices in the frame of industrial production 
constraints. 

The obtained experimental validation results, 
carried out using real data, as well for the 
biomedical application as for the industrial request, 
show the promising potential of Soft-Computing 
techniques in designing intelligent CADS.  
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Further works, dealing with the present paper’s 
purposes, are already engaged in several directions. 
Part of them is oriented on mechanical faults 
detection and diagnosis in industrial power 
machines. Another slice of planed perspectives 
concerns other kinds of digital imaging based CADS 
applications in industry. Also, a part of perspectives 
launch new clinical applications. 
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