
Diego Ariel Bendersky, Juan Miguel Santos / Computing, 2006, Vol. 5, Issue 3, 68-74

 68

LEARNING FROM THE ENVIRONMENT WITH A
UNIVERSAL REINFORCEMENT FUNCTION

Diego Ariel Bendersky, Juan Miguel Santos

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

Pabellón I, Ciudad Universitaria
1428 Ciudad de Buenos Aires, Argentina.

{dbenders, jmsantos}@dc.uba.ar

Abstract: Traditionally, in Reinforcement Learning, the specification of the task is contained in the reinforcement
function (RF), and each new task requires the definition of a new RF. But in the nature, explicit reward signals are
limited, and the characteristics of the environment affects not only “how” animals perform particular tasks, but also
“what” skills an animal will develop during its life. In this work, we propose a novel use of Reinforcement Learning
that consists in the learning of different abilities or skills, based on the characteristics of the environment, using a fixed
and universal reinforcement function. We also show a method to build a RF for a skill using information from the
optimal policy learned in a particular environment and we prove that this method is correct, i.e., the RF constructed in
this way produces the same optimal policy.

Keywords: Reinforcement learning, environment influence, skills, autonomous robots.

1. INTRODUCTION
In Reinforcement Learning (RL), an agent finds

the optimal strategy for solving a particular task by
interacting with the environment and receiving
rewards and punishments based on the executed
actions. This type of learning has been studied in
humans and animals since the beginning of the 20th
century [1], modeled mathematically using dynamic
programming tools and adopted as an Artificial
Intelligence method for machine learning [2].

Traditionally, the specification of the task is
contained exclusively in the function that models
rewards and punishments, called the reinforcement
function (RF). Hence, each new learning task
requires the specification of a new RF and most of
the times this RF is built from scratch, based on the
intuition and experience of the developer and tested
by trial and error on realistic environments.

But in the nature, we can observe that explicit
reward signals are limited, and external stimuli
influence the behaviors of animals and humans [3]
to the extent that it can affects not only how animals
perform particular tasks, but also what skills an
animal will develop during its life. For example, in
laboratory experiments, a rat can learn how to pull a
knob if this action opens a box with food. But the
same rat can learn how to escape from a maze if it is
put inside the maze and the food is put on the

outside. In both cases, the reward (the positive
reinforcement), expressed as a satisfaction felling, is
obtained when the rat eat the food and not when the
rat succeed to pull the knob or succeed to find the
way out of the maze. In this example, it is the
environment and not the RF which induces the skills
that are going to be learned.

Another fact observation related to RL as seen in
the nature is the use of information from past
experience as a replacement for an explicit RF. This
fact may be observed on humans and animals, who
after the successful learning of a particular task, can
construct new reinforcement functions and use it
later in another task. The learning of these new tasks
can then be produced without explicit external
feedback. For example, humans associate
reinforcements with approval or disapproval of other
persons, with love and hate, or simple with a
``Right!'' or ``Wrong!'' yell [4]. This new type of
reinforcements, often called secondary
reinforcements or conditioned reinforcements, has
been first identified by Ivan Pavlov in his
experiments with animals.

Although these ideas have been studied by
psychologists and biologists, as far as we know they
have never been used for machine learning. Our aim
is to incorporate them in an RL framework in a
systematic and formal manner in order to develop a
robust learning method less dependent to external

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Journal

 of Computing

Diego Ariel Bendersky, Juan Miguel Santos / Computing, 2006, Vol. 5, Issue 3, 68-74

 69

specifications.
In this work, we propose a novel use of RL that

consist in the learning of different abilities or skills,
based on the characteristics of the environment,
using the same fixed and universal RF for all the
skills. We also show a method to construct a RF for
a skill based on the optimal policy learned in a
particular environment with our method. We
illustrate our idea in a robot simulator, showing how
the robot learns different skills when the learning
process takes place in different environments.

2. HYPOTHESES AND PROOF OF
CONCEPT

In this section, we propose two hypotheses and
we describe a series of simple experiments as a
proof of concept. The hypotheses express the ideas
of learning skills influenced by the environment and
building RFs internally:

Hypothesis 1: Using a fixed reinforcement

function that specifies a general task, RL can be
used to learn different skills by modifying the
characteristics of the environment.

Hypothesis 2: Using a fixed reinforcement

function that specifies a general task and a policy
that solves the task on a particular environment, it is
possible to construct a RF for a skill that is part of
the optimal policy for the general task.

These hypotheses are related to problems of

interest for the RL field, such as: environment
generalization and optimal environment construction
(if two environments allow the learning of a given
task, which one is better? Could we obtain the
optimal environment?) and mappings between
behaviors and environments (which characteristics
should be present in the environment to allow an
agent to learn the desired skill?).

3. LEARNING FROM THE
ENVIRONMENT

As a proof of concept for our first hypothesis, we
designed a series of experiments and we carried out
several simulation tests. On these experiments, a
light represent a food source, and the general task
consist in reaching the light from any initial position.
The task is considered episodic, and an episode ends
either when the light source or a boundary of the
environment is reached. The robot has a light sensor
that consists in a pair of values that indicate the
distance and angle from the front of the robot to the
light source and nine proximity sensors distributed
around the robot body. This task is expressed with a

simple RF that assigns a positive reinforcement if
the robot reaches the light and a negative
reinforcement if it is too far.

Fig. 1 – Environments used for the learning
process. The big circle represents the light source,

small circles are rounded obstacles, and straight lines
are walls. The triangles around the robot represent the

proximity sensors.

Diego Ariel Bendersky, Juan Miguel Santos / Computing, 2006, Vol. 5, Issue 3, 68-74

 70

a)

b)

c)

Fig. 2 – Trajectories of the policies obtained on each
environment: a) the robot avoids rounded obstacles, b)
the robot finds a hole in a wall, and c) the robot walks

through a corridor.

This RF can be expressed with the following
formula:

 100 if light_dist ≤ Kmin
rf(s) = -1 if light_dist ≥ Kmax (1)
 0 otherwise.

where Kmin and Kmax are thresholds for distance to
the light.

Using the same RL algorithm and the same
parameters, we execute the learning process in three
different environments: an environment with
rounded obstacles, an environment with a wall and a
hole on it and an environment with a corridor (see
Figure 1). For all the experiments, we used the Q-
Learning algorithm [5]. Figure 2 shows trajectories
of the obtained behavior for each environment.

If we would have seen the results before reading
the explanation of the experiment, we would have
concluded that the robot on Figure 2.a knows how to
avoid obstacles, the robot on Figure 2.b can find a
hole in a wall and pass through it and the robot in
Figure 2.c can traverse corridors. But there is
nothing in the RF that determines these skills. A first
question arises: Where does the information needed
to learn the skill come from? Since the three
experiments were set up exactly in the same way
except for the definition of the environment, we can
conclude that the characteristics of the environment
and the relationship between the RF and the
environment implicitly contain the information
needed to learn the skills. If we give credit to the
previous sentence, then it should be possible to
extract this information, and make it explicit in the
form of a specific RF for the learned skill.

4. EXTRACTING A RF FROM PAST

EXPERIENCE
In this section we will show a method to extract a

RF for a skill from a policy already learned in a
particular environment.

Let M = <S,A,T,R> be a Markov Decision
Process that represent the global task (reach the light
source in this case) for a particular environment,
where S is the state set, A the action set, T a
transition function and R the reinforcement function.
Consider Sskill, the subset of S where the skill is
expressed (notice that the skill does not cover the
entire state space; for example, some parts of the
environment are common to all the experiments and,
conceptually, are not part of the skill) such that
R(s,a,s') = 0 for all s ∈ Sskill. We define a new MDP
for the skill M' = <S',A',T',R'> where S'=Sskill ∪ τ,
A'=A and T'(s,a,s') = T(f(s),a,f(s')), where f is
defined as follows:

Diego Ariel Bendersky, Juan Miguel Santos / Computing, 2006, Vol. 5, Issue 3, 68-74

 71

 f: S → S’

 s if s ∈ Sskill

 τ if s ∉Sskill (2)

A RF for a skill can be extracted from a learned

policy if we can build R' such that π*M'(s), the
optimal policy for M' is equal to π*M(s), the optimal
policy for M, for all states s ∈ Sskill. If R' is defined
as follows, we will show that then the previous
property holds:

Q*

M(s,a) if s ∈ Sskill and s’∉Sskill
0 otherwise

 (3)

where s is the previous state, a the executed action,
s' the current state and Q*

M(s,a) the Q-value function
for the optimal policy of M.

We will prove now that, for any policy π, Qπ (s,a)

in M (using R as the reinforcement function) is equal
to Qπ(s,a) in M' (using R') for all states s ∈ Sskill, for
all actions a. From this, it follows immediately that
the optimal policy for M is also the optimal policy
for M' for states in Sskill.

Let Фπ
M#(s,a) be the set of trajectories

{s0,a0,s1,a1,...} induced by a policy π on an MDP M#
where s0=s and a0=a. We can map each trajectory in
the MDP M to a trajectory in the MDP M' with the
function g: Фπ

M(s,a) → Фπ
M’(s,a), g({s0,a0,s1,a1,...})

= {f(s0),a0,f(s1),a1,...}. Notice that g is a surjection
and, hence, induces a partition in the domain. We
will call [φ']g the set of all φ ∈ Фπ

M(s,a) such that
g(φ)= φ'.

Given a trajectory φ' = {s0,a0,s1,a1,...} ∈
Фπ

M’(s,a), consider now the expected return for the
trajectories φ∈ [φ’]g, or Eφ∈[φ’]g{Ret(φ)}. We will
prove that this quantity is equal to Ret(φ’).

If si ∈ Sskill ∀i, there is only one trajectory φ∈
[φ’]g, both Ret(φ’) and Ret(φ) are equal to zero and
the property holds. Otherwise, there exist a state sk+1
such that sk+1+j = τ for all j ≥ 0. By definition of R',
Ret(φ’) = γk Q(sk,ak). On the other hand, since the
first k returns of any trajectory φ ∈ [φ’]g are zero, we
can rewrite Eφ∈[φ’]g{Ret(φ)} as γk Eφ#∈Фπ,M(sk,ak)
{Ret(φ#)}, which is equal to γk Q(sk,ak) by definition
of Q. Then, the property holds for any φ’.

Finally, observe that Qπ
M'(s0,a0) is equal to

Eφ’∈ФπM’(s0,a0){Ret(φ’)}, which is indeed equal to
Eφ’∈Ф π,M'(s0,a0){Eφ ∈ [φ’]g{Ret(φ)}} and, since g induces
a partition on trajectories in M, and the transition
probabilities of both M and M' are equal for Sskill, the

probability of a trajectory φ' ∈ Фπ
M'(s0,a0) is equal to

the sum of the probabilities of all the trajectories of
[φ']g. Hence, Eφ'∈Фπ,M’(s0,a0){Eφ∈[φ']g{Ret(φ)}} =
Eφ∈Фπ,M(s0,a0){Ret(φ)} = Qπ

M(s0,a0). We can conclude
then that Qπ

M'(s0,a0) = Qπ
M(s0,a0) for all s0 ∈ Sskill.

The figure 3 shows, as an example, the definition
of the RF for our experiments, considering Sskill as
the set of states with nearby obstacles. The dots
represent final states, and the color of the dots their
reinforcement value (lighter colors represent higher
values).

Fig. 3 – RF for the skills constructed from the learned
policy. All dots are final states and the color represent

the reinforcement value (lighter colors for higher
values).

5. SCALING UP
Although the skills learned and extracted in the

previous section were not trivial, they were
somewhat limited. Based on the formal background
presented in this section, we will show an approach
to scale up our learning method. Our aim is to

f(s)

R’(s,a,s’)

Diego Ariel Bendersky, Juan Miguel Santos / Computing, 2006, Vol. 5, Issue 3, 68-74

 72

synthesize more complex tasks incrementally, using
the learned skills as “building blocks” for more
complex policies, without altering the main
characteristic of our proposed learning method: a
unique RF.

For this purpose, we will use the Options
Framework. The Options Framework, developed by
Sutton, Precup and Singh [13], extends the usual
notion of action to include options: closed-loop
policies for taking actions over a period of time.
Formally, an option consists of three components: a
policy π, a termination condition β: S → [0, 1], and
an initiation set I ⊆ S. An option <I,π,β> is available
in state st if and only if st ∈ I. If the option is taken,
then actions are selected according to π until the
option terminates stochastically according to β.

Fig. 4 – Trajectories of the policy learned using the
skills. Lighter traces are displayed when the agent

executes a skill and black traces when the agent
executes basic actions

We will use the option framework by defining an

option for each learned skill. To illustrate this

approach, we propose an experiment that consists in
reaching a light source in a maze-like environment,
with two walls, an obstacle and the light source in a
corner. The following skills were included as
options: “find a hole on the left”, “find a hole on the
right” and “avoid rounded obstacles”. Without these
skills, the task would be extremely hard to learn
using the universal RF, and very hard anyway if
learned with a tailored RF. The results of the
learning are shown in figure 4. Dark traces are
displayed when the robot executes basic actions and
light traces when the robot executes options. Label 1
indicates the execution of the skill hole on the right,
label 2 the skill obstacle and label 3 the skill hole on
the left. We can see that the agent can reach the light
source from any initial position, choosing the
appropriate skill on each state. The skill extraction
method can be applied to the new learned policies as
well to obtain new higher level skills to be used in
even more complex contexts, obtaining a scaling up
methodology. Notice that in the Options Framework
the control is not hierarchical in the sense that
options do not replace simple actions, but both can
be used interchangeably.

5. MOTIVATIONS AND DISCUSSION
When RL is used in robot learning, some human

intervention is needed in order to specify what tasks
are to be learned and, for each task, what will it be
considered a success and what will it be considered a
failure. In other words, a human RF designer has to
figure out which situations and actions should be
reinforced and the magnitude of each reinforcement
for each different task. But animals and humans can
learn some skills completely alone. Understand how
RL can be used on scenarios with no human
presence can be promising and very useful for some
robotic applications. Apart from this theoretical
aspect, this method has technical advantages, since
the definition of a proper RF for a nontrivial task can
be very difficult. RFs are specified by hand and
often fine tuned by trial and error. There is no
general, direct method to deduce a RF from a high
level definition of a task, although research is being
made in this direction (for example, see [6]). But
even if such a method exists, the description of the
task in a high-level language may be ambiguous and
lead to unexpected behaviors.

One of the most common behaviors used for
testing learning algorithms in robotics is obstacle
avoidance. At first sight, it is not difficult to define a
reinforcement function for this task: a negative
reinforcement should be given when a collision is
produced. But guided with this function only, the
best (optimal) behavior can be don't move, don't
matter what happens, rotate in place or move a

Diego Ariel Bendersky, Juan Miguel Santos / Computing, 2006, Vol. 5, Issue 3, 68-74

 73

small step forward and a small step backwards (why
would the robot take the risk of exploring new and
challenging regions?). Definitely, this behavior is
not what anybody expects from obstacle avoidance.
We think that the problem here is caused by an
incomplete definition of the task: the correct
definition should be avoid obstacles while exploring
the terrain, or avoid obstacles while moving from
one point to another. But even if we make some
effort to specify the task with more detail, there are a
lot of optimal strategies for obstacle avoidance. For
example, when the robot approaches an obstacle, it
can circumvent the obstacle, or it can turn around
and go away from the obstacle. Both are optimal
policies, according to the RF we have defined above.
Which is the behavior the designer is trying to
achieve? As this example shows, even the
description of a reinforcement function in natural
language can be ambiguous and may lead to
unexpected behavior.

A second problem arises when we try to
formalize the function. On real robots, the
information gathered from the sensors is noisy,
uncertain, incomplete and sometimes too low-level,
and it is not easy to map this information to the high-
level concepts used to express the RF in natural
language. Some approaches to solve this problem
includes the parameterization of the RF, the
automatic tuning of the parameters during learning
([7] and [8]) and the formalization of the RF in
terms of the configuration space ([6]).

Another potential problem produced by the
translation of the RF from a high-level definition to
a definition based on the agent's sensors is that the
mapping may be one-to-many. Since a complete
observability of the environment is often not
possible, different situations can be indistinguishable
by the agent. This phenomenon is called perceptual
aliasing [9] and can cause that the same action
executed on the same (sensed) situation can produce
different results.

Finally, on some occasions the information
available for a robot is local. Since tasks are more
easily expressed in terms of global information,
sometimes it is not easy to define an RF in terms of
local data. See for example the Figure 2.b. In this
environment, a robot with infrared sensors has to
cross the wall by walking through a whole. How can
the task been expressed with a RF in terms of local
sensors?

As a conclusion, we can say that the definition of
a proper RF for a task can be difficult. If the robot
could learn different skills with a general RF and a
careful design of the environment, and it could
generate new RFs from past experience, we would
have a powerful tool for the development of
autonomous robots with more complex capabilities.

On the other hand, the influence of the
environment in the learning process and the obtained
behaviors has been studied by other authors. Jette
Randlov has demonstrated the convergence of RL
algorithms to the optimal policy if the transition
function (i.e., a formal representation of the
agent/environment interaction) is modified in a
continuous manner and converges to the final
function [10]. Andreas Matt proposes a modification
to RL algorithms that allows the simultaneous
learning of a task in different environments,
obtaining the policy that work better considering all
the environments [11]. Sebastian Thrun shows a
method for continual learning, in which the
dynamics of the environment is learned while the
agent is learning to solve a particular task [12].
When the agent needs to learn another task, this
information is used to speed up the learning. Despite
the mentioned works and according to our
knowledge, there are no antecedents in the study of
our hypotheses and their consequences.

6. CONCLUSIONS

In this work, we described the influence of the
environment in the acquisition of new skills and
abilities in humans and animals. This influence
affects what skills are learned, apart from how they
are carried out. On the other hand, both humans and
animals can associate rewards with new stimulus,
based on previous experience and on the chaining of
previous causes and effects.

We propose a novel use of Reinforcement
Learning where different tasks or skills are not
defined by a Reinforcement Function, but are
induced by the characteristics of the environment.
We carried out a series of simple experiments with a
robot simulator as a proof of concept. On these
experiments, a robot learned different skills (avoid
round obstacles, find a whole in the wall and pass
over it and traverse a corridor) using the same
learning algorithm and the same reinforcement
function, but changing the characteristics of the
environment. After this experiment, we propose a
method for the construction of a reinforcement
function for these skills based on information
gathered from the value function of the learned
policy, and we prove that the optimal policy
according to this new RF, restricted to a subset of
states, is the same as the original learned policy.

These preliminary results show the relevance and
the practical utility of our learning method for the
synthesis of behaviors in Autonomous Robots,
especially in environments with no human presence.
Currently our ongoing research is focused on some
problems that are tightly related to the hypothesis
that we propose in this work, such as: mappings

Diego Ariel Bendersky, Juan Miguel Santos / Computing, 2006, Vol. 5, Issue 3, 68-74

 74

between behaviors and environments, generalization
and definition of partial orders over environments
and construction of optimal environments for
learning a particular task. We are also trying to scale
up this method, including some type of hierarchical
learning framework in order to solve more difficult
tasks and interact with more complex environments.

7. REFERENCES
[1] B. F. Skinner. About Behaviorism, Random

House, 1974.
[2] Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998, Bradford Book.

[3] R. A. Brooks. Intelligence without reason.
Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI-91),
John Myopoulos and Ray Reiter, Eds., Sydney,
Australia, 1991, pp. 569–595, Morgan
Kaufmann publishers Inc.: San Mateo, CA,
USA.

[4] F. S. Keller. Learning: Reinforcement Theory.
Random House, New York, 1969.

[5] C. J. Watkins. Learning from delayed rewards,
Ph.D. thesis, Cambridge university, 1989.

[6] A. Bonarini, C. Bonacina, M. Matteucci. An
approach to the design of reinforcement
functions in real world, agent-based
applications, IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 31, no. 3, pp.
288–301, 2001.

[7] J. M. Santos. Contribution to the study and the
design of reinforcement functions. Ph.D. thesis,
Universidad de Buenos Aires, Universite d’Aix-
Marseille III, 1999.

[8] A. Ng, D. Harada, S. Russell. Policy invariance
under reward transformations: theory and
application to reward shaping. In Proceedings of
the 16th International Conference on Machine
Learning. 1999, pp. 278–287, Morgan
Kaufmann, San Francisco, CA.

[9] R. Matuk. J. M. Santos. The clustering aliasing
problem in reinforcement learning for robots. In
Proceedings of the Fifth European Workshop on
Reinforcement Learning, Utrecht, The
Netherlands, 2001, pp. 33–35.

[10] J. Randlov. Shaping in reinforcement learning

by changing the physics of the problem. In
Proceedings of the Seventeenth International
Conference on Machine Learning, 2000.

[11] A. Matt, G. Regensburger. Reinforcement
Learning for Several Environments: Theory and
Applications. Ph.D. thesis, University of
Innsbruck, 2003.

[12] S. Thrun, T. Mitchell. Lifelong robot learning.
Robotics and Autonomous Systems, vol. 15, pp.
25–46, 1995.

[13] R. S. Sutton, D. Precup, S. P. Singh. Between
MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning.
Artificial Intelligence, vol. 112, pp. 181–211,
1999.

Diego Ariel Bendersky is a
PhD student at Universidad de
Buenos Aires. His main area of
research is reinforcement
learning applied to
autonomous robots. In this
field, his main interests are:
the influence of the
environment in the
development of behaviors,
automatic discovery of skills

and hierarchical learning. He is also interested in
neural networks and software development in
general. He got a Computer Science degree in
Universidad de Buenos Aires, and he has worked in
the software development industry in international
companies for 10 years.

Juan Miguel Santos. He is
Professor at the Departamento
de Computación, Facultad de
Ciencias Exactas (FCEN) y
Naturales of the Universidad
de Buenos Aires (UBA). He got
his PhD degree in Computer
Science in 1999, from FCEN-
UBA and (DIAM-IUSPIM)-
Universite de Aix-Marseille III,
France. Currently, he is in
charge of the Computational Intelligence Applied to
Robotics Project at FCEN-UBA. He is mainly
devoted to robot learning and to the development of
robots that do not replace human work.

