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Abstract: The Chinese remainder theorem deals with systems of modular equations. The classical variant requires the 
modules to be pairwise coprime. In this paper we discuss the general variant, which does not require this restriction on 
modules. We have selected and implemented several algorithms for the general Chinese remainder theorem. Moreover, 
we  point out some interesting applications of this variant in secret sharing and threshold cryptography. 
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1. INTRODUCTION AND PRELIMINARIES 

The Chinese remainder theorem deals with 
systems of modular equations. It has many 
applications in computer science (see, for example, 
[1]). We only mention the RSA decryption algorithm 
proposed by Quisquater and Couvreur [2], the 
discrete logarithm algorithm proposed by Pohlig and 
Hellman [3] and the algorithm of recovering the 
secret in the Mignotte’s threshold secret sharing 
scheme [4] or in the Asmuth-Bloom threshold secret 
sharing scheme [5].  The classical variant requires 
that modules be pairwise coprime. In this paper we 
discuss the general variant, which does not require 
this restriction on modules. 

 The paper is organized as follows. The rest of 
this section is dedicated to some preliminaries on 
number theory, focusing on the Chinese remainder 
theorem. We survey the most important algorithms 
for the general Chinese remainder theorem in 
Section 2. Implementation details and test results are 
discussed in the next section. Some interesting 
applications of the general variant of the Chinese 
remainder theorem are presented in Section 4. Our 
conclusions are presented in the last section. 

 We present next some basic facts on number 
theory. For more details, the reader is referred to [6] 
and computational aspects can be found in [7]. 

 Let 0,, ≠∈ bba Ζ . The quotient of the integer 
division of a  by b  will be denoted by ba div and 
the remainder will be denoted by ba mod . 
Moreover, in case that ba mod 0=  we shall say 
that b is a divisor of a or b divides a and we shall 

use the notation ab| . 
Let 0,Z,, 22

11 ≠++∈ nn aaaa LK . The 
greatest common divisor (gcd) of naa ,,1 K  will be 
denoted by ),,( 1 naa K . We say that naa ,,1 K  are 
coprime if .1),,( 1 =naa K It is well-known that 
there exist Z∈nαα K,1  which satisfy 

),,( 111 nnn aaaa KL =++ αα  
(the linear form of the gcd).  
Let Z∈naa ,,1 K  such that 01 ≠naa L . The 

least common multiple (lcm) of naa ,,1 K  will be 
denoted by ],,[ 1 naa K . 

Let Z∈mba ,, . We say that a and b are 
congruent modulo m, and we use the notation 

mba mod≡  or ,ba m≡  if )(| bam − . mZ  

denotes the set }1,,0{ −mK  for any .2≥m  
We shall present next the general variant of the 

Chinese remainder theorem: 
 
Theorem 1. ([8]) The system of equations 

        
⎪
⎩

⎪
⎨

⎧

≡

≡

kk mbx

mbx

mod

mod 11

M   (1) 

has solutions in Z if and only if  
),(mod jiji mmbb ≡  

 for all kji ≤≤ ,1 . Moreover, if the above 
system of equations has solutions in Z, then it has an 
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unique solution in ],,[ 1
Z

kmm K . 
 
The direct implication can be easily proven as 

follows. Assume first that 0x  is an integer solution 
of the system (1) and let kji ≤≤ ,1 . The relation 

ii mbx mod≡  implies that ),(mod jii mmbx ≡ . 
Moreover, by the same argument, we have also 

),(mod jij mmbx ≡  which leads, by transitivity, 

to ),(mod jiji mmbb ≡ .  

The uniqueness modulo ],,[ 1 kmm K  can also be 
easily proven. Let 0x  and 0y  be two solutions for 
the system (1). By transitivity we obtain that 

imyx mod00 ≡ , for all ki ≤≤1 , which implies 
that )( 00 yx − is a multiple of kmm ,,1 K , which 
leads to .)(|],,[ 001 yxmm k −K   

The converse implication will be discussed in 
Section 2. 

An important particular case is the case 
1),( =ji mm  for all kji ≤<≤1 . In this case, for 

any  integers ,,,1 kbb K the system of equations 

⎪
⎩

⎪
⎨

⎧

≡

≡

kk mbx

mbx

mod

mod 11

M  

has an unique solution in 
kmm L1

Z . 
 
2. ALGORITHMS FOR THE GENERAL 

CHINESE REMAINDER THEOREM 
In this section we will present the most important 

algorithms for the general variant of the Chinese 
remainder theorem. 

 
2.1 ORE’S ALGORITHM  

Ore [8] has proposed an interesting proof for the 
general Chinese remainder theorem. 

Let ],,[ 1 kmmm K=  and 
i

i m
mc = , for ki ≤≤1 .  

Claim 1: 1),,( 1 =kcc K . 
 
We first choose 

)}.|)(1(|{ impkiprimepD ≤≤∃=  
Thus, every element im  can be written as  

∏
∈

=
Dp

e
i

ippm ,  

(with 0, =ipe  if p does not divide im ) , and 

∏
∈

=
Dp

ee
k

kpppmm ),,max(
1

,1,],,[ K
K , 

∏
∈

−=
Dp

eee
i

ipkpppc ,,1, ),,max( K . 

For every Dp∈ , there is an i, ki ≤≤1  such 
that ),,max( ,1,, kppip eee K= . In this case, p does 

not divide ic  which implies that for every possible 
common prime divisor p there is an element 
i, ki ≤≤1 , such that p does not divide ic  which 
eventually leads to 1),,( 1 =kcc K . 

Thus, there are Z∈kαα ,,1 K  that 
satisfy 111 =++ kkcc αα L . 

 

Claim 2: j
ji

i c
mm

m |
),(

, for all kji ≤≤ ,1 . 

 
We have that 

∏
∈

−=
Dp

eee

ji

i jpipipp
mm

m ),min( ,,,

),(  

and so, the relation j
ji

i c
mm

m |
),(

 is  equivalent to 

jpkppjpipip eeeeee ,,1,,,, ),,max(),min( −≤− K  
for every Dp∈ , which clearly holds true. 

 
Claim 3: The value  

mbcbcx kkk mod)( 1110 αα ++= L  
is a solution of the system of equations (1). 
 
Let i be an arbitrary element, ki ≤≤1 . For every 

kj ≤≤1  we have 

ijjmjjj

ijmjj

ijmmcjjimmj

bcbc

bcbc

bcbcbb

i

i

jijji

αα ≡⇒

≡⇒

≡⇒≡

)2 Claimby  (
),(),(

 

If we sum the last congruencies, for kj ≤≤1 , 
we obtain 

)( 11111 kkimkkk ccbbcbc
i

αααα ++≡++ LL

which finally leads to ii mbx mod0 ≡ . 
 
This demonstration leads to Ore’s algorithm: 
 
CRT_Ore(b1, . . ., bk,m1, . . .,mk) 

Input: Z∈kk mmbb ,,,,, 11 KK such 
that           

kjimmbb jiji ≤<≤∀≡ 1),,(mod ; 

Output: 0x , the unique solution 
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modulo ],,[ 1 kmm K  for the system (1); 
begin 
1.    ],...,[ 1 kmmm = ; 

2.    for 1:=i  to k  do 
i

i m
mc = ; 

3.    find Z,,1 ∈kαα K  such that  
           111 =++ kk cc αα L ; 

4.    ∑
=

⋅⋅=
n

i
iii mbcx

1
0 modα ; 

end. 
 

 
Gauss [9] has described a similar algorithm for 

the case of pairwise coprime modules. 
 

2.2 FRAENKEL’S ALGORITHM  
We have also rediscovered a more interesting 

algorithm for the general Chinese remainder 
theorem, algorithm presented by Fraenkel in [10]. 
The idea is to consider ix , the unique solution 
modulo ],...,[ 1 imm  of the system of equations 

⎪
⎩

⎪
⎨

⎧

≡

≡

ii mbx

mbx

mod

mod 11

M  

for all ki ≤≤1 . Thus, we have that 
111 mod mbx =  and that kx  is the required 

solution. 
Consider now 11 −≤≤ ki . The system of 

equations 

⎩
⎨
⎧

≡
≡

++ 11

1

mod
],,[mod

ii

ii

mbx
mmxx K

 

has an unique solution in 
],,[]],,,[[ 1111

ZZ
++

=
iii mmmmm KK , namely 1+ix . From the 

first equation, 1+ix  must be of form 
],,[ 1 ii mmyx K⋅+ , for some Z∈y . By replacing 

x using this form in the second equation, we get the 
equation  

111 mod],,[ ++≡⋅+ iiii mbmmyx K . 
From this equation, we have 

,
),(

mod
),(),( 1

1

1

11

1

+

+

−

++

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
=

ii

i

ii

i

ii

i

mc
m

mc
c

mc
xb

y  

where ],...,[ 1 ii mmc = , for all .1 ki ≤≤  
We obtain the next algorithm: 
 
CRT_Fraenkel(b1, . . ., bk,m1, . . .,mk) 

Input: Z∈kk mmbb ,,,,, 11 KK such 
that           

kjimmbb jiji ≤<≤∀≡ 1),,(mod ; 

Output: 0x , the unique solution 
modulo ],,[ 1 kmm K  for the system (1); 

begin 
1.    for 1:=i  to 1−k  do 

],...,[: 1 ii mmc = ; 
2.    110 mod: mbx = ; 
3.    for 1:=i  to 1−k  do  

          begin 
4.        

;
),(

mod
),(),(

:
1

1

1

11

1

+

+

−

++

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
=

ii

i

ii

i

ii

i

mc
m

mc
c

mc
xb

y

 
5.       icyxx ⋅+=: ; 

          end 
end. 

 
When 1),( =ji mm , for all kji ≤<≤1 , we 

obtain Garner’s algorithm [11]. 
 

2.3 ALGORITHMS BASED ON THE PRIME 
FACTORIZATIONS OF THE MODULES 
Suppose that we know all the prime factors of the 

involved modules and that these are lpp ,,1 K . In 
this case, every module can be written as  

∏
=

=
l

j

e
ji

jipm
1

,  

for all ki ≤≤1 , with 0, =jie  in case that jp  

does not divide .im  In this case, the equation 

ii mbx mod≡ is equivalent to the system of 

modular equations .1,mod , ljpbx jie
ji ≤≤≡  

Consider })1|max({ , kiee jij ≤≤= , for all 

lj ≤≤1 , and an index ji , ,1 ki j ≤≤  such that 

jij j
ee ,= . In this case, the system (1) can be 

rewritten as 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≡

≡

l

l

e
li

e
i

pbx

pbx

mod

mod 1

1 1

M               (2) 

 
Indeed, because the knowledge of the remainder 

of integer division of a positive integer a  by a prime 
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power ep  implies the knowledge of the remainder 
of integer division of a  by any 'ep  with 

1'1 −≤≤ ee , it is sufficient to consider only the 
equations with the greatest prime powers. In this 
way, any system of modular equations can be 
reduced to one with pairwise coprime modules. 
Garner’s algorithm or Gauss’ algorithm  can be used 
for solving the system (2). 

 
3. IMPLEMENTATION DETAILS AND 

TEST RESULTS 
3.1 IMPLEMENTATION DETAILS 

The large number operations and algorithms are 
inspired from [7] and have been considered for the 
only purpose of comparing the two algorithms 
(Ore’s and Fraenkel’s). Thus, only few 
improvements have been made in order to achieve 
certain performance. 

Addition and subtraction. We have used the 
classical algorithms for these two operations. There 
is no need of getting into details at this part.  

Multiplication. For few digits numbers we have 
used the classical School Multiplication, while for 
large amounts of digits, we chose Karatsuba 
Multiplication, which provided a certain speed 
improvement. 

Division and modular reduction. Speed related 
reasons led us to choose Recursive Division for 
numbers with many digits, leaving the smaller ones 
to the classical School Division. 

The (extended) greatest common divisor. We 
stopped upon the (extended) Binary Algorithm.  

The least common multiple. We used a simple 
algorithm for this particular operation: for two 
numbers, we made use of the fact that 

),(
],[

ba
baba ⋅

=  

and for more numbers, we split them into two 
groups, for which we computed recursively the lcm. 
Then, with the results, we applied the above 
formula. 

 
We designed the library in Microsoft® Visual 

C++® 6.0 and it is only compatible with Windows® 
operating systems. The test system was an AMD 
Athlon™ XP 2700+ with 1024 MB RAM. 

 
3.2 COMPARISONS BETWEEN ORE’S 

AND FRAENKEL’S ALGORITHM 
 
We have considered systems with 5 equations 

and tested the two algorithms for modules with sizes 
up to 2048 bits. We divided the comparisons into 
two sections, which we considered to be distinct, 

and yet, each very important.  
 
First of them is the comparison for the case that 

modules are not known in advance.  
 

Ore - Fraenkel Comparison (for the general case)
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It is clear that Fraenkel’s algorithm behaves 

much better than Ore’s algorithm. This can be 
motivated by the fact that finding Z,,1 ∈kαα K  
such that 111 =++ kk cc αα L  (Step 3 from Ore’s 
algorithm) requires a lot of time.  

 
The second one assumes that modules are known 

in advance and, thus, some pre-computations can be 
performed.  

 
Ore - Fraenkel Comparison (for the case that modules are known in advance)
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 We have excluded the time for these pre-

computations (Steps 1, 2, 3 for Ore’s algorithm and   
the computations of values ic , ),( 1+ii mc  and the 
other related values  in Fraenkel’s algorithm). 

In this case, Ore’s algorithm behaves better than 
Fraenkel’s algorithm. This can be motivated by the 
fact that Fraenkel’s algorithm has two steps in which 
pre-computation can not be entirely done (Steps 4, 
5) as opposed to Ore’s algorithm. 

 
4. APPLICATIONS IN CRYPTOGRAPHY 

In this section we point out some interesting 
applications of the general variant of the Chinese 
remainder theorem. More exactly, we will discuss a 
generalization of Mignotte’s threshold secret sharing 
scheme and its application to threshold 
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cryptography. 
 
4.1 SECRET SHARING  
 
A secret sharing scheme starts with a secret and 

then derives from it certain shares (or shadows) such 
that the secret may be recovered only in the case of 
possessing a certain predetermined set of shares. The 
initial  applications  of  secret  sharing  were  
safeguarding  cryptographic  keys  and  providing  
shared access to strategical resources. Threshold 
cryptography (see, for example, [12]) and some e-
voting schemes (see, for example, [13]) are some 
examples of more recent applications of the secret 
sharing schemes.  

In the first secret sharing schemes only the 
cardinality of the sets of shares was important for 
recovering the secret. Such schemes have been 
referred to as threshold secret sharing schemes. We 
mention Shamir’s threshold secret sharing scheme 
[14] based on polynomial interpolation, Blakley’s 
geometric threshold secret sharing scheme [15], 
Mignotte’s threshold secret sharing scheme [4] and 
Asmuth-Bloom threshold secret sharing scheme [5], 
both based on the Chinese remainder theorem. Ito, 
Saito, and Nishizeki [16], Benaloh and Leichter [17] 
give constructions for more general secret sharing 
schemes. 

Let n be an integer, n≤2  and Π  a set of 
subsets of {1, 2, . . . , n}. Informally, a   Π -secret 
sharing scheme is a method of generating the 
elements )),,(,( 1 nIIS K  such that 

(1) for all Π∈A , the problem of finding the 
element S, given the set }{ AiI i ∈ , is ”easy”; 

(2) for all Π∉A , the problem of finding the 
element S, given the set }{ AiI i ∈ ,  is intractable. 

The set Π  will be referred to as the authorized 
access structure or simply as the access structure, S  
will be referred to as the secret and nII ,,1 K   will 
be referred to as the shares (or the shadows) of S. 
The elements of the set Π  will be referred to as the 
authorized access sets of the scheme. 

A natural condition is that an access structure Π   
is monotone, i.e., 

).))(})((.,,2,1{( Π∈⇒⊆Π∈∃⊆∀ BBAAnB K  
In this case, the access structure Π  is well 

specified by the set of the minimal authorized access 
sets,  i.e.,  the set  

)}.})({(|{min ABABA ⊆¬−Π∈∀Π∈=Π  
In case },k    |A||}.,2,1{{min =⊆=Π nA K for 

some positive integer k, ,2 nk ≤≤   a  Π -secret  
sharing  scheme  will  be  referred  to  as  an  (k, n)-
threshold  secret  sharing scheme. 

In [18] we have proposed a generalization  of  
Mignotte’s  threshold secret sharing scheme. Our 
scheme is based on some particular sequences of 
integers, namely the generalized Mignotte 
sequences. More exactly, a generalized (k, n)-
Mignotte sequence is a sequence of n positive 
integers  such that  

 
]),,([min]),,([max

1
1

11
11 11 k

k
k

k
iiniiiinii

mmmm KK
LL ≤<<≤≤<<≤

<
−

−

 
Having a publicly known generalized (k, n)-

Mignotte sequence nmm ,,1 K , the scheme 
continues as follows: 

-  The  secret  S  is  chosen  as  a  random  integer  
with ,αβ << S   ]),,([max

11
111 −
− ≤<<≤

=
k

k
iinii

mm K
L

β  

and ]);,,([min
1

11 k
k

iinii
mm K

L ≤<<≤
=α  

- The shares  nII ,,1 K  are chosen as follows: 
,mod ii mSI =  

for all ni ≤≤1 ; 
  - Having the shares 

kii II ,,
1
K  , the  secret  S  

can  be  obtained,  using  the  general variant of the 
Chinese  remainder  theorem,  as  the  unique  
solution modulo  ],,[

1 kii mm K of the system 
 

⎪
⎩

⎪
⎨

⎧

≡

≡

kk ii

ii

mIx

mIx

mod

mod
11

M . 

For ,1),( =ji mm  for all nji ≤<≤1 , we 
obtain Mignotte’s threshold secret sharing scheme 
[4]. 

 
4.2 THRESHOLD CRYPTOGRAPHY 

In  threshold  (or  group-oriented)  cryptography  
(see,  for  example,  [12]),  the capacity  of  
performing cryptographic operations such as 
decryption or digital signature generation is shared 
among members of a certain group. This can be 
achieved by combining multiplicative secret sharing 
schemes [19] with homomorphic cryptographic 
operations. The majority of the threshold 
cryptographic schemes are based on Shamir’s secret 
sharing scheme. In [20] we have indicated how to 
combine the threshold secret sharing schemes based 
on the general Chinese remainder theorem with RSA 
cryptosystem [21] in order to get threshold 
decryption or signature generation. To be precise, 
the value Nxd mod  must be collectively 
computed by any k of n users, where pqN = , with 
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p and q primes, and 1])1,1[,( =−− qpd .  
We will briefly present this scheme (for more 

details, the reader is referred to [20]). The dealer 
chooses a generalized Mignotte sequence 

nmm ,,1 K such that ,|]1,1[ imqp −−  for all 
ni ≤≤1  and .αβ << d  The dealer computes the 

shares nII ,,1 K  as above and distributes them 
securely to users. By Ore’s construction, the secret 
key d can be expressed as 

,mod)(
1111 kkkk iiiiiiii mmIcIcd LL αα ++=  

for any set },,2,1{},,{ 1 nii k KK ⊆  where 

j

k

j
i

ii
i m

mm
c

L
1= , for all kj ≤≤1 and 

kii αα ,,
1
K are 

some positive integers such that 
 

.mod1
111 kkk iiiiii mmcc LL ≡++ αα  

 
In this case we obtain  

.modmod
1

NxNx
k

j

Icd jijiji∏
=

=
α

 

Thus, if an authorized group of users want to 
cooperate in computing Nxd mod , they 
individually compute the partial results of form 

Nxy jijiji

j

Ic
i modα
=  and send them to a combiner 

who will compute the final result as  

Ny
k

j
i j

mod
1
∏
=

. 

In this way the private parameter will not be 
revealed to the members of the group or to the 
combiner. 

 
5. CONCLUSIONS 

We have surveyed the most important algorithms 
for the general Chinese remainder theorem. In our 
knowledge, such a survey does not exist in the 
literature. We have implemented and compared 
Ore’s and Fraenkel’s algorithm. Our tests showed 
that Fraenkel’s algorithm behaves better in general, 
but in the case of modules known in advance, Ore’s 
algorithm proves to be faster, thanks to pre-
computation enhancements. Moreover, we pointed 
out some interesting applications of this variant in 
secret sharing and threshold cryptography. 
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