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Abstract: General Regression Neural Networks (GRNN) have been applied to phoneme identification and isolated 
word recognition in clean speech. In this paper, the authors extended this approach to Arabic spoken word recognition 
in adverse conditions. In fact, noise robustness is one of the most challenging problems in Automatic Speech 
Recognition (ASR) and most of the existing recognition methods, which have shown to be highly efficient under noise 
free conditions, drastically fail drastically in noisy environments. The proposed system has been tested for Arabic digit 
recognition at different Signal-to-Noise Ratio (SNR) levels and under four noisy conditions: multitalker babble 
background, car production hall (factory), military vehicle (leopard tank) and fighter jet cockpit (buccaneer) issued 
from NOISEX-92 data base. The proposed scheme was successfully compared to similar recognizers based on the 
Multilayer Perceptron (MLP), the Elman Recurrent Neural Network (RNN) and the discrete Hidden Markov Model 
(HMM). The experimental results show that the use of nonparametric regression with an appropriate smoothing factor 
(spread) improved the generalization power of the neural network and the global performance of the speech recognizer 
in noisy environments.  
 
Keywords: Arabic Digits, General Regression Neural Network, Hidden Markov Model, Non Parametric Density 
Estimation, Speech Recognition, Noisy Environment. 

 
 

1. INTRODUCTION 
In the past two decades, various systems have 

been tested in Automatic Speech Recognition 
(ASR). They are usually based on the stochastic 
approach using the Hidden Markov Model (HMM) 
that provides a mathematically rigorous approach to 
the development of statistical speech models [1], [2]. 
The HMM-based methods are suitable for acoustic 
modelling but suffer from intrinsic limitations, 
mainly due to their arbitrary parametric assumption 
and the complexity to estimate those parameters.  

A promising technique for speech recognition is 
the hybrid based approach, which combines the 
function capabilities of Artificial Neural Networks 
(ANNs) with the modelling power of HMM. ANNs 
have been integrated into hybrid HMM/ANN 
models to compute emission posterior state 
probabilities [3],[4]. The best known approach is the 

one proposed by Bourlard [5], [6]. Rigoll [7] has 
also proposed another hybrid approach where the 
ANN has been used as a vector quantizer for discrete 
HMM. If for continuous speech recognition, these 
methods were essential for the isolated word 
recognition (e.g., digits which represent shorter 
units), other directions need to be explored. For this 
purpose, neural networks, which have great 
discrimination ability, can be particularly adapted to 
spoken words recognition.  

Speech recognition modelling by ANNs does not 
require a prior knowledge of the speech process. 
Neural networks, such as the multilayer feed-
forward networks (MLPs) or the Recurrent Neural 
Networks (RNN), can be trained to associate 
unknown input data to learned words. As 
recognizers, ANNs have been shown to yield better 
performance than HMM on short isolated speech 
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units [8]. 
The neural network recognizer based on a static 

network, such as MLP, and a dynamic network like 
RNN [9] or Time Delay Neural Network (TDNN) 
[10], uses parametric representation of the activation 
function. This assumption can be relaxed by 
introducing a nonparametric technique. 
Nonparametric techniques in pattern recognition can 
be used when no functional form for the density 
function is assumed. The density of estimates is 
driven by the data without making any assumption 
on the form of the distribution [11]. In [12], [13], an 
adaptation scheme based on nonparametric 
regression using GRNN is presented. GRNN has 
been used in a variety of applications, including 
prediction, plant process modelling and control, and 
general mapping problems [14]. Some comparative 
studies have been also published to demonstrate the 
modelling capability of the GRNN with respect to 
the other types of neural networks. Works have been 
reported in the speech field [15], [16], on the 
detection of the human emotion in speech [17], and 
on the speech music classification [18]. Moreover, 
GRNNs have been not extensively used in speech 
recognition, particularly for Arabic language.  

Arabic is currently one of the most widely 
spoken languages used in the world with an 
estimated number of 300 million speakers and 
covers a large geographical area. The major works 
related to speech recognition in Arabic language 
deal with the morphological structure [19], [20] or 
the phonetic features in order to identify the 
particular Arabic phonemes (pharyngeal, geminate 
and emphatic consonants) [21], [22] and discuss 
their further implication in a larger vocabulary 
speech system. This opened a very interesting way 
for researchers, but the applications in term of 
implementation of a recognition system dedicated to 
spoken isolated words or continuous speech are not 
extensively conducted and only few examples have 
be discussed. For Arabic language, Shoaib & al. [23] 
have developed a derivative scheme, named the 
Concurrent GRNN. The GRNN has been 
implemented for accurate Arabic phonemes 
identification in order to automate the intensity- and 
formants-based feature extraction. The validation 
tests expressed in terms of recognition rate obtained 
with clean speech were up to 93.37 %. El Otaibi [9] 
has developed an isolated word speech recognizer 
using the RNN. The word accuracy was over 94.5 % 
in term of recognition rate in speaker independent 
mode and 99.5% in speaker dependent mode. The 
spoken data set used was limited to 17 speakers for 
both training and testing process. Saeed and Namous 
[24] have proposed an heuristic method of Arabic 
digit recognition, using the Probabilistic Neural 
Network (PNN). The recognition rate, obtained in 

speaker dependent mode with twenty people, was 
over 98%. In [25], a hybrid method has been applied 
to Arabic digits recognition. The Fuzzy C-Means 
method has been added to the traditional 
ANN/HMM speech recognizer using RASTA-PLP 
features vectors. The Word Error Rate (WER) was 
over 14.4%. With the same approach, a method 
using data fusion gave a WER of 0.8%. However, 
this method was tested only on one personal corpus 
and the authors indicated that the obtained 
improvement required the use of three neural 
networks working in parallel. Thus, the recognition 
step would need more time to be achieved compared 
to the traditional ANN/HMM method. Another 
alternative hybrid method has been proposed in [26] 
where the Support Vector Machine (SVM) and the 
K nearest neighbor (KNN) were substituted to the 
ANN in the traditional hybrid system. The training 
phase was made by only 10 persons by gender and 
the best results, expressed in term of recognition 
rate, did not exceed 92.72 % for KNN/HMM and 
90,62 % for SVM/HMM. In previous work, we have 
already shown the superiority of the GRNN speech 
recognizer over the MLP [27] and the HMM [28] in 
quiet environment. 

The main motivation of this work is to develop 
an isolated word recognition system based on the 
GRNN, which is a statistical neural network, and to 
compare the robustness of our speech recognition 
system with the discrete HMM, the MLP and the 
RNN recognizers in adverse conditions. The speech 
data used in this work are the Arabic digits, which 
are polysyllabic words. 

This paper is organised as follows: in section 2, 
the basic concept of the nonparametric regression 
and the neural network implementation are recalled. 
Section 3 describes our proposed adaptation scheme 
based on GRNN. The experimental results obtained 
in quiet and adverse conditions are presented in 
section 4 and discussed in section 5. 

 
2. NONPARAMETRIC REGRESSION 

2.1 THEORETICAL FUNDATIONS  
Let f(x,y) be the joint continuous probability 

density function of a vector random variable x, and a 
scalar random variable y. Let X be a particular 
measured value of the vector random vector x of 
elements xi (i = 1,…,p). The regression of y given X, 
is given by the conditional expectation of y on X 
[12]:  
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In nonparametric density estimation, no fixed 
parametrically-defined shape for the estimated 
density is assumed. Then, the probability density 
function must be estimated empirically from a 
sample of observations (data points) of x and y.  

The general form of the estimator is given by the 
following equation [11]: 
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where the xi are independent, identically distributed 
random variables with absolutely continuous 
distribution function. 

One useful shape of the weighting function ϕ is 
the Kernel density function (Gaussian). Parzen has 
shown that these estimators are consistent [11]. They 
asymptotically converge to the underlying 
distribution at the sample point when it is smooth 
and continuous. Parzen’s results have also been 
extended to the multivariate distribution case [11]. 
Based upon sample values Xi and Yi of the random 
variables x and y, a good choice for the probability 
estimator, as in [12], [13] is given by: 

⎥
⎦

⎤
⎢
⎣

⎡ −
−⎥

⎦

⎤
⎢
⎣

⎡ −−
−= ∑

=+
+ 2

2

1
2

12
)1( 2

)(exp.
2

)()(exp1.
)2(

1),(€
σσσπ

in

i

iTi

p
p

YYXXXX
n

YXf  (3)

 
where p is the dimension of the random vector x, n 

the number of observations (pattern sample), σ the 
smoothing factor (spread) of the estimating kernel 
factor, and Yi the desired scalar output given the 
observed input Xi. 

Let us define the scalar function Di
2as 
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Combining (3) and (4) and interchanging the 

order of integration and summation, yields the 
desired conditional mean, expressed as 
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The resulting regression (5), known also as the 

Nadaraya-Watson kernel regression estimator [11] – 
[13], is directly applicable to problems involving 
numerical data. The estimate )(€ XY  can be 
considered as a weighted average of all the observed 
values, Yi, where each observed value is weighted 
exponentially according to its Euclidean distance 
from X [12].  

2.2 NEURAL IMPLEMENTATION 
General regression neural network 

implementation was firstly proposed by D. Specht 
[12], [13]. Let wij be the target output corresponding 
to the input training vector xi and the jth output. (5) 
can be expressed as 
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According to (6) and (7), the topology of a 
GRNN described in Fig. 1 consists on 

• An input layer (input cells), which is fully 
connected to the pattern layer 

• A pattern layer which contains one neuron for 
each pattern. It computes the pattern functions 

),( ii Ch σ  expressed in (7) using the centres Ci .  
• A summation layer which has two units: N and 

D. The first unit, which has input weights equal 
to Xi, computes the numerator N by summing the 
exponential terms multiplied by the Yi associated 
with Xi. The second unit has input weights equal 
to 1. Thus, the denominator D is the summation 
of the exponential terms only. 

• Finally, the output unit divides N by D to provide 
the prediction result. 
The choice of the smoothing factor is very 

important. When σ is small, only few samples play a 
significant role. If σ is large, even distant neighbours 
can affect the estimate at X.  
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Fig.1 – Neural network implementation based on the 

nonparametric density estimation method. 

 

3. GRNN-BASED SYSTEM FOR SPEECH 
RECOGNITION 

The general scheme of the proposed speech 
recognizer is depicted in Fig. 2. It contains two 
parts: the preprocessing step and the recognition step 
based on the learning and recognition tasks. 

3.1 PREPROCESSING STEP  
The speech signal is firstly digitized and end 

pointed. In order to flatten the signal, the digitized 
speech signal, pre-emphased by a first-order digital 
filter, is given as  
 

)1(.)()( −−=
Λ

nsnsns µ     (8) 
 
where the pre-emphasis parameter µ is equal to 0.96, 

and where )(ns  and )(ns
Λ

are the nth speech sample 
before and after pre-emphasis, respectively. 

Pre-emphasis ensures that, in the frequency 
domain, all the formants of the speech signal have 
similar amplitudes so that they get equal importance 
in subsequent processing stages. Then, the signal is 
fragmented into frames by using a Hamming 
window (256 points with half covering). In order to 
reduce the amount of the information in the speech 
signal, the frame features are extracted using the Mel 
Frequency Cepstrum Coefficients (MFCC), the most 
popular features for ASR. For each frame, the 
features extraction consists of 12 MFCC along with 
their first and second derivatives (dynamic features) 
and the log(energy). The jth frame of the word Wi is 
represented by an acoustic vector Sij  

 
Sij = {MFCC, ∆MFCC,∆(∆MFCC),log (Energy)} (9) 
 

3.2 RECOGNITION STEP  
3.2.1 LEARNING TASK 

The feature vectors represent the inputs of the 
GRNN used as recognizer, as shown earlier in Fig. 
1. The input vector corresponding to the first word 
in the learning set is used to compute first the pattern 
function h(σ,Ci) expressed in (7) and then, the output 
of the neural network expressed in (6). Finally, this 
first pattern is memorized. For the following words 
in the learning phase, which is a sequentially 
process, only the new patterns are memorized.  

3.2.2 RECOGNITION TASK 
When presented with features of unknown word, 

the distance between the unknown word and each 
pattern memorized in the hidden layer is computed 
and passed through a kernel function. The output of 
such kernel function is an estimate of how likely the 
unknown pattern of a word belongs to the pattern 
distribution stepped in the hidden layer.  

 
Fig.2 – General scheme of the isolated word 

recognition system using GRNN. 

 

4. EXPERIMENTAL RESULTS  
4.1 SPEECH DATABASE  

The used spoken words are the Arabic digits. 
Standard Arabic has basically 34 phonemes, of 
which six are vowels and 28 are consonants. It has 
three long and three short vowels, while there are 
twelve vowels for American English and at least 
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twelve oral and four nasal vowels for French 
language. Arabic utterances can only start with a 
consonant. The allowed syllables in Arabic 
languages are: CV, CV, CVC, and CVCC, where V 
indicates a long or short vowel and C indicates a 
consonant. The particularity of this language is that 
the Arabic phonemes contain two distinctive classes, 
namely the pharyngeal and emphatic phonemes, 
which can be found only in Semitic languages like 
Hebrew, Persian and Urdu. All Arabic digits are 
polysyllabic words, excepted for the digit zero 
which is a monosyllabic. The Arabic spoken digits, 
subscribed in API code (International Phonetic 
Alphabet), are reported in Table 1, second column. 

The database used for training and testing the 
recognition system is a locally Arabic speech data 
base collected from 150 Algerian natives aged from 
18 to 50. This database, named ARADIGITS, has 
been recorded in a large auditory room, which was 
very quiet, at 22.050 kHz and down-sampled at 16 
kHz.  

In the training phase, a total of 1800 utterances 
pronounced by 90 speakers of both sex (equally 
distributed) were used. In the testing phase, 1000 
utterances pronounced by 50 others speakers of both 
gender (25 males and 25 females) were used. The 
experiments were conducted in speaker independent 
mode; therefore, the data of the testing set do not 
intersect with those of the training set.  

4.2 EXPERIMENTAL FRAMEWORK  
A set of experiments have been conducted to test 

the accuracy by measuring the ASR performance. 
All recognition results are given in term of WER, 
defined as: 

100%×
−

=
N

RNWER     (10) 

where N is the total number of words in the test set, 
and R the total number of words correctly 
recognized in the test set.  

The clean speech material is used to train the 
speech recognizer system. In order to compare the 
performance of the GRNN speech recognizer, we 
have interchanged the GRNN classifier by the MLP, 
the Elman Recurrent Neural Network (RNN) and the 
HMM. The HMM baseline system achieved is the 
five states left-to-right model. The recognition 
experiments were conducted in both clean speech 
and adverse conditions in order to detect the intrinsic 
robustness of the recognizer. The optimization of the 
smoothing factor is critical to the GRNN 
performance and is usually found through iterative 
adjustment and cross-validation procedure. In 
previous works, we have shown that the suitable 
interval for speech recognition is 14 < σ < 20, and 

that σ = 15 is a convenient value [27], [28]. The 
results obtained in quiet environment are reported on 
table I for both genders. 
Table 1. Comparative study using HMM, MLP, RNN 

and GRNN speech recognizers.  
 Word Error Rate (%) 

Digit HMM MLP RNN GRNN 

0 şifr  7 6 7 4.0 
1 wa:ћid  5 1 1 0.0 
2 ?iθna:n  44 4 3 1.0 
3 θala:θa  24 7 9 4.0 
4 ?arbaςa 10 1 3 0.0 
5 χamsa  8 0 3 0.0 
6 sitta  2 0 0 1.0 
7 Sabςa  24 0 0 1.0 
8 θama:nija  27 8 3 3.0 
9 Tisςa  15 0 0 0.0 

Overall  16.6 2.7 2.9 1.4 
 
With the GRNN speech recognizer, the digits 1, 

4, 5 and 9 are correctly recognized (WER = 0%), as 
shown in table 1. The digits 2, 6 and 7 are 
recognized with 1% WER, and digits 0, 3 and 8 
present a WER of 4%, 4% and 3%, respectively. The 
global WER is 1.4 % for both genders, 0.8% for the 
female speakers and 2% for the male speakers.  

For the MLP, the spoken digits 5, 6, 7 and 9 are 
correctly recognized; the digits 1 and 4 are 
recognized with a WER of 1%. For the remainders, 
WER ranges between 4% and 8%. The global 
performance is 2.7% WER, 1.6% for the female 
speakers and 3.8% for the male speakers.  

For the RNN, only the spoken digits 6 and 7 are 
recognized without error. The digit 1 was recognized 
with 1% WER, the digits 2, 4, 5 and 8 are 
recognized with a 3% WER, whereas 0 has 7% 
WER and 3 has 9% WER. The global performance 
is 2.9% WER for the RNN, 1.4% for the female 
speakers and 4.4% for the male speakers.  

For the HMM, only the digit 6 is recognized with 
2% WER, whereas for the other digits the error rate 
varies from 5% to 44%. For the HMM based speech 
recognizer, the global performance is 16.6% WER, 
15.4% for the female speakers and 17.8% for the 
male speakers.  

 

4.3 SENSITIVITY TO NOISE  
For real word applications, a speech recognition 

system must operate in situations where it is not 
possible to control the acoustic environments. This 
may result in a serious mismatch between the 
training and test conditions. Differences in the 
acoustic environments may result from additive 
noise (background noise: car noise, babble …), 
convolutive distortion (such as transmission channel 
distortion, room reverberation, microphone 
distortion …) or any combination of them. Both 
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classes of noise have been found to degrade 
seriously the speech recognition performance. The 
problem of minimizing the degradation in 
performance is the problem of robustness. The 
approaches that may be used to enhance the 
robustness of an ASR system are usually classified 
into two types: the noise reduction techniques [29], 
[30] and the acoustic model adaptation techniques 
[31]. The problem discussed here is the sensitivity to 
noise of the speech recognizers, or in other words, 
the intrinsic robustness to noise (inherently 
robustness). 

The observed signal corrupted by additive noise 
can be represented as 

 
x(t) = s(t) + n(t)     (11) 
 
where x(t), s(t) and n(t) denote observed noisy 
speech, clean speech signal and additive signal 
noise, respectively. 

The additive noise is classified into two types, 
i.e., the stationary noise that has time constant 
characteristics of spectral features and signal energy, 
and the non-stationary noise that has time variable 
characteristics of spectral features and signal energy. 
An example of the degradation of an original signal 
by a non-stationary noise is given in Fig. 3. Fig. 3a 
shows the temporal form of the original clean signal 
of the word “/sitta/” (Arabic digit 6). Fig. 3b shows 
the temporal form of the same spoken word 
corrupted by a noise signal recorded in a factory (car 
production hall) at SNR = 5dB. The transitions from 
silence to speech did not only vary but also some 
speech parts might be masked by noise. It is noted 
that the stopped plosive /t/ and the fricative /s/ are 
completely masked by the noise signal.  

 

 
Fig. 3a – Speech signal of the word “/sitta/” (Arabic 

digit 6), recorded in quiet environment. 

 

 
Fig. 3b – Noisy speech signal of the word “ /sitta/” 
corrupted with the noise signal recorded in a car 

production hall at SNR= 5dB.  

 
To evaluate the robustness of the speech 

recognizer in various kinds of noise, stationary as 
well as non stationary noises, issued from the 
NOISEX-92 database, were added to the testing 
database in a range of SNRs from 0dB to 20dB, step 
size 5 dB. We were particularly interested by four 
kinds of noises: two stationary and two non 
stationary. For the stationary noise, we considered 
the military vehicle noise acquired by recording 
noise signal from the leopard vehicle moving at 70 
km/h, and the cockpit noise acquired from the 
fighter jet (buccaneer moving at a speed of 
450knots). For the non stationary noise, we 
considered the speech babble acquired from 100 
people speaking in canteen, and the factory floor 
noise recorded in a car production hall. The power 
spectrum densities of each noise signal are presented 
in Figs. 4 to 7.  

The comparative performance of the four types of 
recognizers in these various adverse conditions is 
given in Figs. 8 to 11. The first observation is that 
the speech recognizers alone are not able to adapt 
themselves with environmental noisy conditions if 
the SNR is less than 15 dB, because the rise of WER 
curves increases strongly after this threshold level. 
The spectral features of the background noise are a 
significant element for the speech recognition, much 
more than the SNR level. For example, the 
degradation caused by the fighter jet noise, 
characterized by a broadband spectrum, at 20 dB 
SNR exceeds the degradations caused by the 
military vehicle noise, located in the low frequency 
narrow band, at 0 dB SNR level. Figures 8 to 11 
show that the less harmful is the vehicle noise, 
which have a narrowband spectrum. The most 
significant degradations are caused by the fighter jet 
noise whose spectral broadband can cover the whole 
speech spectrum, masking completely the speech, 
even on high level SNR.  

As shown in Fig. 8, the transition from a quiet 
condition to a noisy environment, with a speech 
babble background at SNR=15 dB, is followed by a 
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loss of accuracy of 13.6% for the GRNN, 15.3% for 
the MLP, 20.1% for the RNN and more than 28% 
for the HMM. At 10dB SNR, the accuracy drops by 
22.6%, 23.3%, and 34.1% and more than 49%, 
respectively. Fig. 8 shows that the GRNN is the least 
sensitive to the environmental condition 
degradation; the MLP exhibits a performance close 
to the GRNN and better than of the RNN. Finally, 
the HMM has the most degraded performance with 
this type of noise.  

For the noise factory, which is also a non-
stationary noise, the GRNN still gives the best 
results as shown in Fig. 9. The loss of effectiveness 
when one passes from quiet environment into a 
factory environment producing a noise at 15dB 
SNR, is 11.6 % for the GRNN, 14.3% for the MLP, 
14.1% for the RNN and 41% for the HMM. This 
loss of effectiveness reaches respectively 19.6%, 
25.3%, 25.1% and 48% for the four speech 
recognizers, if one passes from quiet environment 
into a factory environment producing noise at 10dB 
SNR. It is noticed that the ANN based recognizer 
working in adverse conditions caused by factory 
noise, in particular the GRNN, exhibits a 
performance at SNR = 15dB similar to the HMM 
based recognizer working in quiet environment. 

Fig. 10 shows that the fighter jet noise, which is a 
stationary type, is the most harmful of the four noise 
conditions studied in this paper, because of its 
spectral broadband. Indeed, the loss of effectiveness 
at SNR=15dB reaches to 35.6% for the GRNN, 
41.3% for the MLP, 48.1% for the RNN and 66% 
for the HMM. The degradation is very significant, 
even if the GRNN presents the best results.  

Finally, the military vehicle noise, which is a 
stationary noise with a low frequency limited 
bandwidth, did not affect seriously the speech signal, 
particularly the fricative and pharyngeal phonemes, 
which are the most present consonants in Arabic 
digits. 

5. DISCUSSION 
The experimental results show that the global 

performance of the GRNN-based speech recognizer 
is 1.4% WER. This error rate is lower than that 
obtained by the MLP-, the RNN- and the HMM-
based speech recognizers. In fact, the improvement 
is 1.3%, 1.5% and 15.2%, respectively, relatively to 
the MLP (WER 2.7%), the RNN (WER 2.9) % and 
the HMM (WER 16.6%). 
The improvement is significant (over 13%) 
compared to the ANN/HMM hybrid method used by 
Lazli and Sellami [25]. The obtained results are also 
better than those obtained in [26], where two others 
hybrid methods were used namely, KNN/HMM and 
SVM/HMM, showing an improvement of 6% and 

8% respectively. Compared to the RNN based 
speech recognition system proposed by Alotaibi [9], 
the improvement is over 6%. Notice that the speech 
recognition system that we have achieved for 
comparative study performs better than those 
presented in [9].  

It appears clearly that the GRNN-based speech 
recognizer has better performance than the other 
neural networks based recognizers. This 
improvement of the effectiveness results from the 
use of a statistical nonparametric function in the 
GRNN. Furthermore, this results exceed those 
obtained with the HMM baseline system. The 
discrete HMM is unable to adapt itself to the 
variability of the words, in particular the longest 
words like the spoken digits 2, 3, 7 and 8, which 
undergo a syntactic modification according to the 
geographical origin of the speakers. This is due to 
the fact that the alignment frame/state or the state 
probability estimate and the transitions between 
states are made very complex. 

The intrinsic robustness of the speech recognizer 
is studied in four different noisy conditions, using 
additive stationary and non-stationary noises. The 
spectral features, particularly the spectral broadband 
of the background noise, play a significant role in 
the performance degradation. For instance, the 
weakest performance was encountered with the 
fighter jet noise, which has a large spectral 
broadband. We can also deduce that the GRNN-
based speech recognizer is the least sensitive to the 
background noise present in adverse conditions.  

The major problem of the neural network 
classifiers is the static dimension of their input. The 
time alignment procedure used to normalize the 
acoustics vectors is not adequate for modelling the 
speech process and the neural network approach is 
unable to model the continuous speech process. 
Then, the proposed technique cannot be extended to 
the continuous speech recognition. Moreover, for 
isolated speech recognition this method is a 
successful alternative to the HMMs based 
techniques.  

6. CONCLUSION 
In this work we have proposed a GRNN 

adaptation scheme for spoken word recognition. The 
efficiency of our approach has been demonstrated 
through a comparative study with the MLP, the 
RNN and the discrete HMM speech recognizers. 
The use of a nonparametric density estimator with 
an appropriate smoothing factor improves the 
generalization capability of the neural network. 
Experimental results obtained with large corpora 
have shown that the proposed model present several 
advantageous characteristics such as (i) the training 
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process which is performed at one pass, (ii) the fast 
learning capability, (iii) the flexibility network size 
and (iv) the ability to adapt to speaker variability. 
The GRNN speech recognizer gives the best results 
in free noisy or quiet environment. The inherently 
robustness of the GRNN adapted scheme could 
significantly improve the recognition accuracy in 
adverse environments, including stationary and non 
stationary noises. The ANN-based speech 
recognizers confirm their discrimination capacity 
and remain a serious alternative to the HMM for the 
isolated word recognition. GRNN is a successful 
alternative to the other neural networks and to 
discrete HMM. It is therefore suitable to be applied 
in ASR systems. 
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Fig 4 – Power spectrum of the multi talkers babble 

noise signal recorded in a canteen. 
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Fig 5 – Power spectrum of the fighter jet noise signal 
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Fig. 6 – Power spectrum of the factory noise signal 

recorded in a car production hall. 
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Fig. 7 – Power spectrum of noise signal from a 

military vehicle moving at 70 km/h. 
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Fig. 8 – Comparative performance with the babble 

noise. 
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Fig. 9 – Comparative performance with the factory 

noise. 
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Fig. 10 – Comparative performance with the fighter 

jet noise (buccaneer). 
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Fig. 11 – Comparative performance with the military 

vehicle noise (leopard tank). 
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