
George Popov / Computing, 2007, Vol. 6, Issue 3, 46-51

 46

FAILURES DETECTION METHODOLOGY IN NON RECOVERY
COMPUTER SYSTEMS BASED ON DIVERSITY MODELING

George Popov

Technical University – Sofia, Computer Science Department,

Sofia 1756, Bulgaria, email:popovg@tu-sofia.bg

Abstract: Diversity is a known approach for increasing reliability of computer systems. The goal of this work is to
present quantitative criteria for measure of diversity in non recovery computer systems. For this purpose, the model of
diversity-based system with two failure types: detectable and undetectable is presented and a formula to calculate it is
proposed.

Keywords: diversity, dependability, computer system, embedded system, fail-safe, fault-tolerance

1. FORMULATION OF THE PROBLEM
As is well-known, diversity is a method of

solving a problem (mathematical, logical, technical
or other) in two (A and B) different ways (paths)
with identical input data, by virtue of which a
criterion of the solution being perfect is the
correspondence (in this particular case- identity) of
the obtained output results [1]. The assumption is
that there exist at least two ways of solving it.

The input data (Fig.1) are processed in two ways
(A and B) and are compared in terms of their
correspondence. When the system performs
perfectly well, the comparison of the obtained
results shows a positive output (OK). That is a
condition for the normal work of the system which
continues until there is a failure

Error consequences are activated with certain
input data and flow of algorithm. If along one of the
two ways of solving the problem (in one of the
programs, e.g. processing A) an error or defect is
activated, there will not be a result or the result will
be incorrect at the respective exit. But as at the other
channel the result is correct, the output results will
not correspond and the agreement (OK) is removed
from the exit. The system passes on to a mode of
detected Failure. This event is visualized through the
diagnostic information.

An analogous result is obtained when a Fault is
activated on the other program. When errors or
defects are activated on both programs, we get
different output vectors as the causes and the
processing channels are different. The probability of
getting one and the same wrong result is quite
negligible.

Processing B

Processing А

ОК

Input
Data

Output
Result A

Output
Result B

Comparison

Fig. 1 – A principle of diversity processing

The difference between the output vectors under
comparison is an indication that the processing is
incorrect and the work of the system is terminated,
we search for the cause and it is removed. In this
way;

- we can identify errors and defects in an off-
line mode (in the testing period);

- we can terminate producing of an incorrect
guiding or control signal in the on-line mode
of the Real-time Control Systems and create a
compulsion for the removal of the causes of
failure.

The principle of diversity processing has long
been known not only in scientific literature, but also
in the practice of the Real-time Systems, used to
control technological processes of great importance.
In our country such systems are used in rail
transport.

The aim of this paper is to model diversity in
such a way as to make it possible to determine the
factors which influence the identification of failures.
Then we will proceed by exploring the influence of
the different factors and will suggest methods of
enhancing the identifiably of failures.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

George Popov / Computing, 2007, Vol. 6, Issue 3, 46-51

 47

2. AN OVERVIEW OF THE PROBLEM

Microcomputer systems are a basic element of
modern technologies in such important areas as
industry, military science, nuclear power
engineering, transport, communications, medicine,
etc. In this case we speak about safety critical
control systems. Some authors use the terms as
survivable [2,3], ultrareliability[4] systems.

The problems in the development of these
systems arise from the tight schedules for their
development and the requirements for reliability [5,
6]. At the level of hardware [1,7,17,22] and software
[2,8,9,10,11,12,14,15,16] surplus and diversity are
the most common method of enhancing reliability.

Avizienis and Laprie [12,13] define a few aspects
of reliability; readiness, good working order, safety,
confidentiality, integrity and capability to be
maintained and upgraded. A basic approach for
enhancing reliability, according to them, is diversity
in the architectural system.

Strunk [2] draws attention to the fact that the
different variants of one and the same algorithm
(program) must be developed independently and a
test must be run at different stages of the algorithm
so that the results are compared. The benefit from
such an approach is that the errors appear in the
different versions at different times in the running of
the programs. Avizienis [13], Horning and Sha[20,
21] are of the same opinion regarding software
diversity.

From what we have said so far it becomes clear
that diversity is one of the main approaches of
enhancing the reliability of the embedded
microprocessor systems. In spite of its indisputable
potential, in the literature there are scanty ideas of
quantitative evaluation and modeling of diversity
[16, 22], hence, conclusions about its effectiveness
(economic, technical) in their particular realizations.
There is a difference between the two versions, yes,
but how big is it, from what point of view, what
metrics is used to measure it? And how does this
difference, identified using the adopted metrics,
affect the ability to discern (to detect) the causes of
failure?

An attempt for solving this scientific problem has
been made in [1, 7, 21, 22]. We should mention, that
in [22] a minor incorrectness is found, which affects
the final result.

It comes down to the following. Two types of
failures reflecting these facts have been introduced:

α - failures: detectable by comparing the output
results

η - failures: undetectable through comparison as
they bring about one and the same mistakes in the
compared results.

The division of the failures into these two classes

is based on the presumption that despite all attempts
to make it complete, diversity in practice is not
absolute. An absolute diversity would mean that the
failures in the two versions are absolutely
independent (uncorrelated) and that there are no
common causes for failure along the two paths
which will lead the same wrong result. In practice
these causes present in the common components of
the systems: when entering information from a
common source, in the only comparator for
comparing the results, in synchronizing the work
along the two channels, in the common power
supply and others, i.e. where incorrectness after
failure of error is introduced in one and the same
way in the two channels.

On this basis in [1,7,22] a measure of diversity is
introduced:

ηα

α

λλ
λ
+

=Ω , (1)

where ηα λλ , is the intensity of the two types of
failures. If all failures are due to the same cause, for
example if the two programming versions A and B
are the same and the errors in the two copies of the
single program duplicate, then the results will be
wrong, but corresponding, and the detectability at
comparison Ω is brought to zero. The deeper the
diversity is the closer Ω is to one and the bigger the
detectability of the errors and defects. Undetected,
although detectable, will remain only failures which
by accident cause one and the same output result
(vector- i) from the two processings.

3. MODELING DIVERSITY

In the context of probability logic we can assume
that there will be inability to identify the failure in
two cases:

1. If aα and bα accidentally cause one and the
same wrong results;

2. If aη failure has happened.
We introduce the Boolean function Fni (non

identification) which expression is given with
equation (2) and illustrated in Fig 2

Fig. 2 – Boolean function Fni (non identification)

а
a b a

h

Fni

George Popov / Computing, 2007, Vol. 6, Issue 3, 46-51

 48

1 1 1
А ВniF z z zα α η= ∨ (2)

Where 0
iz is the logic variable of the statement

that «something» has not happened, and е 1
iz - that

the “something» has happened.
In order to model, in terms of probability, the

effect of diversity on the ability to identify failures, a
logic-probability transition has to be carried out [7]:

Fni = 111
ηαα zzz

ba
∨ = 011 . ηαα zzz

ba
 (3)

After applying the theorem of De Morgan we

have arrived at a non-recurrent Boolean function in a
basis “conjunction - negation“. When we make
replacements in this function using the rules of the
logic-probability transitions, we arrive at the
probability that the failures will not to be identified

{ }() 1 1 () () [1 ()]
А ВniQ t Q t Q t Q tα α ηΣ Σ

⎡ ⎤= − − −⎣ ⎦ (4)

where:

-)(tQni is the probability for non-identifiable;

-)(tQ AΣα and)(tQ BΣα are probabilities for
an identifiable failure to arise in both channels,
which will result in accidentally equal but wrong
output signal in the two processing’s;

-)(tQη - is the probability of failure because of a
common cause, which generates unidentifiable
through comparison output results from both
channels.

During А- and В- processing, the probability to
get a coincidence of wrong and unidentifiable
through comparison output vectors as a result of
failure may occur as:

- coincidence of the first vectors;
- coincidence of the second vectors;
- and etc., when a coincidence of any similar-

range vectors is found.
Then, the component in (4))(tQ AΣα ,)(tQ BΣα

could be written as a sum of probabilities:

)()(...)()()()(
121211

tQtQtQtQtQtQ
wBwABABA −−ΣΣ

++= αααααα , (5)

where)(tQ

aiα and)(tQ
biα are the probabilities for

coincidence to happen through i-th vector of both
processing, }2,...2,1{ wi∈ .

The presumption to make sum of the products of
probabilities to get the overall probability when
unidentifiable failures could occur is based on
impossibility to arise more than one coincidence of

output vectors in one and the same moment (or to
coincidence the first, the second, or …or 2w

th). As
these logical relationships are orthogonal, they could
be presented as a sum:

∑
=

=
ΣΣ

w

BiAiBA
i

tQtQtQtQ
2

1
)()()()(αααα (6)

When all wrong post-failure vectors are equally

probable:)()(tQtQ
AAi αα = ,i.e

)()(tQtQ
BBi αα = , and taking into account the

equally probabilistic distribution for eq.(6), we can
write:

⎥⎦

⎤
⎢⎣

⎡= ΣΣ
ΣΣ w

B
w

Aw
BA

tQtQ
tQtQ

2
)(

2
)(

2)()(αα
αα (7)

In every single moment, there is one identical to

the functional vector among the 2w
 wrong ones.

The probability to get it is:

w
B

w
A tQtQ

tQ
2

)(
2

)(
)(αα

α = (8)

As we are searching for a probability for failure,

it should not be attached to the failure behavior and
must be subtracted from their total number. So, we
have:

() [])(1
2

)(
2

)(
1211)(tQ

tQtQ
tQ w

B
w

Aw
ni η

αα −⎥⎦

⎤
⎢⎣

⎡ −−−= (9)

If we have an equal probability for failure in both

channels)()(tQtQ
ba αα = we get from (9) the

following:

() [])(1
2

)(1211)(
2

tQtQtQ w
w

ni η
α −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−−= (10)

When the distribution for failure is exponential,

the failures’ intensities αλ and ηλ are constant and
time-independent values and the probability for
failure is:

tetQ λ−−=1)(, (11)

After a substitution of (11) into (9), we obtain:

George Popov / Computing, 2007, Vol. 6, Issue 3, 46-51

 49

() t
w

t
w

ni eetQ η
α

λ
λ

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−−=

2

2
11211)((12)

When we take into account (1) instead of failure

intensities αλ and ηλ , the “depth of diversity”

parameter Ω could be introduced in (12):

λλα Ω= , (13)

λλη)1(Ω−= (14)

Following substitution, the formula (12) could be

rewritten as:

() t
w

t
w

ni eetQ λ
λ

)1(
2

2
11211)(Ω−−

Ω−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−−= (15)

Obviously, if the diversity has a maximum value,

and Ω=1, based on (15), we can obtain that the
probability for wrong identification is minimal:

()

()
2

2

2
112

2
11211)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−−=

−

−

w

t
w

w

t
w

ni

e

etQ

λ

λ

 (16)

When the diversity is missing: Ω=0, the

probability of wrong identification is maximum and
gets equal to that of single-channel system which
has failure intensity of λ.

() tetQ w
w

ni
λ−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−−−=
2

2
111211)((17)

i.e tetQni
λ−−=1)(

max
 (18)

In the case of w=1 each of the two channels, the

output signals of which is under comparison, has one
binary physical output. Then, w = 1 and if Ω=1 the
minimal probability for wrong identification of the
failure will have a maximum value:

2
2

min)(
4
1

2
1)(

max
tQetQ

t

ni =⎥
⎦

⎤
⎢
⎣

⎡ −
=

−λ

(19)

It means, that the both diversity described
channel have equal intensity of failures λ and the
diversity is absolute, the probability for unidentified
failure of the single-output system would be ¼ of the
probability for failure powered by two in each
independent channel.

4. THE EFFECT OF DIVERSITY ON THE

IDENTIFIABILITY OF FAILURES
Obviously, the probability of unidentifiable

(dangerous) failure)(tQni in diversity systems
depends on:

- depth of diversity Ω;
- the number of bits w, with which the output

result from the processing in the diversity channels
is represented;

- the total intensity of failures in system λ;
- the working out of system t.
In formula (15) some calculations have been

made for a fixed time 1200 months, and λ = 0, 0013
and a fixed number of bits w=8 of the input vector.
In Fig. 3 the obtained results have been interpreted
graphically.

Fig. 3 – Qni(t)=f(t)

We can see that with the increase in the depth of

the diversity Ω (Fig. 4), the probability of not
identifying the failure decreases significantly the
longer the input vector w is and the bigger the
intensity of the failures of the microcomputer
system. With Ω = 1, which is practically
unattainable, we can achieve a hundred of times
greater identifiability.

George Popov / Computing, 2007, Vol. 6, Issue 3, 46-51

 50

Fig. 4 – Qni(t)=F(Ω)

Fig. 5 shows 3D graphics of function

),(tfQd Ω= ,where]40000,1[],1,0[∈∈Ω t , 0001.0=λ
and 8=w . As it has been expected, with the ageing
of the system and the increase in the probability of
failure increases the probability of not detecting the
failure. But with absolute diversity it becomes small.

Fig. 5 - Qni(t)=F(t,Ω)

5. CONCLUSION

This paper states and solves the issue of
modeling diversity in computer systems. Adopting
as metrics the depth of diversity, variable Ω as it is
known in the literature, it has been proven that it
increases, on the one hand, with the independence of
the information processing channels of the hardware
and the software and, on the other hand, with the
decrease of the common diversity systems
programming and apparatus components. On that
basis we have obtained the following new results:

1. We have found a new correlation between the
effect of diversity depth on the ability to identify
failures which result from defects in the hardware
and errors in the software;

2. We have done a study of the quantitative
values of the effect of diversity depending on the
bits of the input vectors and the intensity of the
failures of the system.

3. We have put forward ideas for schematic –
technical solutions of redundant systems with
increased identifiability evolving from the
conclusions drawn from the present study.

6. REFERENCES

[1] Hristov H., The Problem about Reliability of
Electronic Safety Systems, D.Sc. Dissertation,
Technical University-Sofia, Bulgaria, 1988 (in
Bulgarian)

[2] Strunk Е. Survivability in Embedded Systems,
Ph.D. Dissertation, Sept. 12, 2003

[3] Knight, J. C., E. A. Strunk and K. J. Sullivan.
Towards a Rigorous Definition of Information
System Survivability,DISCEX 2003,
Washington, DC, April 2003.

[4] Butler, R. W., and G. B. Finelli.The Infeasibility
of Experimental Quantification of Life-Critical
Software Reliability. ACM SIGSOFT '91
Conference on Software for Critical Systems,
New Orleans, LA, December 1991.

[5] Karakehayov Z., K.S.Kristensen, O.Winther,
Embedded Systems, Technical University of
Denmark, Department of Applied Electronics,
1995.

[6] Isaksen U., J. P. Bowen, N. Nissanke. System
and Software Safety in Critical Systems, The
University of Reading, Department of Computer
Science Whiteknights, PO Box 225, Reading,
Berks RG6 6AY, UK, December 1996

[7] Hristov H.A., V.Trifonov, Safety and Reliability
of Communications, Book, Novi Znania, Sofia,
2005 (in Bulgarian)

[8] Martin Törngren and Jan Torin. Conceptual
Design of Dependable Embedded Control
Systems. 7.Oct 1998.

[9] Burns A., Wellings A.J. HRT-HOOD: A
Structured Design Method for Hard Real-Time
Systems, J. of Real-Time Systems, Vol. 6, No. 1,
January 1994.

[10] Rivera J.G., Danylyszyn A., Winstock C.B.,
Sha L., Gagliardi M.J. An architectural
description of the Simplex Architecture.
Technical report CMU/SEI-96-TR-006 ESC-TR-
96-006. Carnegie Mellon University, Software
Engineering Institute, 1996.

[11] Törngren and Wikander (1996). A
Decentralization Methodology for Real-Time
Control Applications:Control Engineering
Practice, Vol. 4, No. 2, pp. 219-228, February
1996

George Popov / Computing, 2007, Vol. 6, Issue 3, 46-51

 51

[12] Avizienis, A. The N-version approach to fault
tolerant software:IEEE Transactions on Software
Engineering 11(12):1491-1501, December 1985.

[13] Avizienis, A., J. Laprie, and B. Randell.
Fundamental Concepts of Computer System
Dependability., IARP/IEEE-RAS Workshop on
Robot Dependability: Technological Challenge
of Dependable Robots in Human Environments,
Seoul, Korea, May 2001.

[14] Robyn R. Lutz, Software Engineering for
Safety: A Roadmap, The Future of Software
Engineering, ACM Press 2000

[15] Isaksen U., J. P. Bowen, N. Nissanke, System
and Software Safety in Critical Systems, The
University of Reading, Department of Computer
Science Whiteknights, PO Box 225, Reading,
Berks RG6 6AY, UK, December 1996

[16] Leveson N. G., Software safety: Why, what, and
how. Computing Surveys, 18(2):125{163, June
1986.

[17] Sandoval М., “Smart” Sensors for Civil
Infrastructure Systems, A Dissertation Submitted
to the Graduate School of the University of Notre
Dame, May, 2004

[18] Wilikens M., Masera M., Vallero D. Integration
of Safety Requirements in the Initial Phases of
thePorject Lifecycle of Hardware/Software
Systems. Proc.of SAFECOMP97, Springer-
Verlag, ISBN 3-540-76191-8, (1997)

[19] Redell O. Modelling of Distributed Real-Time
Control Systems: An approach for design and
early analysis. Licentiate thesis, Department of
Machine Design, Royal Inst. of Technology,
Stockholm, (1998).

[20] Horning J. J., H. C. Lauer, P. M. Melliar-Smith,
and B. Randell. A program structure for error
detection and recovery. Symposium on Operating
Systems 1974: 171-187.

[21] Sha, L. Using Simplicity to Control Complexity:
IEEE Software 18(4):20-28.

[22] Popov G. Modeling Diversity as a Method of
Detecting Failures in non Recovery Computer
Systems :Information Technologies and Control,
2005, N#2

George Ilinchev Popov
received his PhD in Technical
University, Sofia, Bulgaria in
2006. He is working now with
Department of Computer
Science as an assistant
professor. His research interests
include Recognition Systems,
Embedded systems,
Dependability systems and etc.

