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Abstract: In this paper, a secret sharing scheme that is based on the Parallel Pollard rho Attack of the Elliptic Curve 
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dynamically. The shares of the scheme are distributed across two levels of participants but the reconstruction of the 
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1. PAPER SIZE 
Large volumes of paper cheques are processed 

each day by the Clearing House of Banks. The initial 
effort at automating the payments system was the 
computerisation of preparing reports at the Clearing 
House which was followed by the introduction of 
magnetic ink character recognition(MICR) cheques 
and reader-sorter machines to count these cheques. 
The settlements statements stored in magnetic 
diskettes are delivered by physical courier to the 
clearing house and respective banks. This has lead to 
reduction in time required to process the payments 
and also a lesser percentage of mismatches at the 
time of tallying the results at the Clearing House at 
the end of transaction for each day. But the 
processing of outstation cheques drawn on branch 
offices of banks where there are no such high speed 
clearance systems takes time and allows withdrawal 
of the funds credited to the customers account only 
on the second day or in some cases after a week or 
two. A possible solution to overcome this drawback 
is the use of eCheques or other ePayment 
Instruments together with secure methods of 
processing these instruments presented each day at 
the Clearing House. 

Precisely, the problem is defined as a secure 
multiparty protocol among entities in a 
hierarchically structured ePayments network of 
Banks that ensures circulation of money. A 
transaction involves five entities: Alice, Bob, Alice’s 
Bankers, Bob’s Bankers and the Central Bank 
together with the Clearing Members of the 

respective Banks at the Clearing House. 
In section 1 we give an introduction to the 

motivation of this paper while section 2 deals with a 
concise description of secret sharing schemes. 
Section 3 and 4 describes the mathematical 
background of the scheme and Section 5 describes 
the proposed secret sharing scheme, the 
communication model, the protocol, and mechanism 
for hierarchical access structures that can be 
activated dynamically. In Section 6, the advantages 
of the scheme are discussed along with the necessary 
precautionary methods to be considered for 
additional security in the payments system. 
 

2. SECRET SHARING 
A secret sharing scheme is that in which a secret 

α is divided into n shares which are distributed 
among the n participants so that a coalition of 
authorized participants can combine to reconstruct 
the secret. Shamir’s[9] results based on Lagrange’s 
interpolation of polynomials simultaneously with 
Blakley’s[1] contribution were the first ever known 
secret sharing schemes that were later classified as 
threshold schemes. If only a coalition of t ≤ n 
participants can reconstruct the secret while t−1 or 
fewer participants cannot, then the scheme is called 
a threshold secret sharing scheme with a threshold 
value of t. 

If Φ denotes the group of participants and Γ and ∆ 
respectively denote the set of authorized and 
unauthorized participants where Γ and ∆ are 
assumed to be mutually disjoint then the collection 
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(Γ, ∆) is called the access structure of the secret 
sharing scheme. The access structure is called a 
monotone access structure if a set P containing Γ is 
also a set of authorized participants. A hierarchical 
threshold access structure [12] defines sets of 
participants distributed in different levels with 
different or same threshold values for each level. 
Shamir’s scheme is a weighted threshold scheme 
that uses Lagrange’s Interpolation. Tassa’s scheme 
is that which uses Birkhoff’s interpolation to solve 
the threshold secret sharing problem over the 
hierarchical access structure where there is at least 
one participant who belongs to each level in the 
secret sharing scheme. If different access structures 
in a family of access structures are to be activated at 
different instances of time then we say that the secret 
sharing scheme is dynamic. A fully dynamic secret 
sharing scheme as defined in [2] is the sharing of a 
set of secrets among a group of participants such that 
any subset of participants has no information about 
the new secret before knowing the new broadcast 
message but there exists a perfect secret sharing 
scheme after seeing the new broadcast message. 

A perfect secret sharing scheme is one in which 
the shares corresponding to each unauthorized 
subset provides absolutely no information about the 
shared secret. In fact, they have a monotone access 
structure. The efficiency of any secret sharing 
scheme is measured by its information rate = (Size 
of the shared secret) / (Size of that participant’s 
share). Since in any perfect secret sharing scheme 
the size of a share is greater than or equal to the size 
of the shared secret for all shares of the participants 
of the scheme, it follows that all perfect secret 
sharing schemes have information rate ≤ 1. Secret 
sharing schemes of rate 1 are called ideal. The 
Shamir’s scheme is an example of a perfect and ideal 
threshold scheme. 
 

3. ELLIPTIC CURVES AND ECDLP 
An elliptic curve E defined over a finite field Fq, 

of characteristic greater than three is given by the set 
of points that satisfy the equation y2 = x3 + ax + b, a, 
b ε Fq where, discriminant ∆ = −16(4a3 + 27b2 ) ≠ 0 
together with the point at infinity Ο. It forms an 
abelian group over a special type of addition, where, 
Ο serves as the identity element of the group and the 
inverse of a point R = (x1, y1) on the curve is given 
by −R = (x1, −y1). The Group law for addition of two 
points R = (x1, y1) and S = (x2, y2) for R ≠ S and S ≠ 
−R, is given by the co-ordinates (x3, y3) ε E(Fq) 
where, x3 = λ2 − x1 − x2,  y3 = λ (x1 − x3) − y1 and the 
slope λ is given by (y2 − y1)/(x2 − x1) if R ≠ S and S ≠ 
−R and (3x1

2 + a)/2y1 if R = S. The order p of the 
elliptic curve over Fq, i.e., the number of elements in 

the abelian group is determined by the bounds stated 
in Hasse’s Theorem q + 1 − 2√ q < p < q + 1 + 2√ q 
while the order of a point R ε E(Fq) is the smallest 
positive integer α  for which αR = Ο. Further, if the 
group is of prime order it implies that the group is 
cyclic and every element of the group other than Ο 
is a generator of the group. 

To define the elliptic curve discrete logarithm 
problem (ECDLP): Given an elliptic curve E defined 
over a finite field Fq, a point P ε E(Fq) of order p, 
and a point Q ε <P>, find the integer l ε [0, p − 1] 
such that Q = lP. The integer l is called the discrete 
logarithm of Q to the base P, denoted l = logPQ. 
 
4. POLLARD’S RHO ATTACK ON ECDLP 

The Pollard rho attack on the ECDLP [8] finds 
two distinct pairs (c ′, d ′), (c″, d″) of integers modulo 
p such that the points X ′ = c ′P + d ′Q and X″ = c″P + 
d″Q collide. That is, a suitable iteration function f: 
<P> → <P> is defined so that any point X0 in <P> 
determines a sequence {Xi}i ≥ 0 of points where Xi = 
f(Xi−1) for i ≥ 1. Now, since <P> is finite, the 
sequence will collide at some ith iteration and then 
cycle for the remaining iterations forming a ρ-like 
shape. Then value of l can be obtained by computing 
l = (c ′− c″)(d″− d ′)–1 mod p. The improvisations 
suggested by Teske [13, 14], has a runtime 
complexity of (πn/2). 

In the Parallel Pollard rho attack[7], the single 
processor is replaced by M processors to speed up 
the process of computation. For the same iteration 
function f each processor determines points in <P> 
having an identical pre-defined distinguishing 
property and sends these points to the Central 
Processor. The Central processor computes the value 
of l from the triples associated with these distinct 
values received from the M processors as l = (c ′− 
c″)(d″− d ′)–1 mod p. This algorithm is known to 
have a runtime complexity that is linear in the 
number of processors. 

In the proposed secret sharing scheme, l is set as 
the secret α. To generate the shares or shadows, <P> 
is partitioned into sets of roughly the same size. 
These form the shares that are distributed to all the 
participants of the scheme. The threshold values at 
each level of the scheme are set depending on the 
size of the secret, the processing speed and the 
minimum number of machines used for the purpose, 
and the least number of partitions that will be 
required to compute the secret within the stipulated 
time as per the requirements of the chosen 
application. Thus the computational feasibility of the 
secret defined by the boundaries of the security 
conditions of the application plays an important role 
in determining the threshold value at each level of 
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the scheme. 
 

5. PARALLEL POLLARD SECRET 
SHARING SCHEME 

5.1. COMMUNICATION MODEL 
The scheme is defined for a hierarchical structure 

with two levels. At level zero is the Trusted Party T 
in this case the Central Processor (Entity), who deals 
the shares and reconstructs the secret. At level 1, just 
below level zero, is the set of M Processors 
(Entities) which compute the distinguished points 
from the set of shares received from the participants 
in level 2. In relation to the application of this 
scheme to Payments System, the Central Processor 
denotes the Central Bank’s node in the Clearing 
House. Each of the M Processors located in the 
Clearing House represent the clearing members of 
the individual Banks. The participants in level 2 are 
the authorized officials at the branch offices of the 
banks. 

 
Fig. 1 – The hierarchy defined in our model for the 

Payments System in Banks. 

 
5.2. PROTOCOL 

The protocol in the proposed ePayments System 
consists mainly of five entities: Alice, Bob, Alice’s 
Bankers, Bob’s Bankers, and the Central Bank and 
the Clearing Members of the respective Banks at the 
Clearing House.  

The eCheque is encrypted at any bank using the 
public key published by the Central Bank at the 
Clearing House. The Central Bank distributes the 
shares of the secret key to all participants of the 
banking network. The eCheques can be decrypted 
only at the Clearing House using the private key that 
is reconstructed with the shares provided by the 
members of the banking network. 

The ePayment instruments presented at the 
branch offices of banks for transfer of funds are 
digital images of the eCheques created by the 
respective bank with appropriate software 
applications. The cipher text of these ePayment 
Instruments are embedded in them. The branch 
offices sort these eCheques based on the banks and 

branch and prepare a consolidated statement of the 
sum totals of the amounts to be received from each 
bank. Each branch office then sends the eCheques 
along with the statements to the respective nodal 
office at the Clearing House. The authorized 
officials at each branch also affix their shares on the 
statements that are sent to the Clearing House. 

To decrypt the eCheques, the secret key has to be 
reconstructed from the shares received from the 
participants, for which purpose, the Central 
Processor may choose any access structure. When 
the secret key is reconstructed the eCheques are 
decrypted and processed for payment to respective 
banks. The final tally is carried out and the 
statements are prepared for the eCheques that are 
accepted and rejected. The consolidated amounts 
that are due to each bank is settled via ePayment 
instruments drawn on the Central Bank. 

 

 
Fig. 2 – ePayments System Communication Model. 

Let us suppose that the public key pair of the 
cryptosystem used by the Clearing House is (h, g), 
where g is the generating element of the chosen 
finite field Fp* of order p−1 in which the Discrete 
Logarithm Problem is intractable. Let α be the 
private key that is shared among all the participants 
of the banking network. 

Now let us assume that the bankers of Alice are 
branch office A11 of Bank B1 and they provide her 
with eCheque facility for withdrawal of funds from 
her personal account. Let us also suppose that 
branch office A21 of Bank B2 is the banker for Bob. 
Now, if Alice wants to write out an eCheque in the 
name of Bob for the goods that she has purchased 
from him, she would access her account with A11 of 
Bank B1 and fill up the eCheque fill-out form. We 
now assume that, the eCheque is converted into an 
image. The details on the eCheque consists of the 
string “Date : Time : Payee : Amount (words and 
Figures) : Account Type : Account Number : 
Drawee Bank (Name and Address) : Drawer (Name 

 
Level 0 
 
 
Level 1 
 
 
Level 2
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and Signature) : eCheque Number : Bank Code”. 
These details are imbedded as a number m in Fp* and 
encrypted using the public key h = gα, published by 
the Central Bank Server. The cipher text c given by 
c = mh = mgα is embedded in this image and the 
eCheque is posted to Alice’s email account who then  
sends it to Bob. Now, if Bob wishes to encash the 
eCheque, he would fill-out the eCheque deposit 
form and post it to his bankers. The eCheque would 
undergo the process as per the banking rules. When 
the Central Bank Server triggers off the 
reconstruction of the secret, the secret key α is 
reconstructed and the eCheques are decrypted as m = 
cg−α. All computations are with respect to modulo p.  

Now, the bit stream of the cipher text that was 
embedded in the image of the eCheque is decrypted 
and a search algorithm finds the corresponding 
match to the eCheque in the fill-out-forms submitted 
by Alice’s bankers. The eCheque is thus processed 
and funds transferred from Alice’s account to Bob’s 
account. In case of discrepancies such as an outdated 
eCheque or insufficient funds the instrument is 
returned to Bob by his bankers. 

For example, let F37
* be the underlying finite field 

whose generator g is 2. Then let (h = 230, g = 2) be 
the public key and α = 30 be the private key. Then 
for m = 10, the binary equivalent of cipher text c = m 
* h = 10 * 230 = 36 (mod 37) is embedded in the 
image of the eCheque. On reconstruction of the 
secret at the clearing house, the value of m is 
obtained from c as m=c∗g-α = 36∗2-30(mod 37) = 10. 

 
5.3. THE SCHEME FOR A SINGLE 
PROCESSOR 

We first describe the scheme for the case of a 
Single Processor. In this scheme, α is set as the 
secret of the threshold scheme. <P> is partitioned 
into n number of sets of roughly the same size and 
these form the shares or shadows that are distributed 
to all the participants Ai, i = 1,2, …, n. The threshold 
value is denoted by the value of k. The scheme has 
three main phases, the Setup, Share Generation, and 
the Reconstruction of the Secret. An entity T plays 
the role of the trusted authority who generates the 
public and private key pair and the shares to the 
decryption key. The mechanism for a scheme with a 
threshold value of two is given below. The function 
H is a hash function that determines a point in a 
partition and the function f is an iteration function 
that determines the sequence of points in the elliptic 
curve that collide at some stage. In our scheme we 
define simple functions for H and f. 
5.3.1.MECHANISM: The Pollard Threshold 
Scheme 
SUMMARY  A secret α that controls a critical 

action is distributed among n participants Ai  i = 1, 
…,n, of the secret sharing scheme. 
RESULT    For k = 2 or more number of participants 
pool in their shares to trigger the critical action 
where k ≤ n. 

A. Setup  
A trusted entity T  

1. Selects an elliptic curve E over a finite field 
Fq generated by <P> of prime order p. 

2. Sets the secret α that controls the critical 
action as a random integer l and determines 
the point Q = lP on E. 

3. Selects a partition function H: <P> → L 
= {1, 2, … , m} where m indicates the 
number of partitions that are used during 
recovery of secret. Here, we choose a 
simple partition function such that, for 
X′ ε <P>, h = H(X′) = H(x, y) = x mod m 
+ 1 for k ≤ m ≤ n. 

B. Share Generation 
1. Selects random integers ai, bi ε [0, p−1] and 

computes Ri = aiP + biQ, i =1… n 
2. Distributes the shares Si = (ai, bi, Ri) to the 

participants Ai, i =1,…, n  
3. Keeps the verification parameters (P, Q) 

confidential along with the list of Ri. 

C. Reconstruction of the Secret (in the case of 3>k 
inputs) 
(a) Verification of the Shares  

1. T receives the shares from any three 
participants, say, Aj , j = 1,2,3. 

2. Uses verification parameters P and Q to 
compute ajP + bjQ = Vj, j = 1,2,3. 

3. Verifies if Vj equals Rj and if they are found 
to be equal, for all j = 1,2,3, respectively, the 
steps in Recovery of Secret is carried out. 

(b) Recovery of the Secret  
1. Set L = {1, 2, 3}. 
2. Set c′ = Σaj (mod p), d′= Σbj (mod p) and X′ 

= ΣRj = c′P + d′Q (mod p) for j = 1,2,3. 
3. Repeat 

a) Compute h = H(X′) where h = 1, 2 or 3 
corresponds respectively to j = 1, 2 or 3. 

b) Set X′ = X′ + Rh (mod p), c′ = c′ + ah 
mod p, d′ = d′ + bh mod p. 

c) For r from 1 to 2 do 
(i) Compute h = H(X″). where h = 1, 2 or 

3 corresponds respectively to j = 1, 2 
or 3. 

(ii) Set X″ = X″ + Rh (mod p), c″ = c″ + 
ah (mod p), d″ = d″ + bh (mod p). 

Until X″ = X′ . 
4. Compute l = (c′ − c″)(d″ − d′)−1 mod p which 
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is the secret α and trigger the critical action. 
 5. Exit. 

5.3.2 ILLUSTRATION 
Suppose that, Ai, i = 1, …, 5, are the participants 

of a secret sharing scheme and that a subset of two 
or more participants are to combine to reconstruct 
the secret key that controls a critical action. 

Setup: The trusted entity T selects at random the 
elliptic curve E(F29) given by y2 = x3 + 4x + 20 
where the discriminant ∆ = −176896 ≡/   0(mod 29). 
The number of elements in the elliptic curve group is 
37 a prime, and so, E(F29) is a cyclic group. All 
elements of E(F29) for P = (1, 5) as the generator are 
listed in the Table 1 below. Now assume that, the 
secret S that triggers this critical action is set as 
equal to 30. If the point P in our algorithm is chosen 
to be the pair (1, 5) then Q = 30P = (24, 7). 

Share Generation: The trusted entity T 
computes the shares of the secret as Si = (ai, bi, Ri) 
for i equal to 1 to 5 and distributes them to each Ai. 
The corresponding shares for each Ai are S1 = (28 ,  
34 ,  (19, 13)), S2 = (17 ,  27 ,  (16, 27)), S3 = (20 ,  
14 ,  (15, 2)), S4 = (14 ,  23 ,  (1, 5)), S5 = (12 ,  3 ,  
(14, 6)). These shares are distributed to each 
participant Ai, i = 1, …, 5. 

Verification: Now, suppose that, A1, A3 and A5 
wish to carry out the critical action. The shares S1 = 
(28 ,  34 ,  (19, 13)), S3 = (20 ,  14 ,  (15, 2)) and S5 = 
(12 ,  3 ,  (14, 6)) are input to the system and the 
shares are verified for their authenticity. 

Reconstruction: The initial values of the 
iterating function are given by (c′, d′, X′) = (23, 14, 
(1, 24)) where c′, d′ ε [0, 36] and X′ = c′P + d′Q = 
23P + 14(30P) = 36P modulo 37 = (1, 24). The 
tabulations of c′, d′, X′, c″, d″, X″ for the iterations 
are shown in Table 2. The process terminates in the 
4th iteration when X′ = X″ = 31P. The corresponding 
values of c′, d′, c″, d″, are 16, 19, 7, 23 respectively. 

Now, l = (16 − 7)(23 − 19)−1 (mod 37) = 30 gives 
the value of the secret α. On the reconstruction of 
the secret α the critical action is carried out by the 
participants of the authorized set A1, A3, and A5. 

 

5.4 THE SCHEME FOR THE PARALLEL 
PROCESSOR 

The proposed scheme is an extension of the 
scheme described above and relies on the 
intractability of the ECDLP. This scheme is defined 
for a hierarchical access structure of two levels with 
additional capabilities of verification of shares and 
dynamic activation of an access structure. 
 
5.4.1. SYSTEM SETUP 

Suppose that, α is the secret that triggers the 
critical action. A trusted entity T, that is the Central 
Bank Server, divides the secret α such that these 
shares may be distributed to all the participants of 
the network. The secret α is chosen to be an integer l 
ε [1, p−1] where P and Q = lP are points on a 

Table 1. 

0P=Ο 7P=(24,22) 14P=(5,22) 21P=(0,7) 28P=(14,6) 35P=(4,10) 
1P= (1,5) 8P=(8,10) 15P=(3,1) 22P=(3,28) 29P=(8,19) 36P=(1, 24) 
2P= (4,19) 9P=(14,23) 16P=(0,22) 23P=(5,7) 30P=(24,7)  

3P= (20,3) 10P=(13,23) 17P=(27,2) 24P=(16,2) 31P=(17,10)  

4P=(15,27) 11P=(10,25) 18P=(2,23) 25P=(19,16) 32P=(6,17)  

5P= (6,12) 12P=(19,13) 19P=(2,6) 26P=(10,4) 33P=(15,2)  

6P=(17,19) 13P=(16,27) 20P=(27,27) 27P=(13,6) 34P=(20,26)  
 

Table 2. 

Iter c′ d′ X′ c″ d″ X″ 

--- 23 14 36P = (1, 24) 23 14 36P=(1, 24) 

1 6 28 32P = (6, 17) 25 22 19P=(2, 6) 

2 34 25 7P = (24, 22) 19 10 23P=(5, 7) 

3 25 22 19P = (2,  6) 13 35 27P=(13, 6) 

4 16 19 31P = (17,  10) 7 23 31P=(17, 10) 
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randomly chosen elliptic curve E. The point P 
generates the curve E of prime order p defined over 
a finite field Fq of characteristic greater than three. 
The trusted entity T also selects a partition function 
H: <P>  → L = {1, 2, … , m} where L is the set of 
indices used to index the partitions used in the 
reconstruction of the secret key. The cardinality m of 
L is the number of partitions that are used to recover 
the secret. For simplicity the partition function 
considered here is such that for any point X′ ε <P>, h 
= H(X′) = x mod m + 1, spans all the elements of the 
set L. The minimum permissible cardinality of L is 
set as the threshold value k of the level two of 
participants of the secret sharing scheme. The value 
of k is dependent on factors such as hardware 
configuration of the machine used, the security 
strength of the secret, the minimum number of 
partitions required for computing the distinguishing 
point within the time limit specified for the 
application. D = {d1, d2, …, dr’ } is defined as the set 
of distinguishing properties for the points in <P>. 
The elements in D determine the choice of the 
access structure of the secret sharing scheme that is 
to be activated at any point of time. T sets the 
threshold value t for level one of the hierarchy as the 
minimum number of Bank Processors required to 
compute the value di from the broadcast message b. 

 
5.4.2 SHARE GENERATION 

The participants include entities (Bank 
Processors), Bi, i = 1, …,n, at level one and branch 
offices Aij, i =1, …, n, j = 1, …, mi associated with 
each Bi at level two. T distributes the shares (Si, ri) to 
the processors Bi, i =1,…, n in the level one of the 
scheme, where Si = (ai, bi, Ri), and ri ε [1, p−1] are 
chosen randomly. T then distributes the shares Sij = 
(aij, bij, Rij) to participants Aij, i =1, …, n, j = 1, …, 
mi in the level two of the scheme. T maintains the 
list of (ri, Ri) of level one and (Rij) of level two.The 
trusted party T also keeps the parameters P and Q 
confidential. 

 
5.4.3 RECONSTRUCTION OF THE 
SECRET 

The Central Bank Processor may choose any 
access structure to reconstruct the secret. It first 
chooses a distinguished property di from the set D. 
Let us suppose that the property of the chosen di, is 
that the leading u bits of the elliptic curve points are 
zeroes. T then uses the dynamic secret sharing 
scheme with single message broadcast as proposed 
in [2], described in mechanism 5.4.4, to activate the 
access structure. 

Each of the r Bank Processors Bi pool in their 
respective rj and determine di by subtracting Σ rj 

from b. The Bi verify the shares Sij = (aij, bij, Rij) of 
participants Aij associated with them using (P, Q). If, 
out of the total number mi of participants associated 
with each Bi, m number of them send their shares Sij 
to the respective Bi , then L is set as L = {1, 2,…, m} 
where m ≥ k. 

Each of the processors in the access structure first 
compute the initial values of the iterative function f. 
They are set as c′, d′, X′ where, c′ = Σai, d′ = Σbi and 
X′ = ΣRi . The operations are performed modulo p. If 
X′ is a distinguished point having property di, the 
triples (c′, d′, X′) associated with it are sent to the 
Central Bank Processor. 

The Central Bank Processor also uses the 
verification parameters P and Q to verify if the 
shares Si are authentic by computing Vi = aiP + biQ, 
and comparing them with Ri in the respective Si. If 
the Central Processor comes across duplicate 
distinguished points, the triples associated with it are 
used to compute the secret key. Suppose that the two 
triples are (c′, d′, X′) and (c″, d″, X″) of integers 
modulo p. These are used to compute the secret α 
given by (c′−c″)(d″−d′)–1 mod p. The reconstruction 
of the secret key α triggers the critical action of 
decrypting the cipher text embedded in the 
ePayment Instruments and the instruments are 
processed for payment. 
5.4.4 Mechanism: Parallel Pollard Secret 
Sharing Scheme 

SUMMARY A secret α that controls a critical action 
is distributed among the participants of 
the secret sharing scheme. 

RESULT   The set of participants belonging to the 
specified hierarchical access structure 
pool in their shares to reconstruct the 
secret that triggers the critical action. 

I Setup: A trusted entity T  

1. Selects an elliptic curve E over a finite field 
Fq generated by <P> of prime order p. 

2. Sets the secret α that controls the critical 
action as a random integer l and determines 
the point Q = lP on E. 

3. Defines a set D = {d1, d2, …, dr’ } of 
distinguishing properties for the points in 
<P>. 

4. Sets the threshold value t for level one of the 
hierarchy as the minimum number of Bank 
Processors required to compute the value di 
from the broadcast message b. 

5. Sets the threshold value k of level two based 
on the computational feasibility of the 
distinguishing point di. within the time limit 
specified for the application. 
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6. Selects a partition function H: <P>→L={1, 
2,…, m} where m indicates the number of 
partitions that are used by each Bi to recover 
the secret key. Here again, a simple partition 
function is chosen, i.e., for X′ ε <P>, h = 
H(X′) = H(x, y) = x mod m + 1. 

 
II Share Generation 

1. T selects random integers ai, bi, aij, bij ε [0, 
p−1] and computes Ri = aiP + biQ, i = 1… n  
and Rij = aijP + bijQ, i = 1… n, j = 1,…,mi. 

2. T distributes the shares Sij = (aij, bij, Rij) to 
the participants Aij, i =1,…, n, j = 1,…,mi in 
level two of the scheme. 

3. T distributes the tuple (Si, ri) to the 
participants Bi of level one, where ri ε [1, 
p−1] are chosen randomly. 

4. T keeps the verification parameters (P, Q) 
confidential and also maintains the list of (ri, 
Ri) of level one and (Rij) of level two. 

 
III Reconstruction of the Secret 

A. Central Bank Server activates an authorized 
subset in the access structure:  

Let us suppose that the set A is a family of access 
structures and Γ1 ε A is an authorised subset. Let t be 
the threshold value for the level one participant set 
and let r, n ≥ r ≥ t, be the number of Bi participating 
in the reconstruction of secret α. 

1. If T wishes to activate the access structure 
{B1B3B5}ε Γ1  then T selects at random a di ε 
D. Let us suppose that the property of the 
chosen di, is that its leading u bits are zeroes.  

2. T then computes the broadcast message as b 
= di + r1+ r3 + r5. In general, for any access 
structure Γ1 ε A, the broadcast message b = di 
+ Σ rj , where rj belongs to the share of Bi in 
Γ1. 

3. T then sends b to all the participants Bi in 
level one of the hierarchy. However only the 
authorized subset of participants can 
compute di from b. 

 
B. Each Bank Processor Bi in the chosen access 
structure does the following: 

1. Suppose that r number of Bi determine the di 
by pooling in their respective rj and 
subtracting Σ rj from b. 

2. Verifies the shares Sij = (aij, bij, Rij) of 
participants Aij associated with them using 
(P, Q). Suppose that out of the total number 
mi of participants associated with each Bi, m 
number of them send their shares Sij to the 
respective Bi. 

3. Sets L = {1, 2, … , m} where m is the total 
number of shares available with each Bi and 
mi ≥ m ≥ k, and where k is the threshold 
value of the level two set of participants 
associated with each Bi. 

4. Sets c′ = Σ aj, d′= Σbj and X′ = ΣRj = c′P + 
d′Q, j = 1,2,…,m. 

5. Repeat 
a) If X′ is the point with distinguishing 

property di then send the triple (c′, d′, X′) 
to the Central Bank Processor together 
with their share Si. 

b) Compute h = H(X′) where h corresponds 
to an element in L. 

c) Set X′ = X′ + Rh, c′ = c′ + ah mod p, d′ = 
d′ + bh mod p. 

Until the Central Bank Processor receives 
another point X″ with the same distinguishing 
property from another processor involved in the 
computation. 

 
C. Central Bank Server does the following: 

a) Verification of the Shares 

1. T receives the shares Si along with the triple 
(c′, d′, X′) associated with the distinguishing 
point di from the r processors Bi, i = 1, 2,…, 
r, in the chosen access structure. 

2. T then uses verification parameters P and Q 
to compute aiP + biQ = Vi. 

3. If Vi = Ri for i = 1…, r, the steps for 
recovery of secret are carried out. 

 
b) Recovery of Secret 

1. Computes l = (c′ − c″)(d″ − d′)−1 mod p 
using the corresponding triples associated 
with any two sets of distinct points having 
the same distinguishing property di. The 
secret α is the value of l. 

2. The reconstruction of α triggers the critical 
action of decrypting the eCheques and 
processing them for payments. 

3. The statements are prepared indicating the 
consolidated amounts due to each bank that 
are transferred via ePayment instruments 
drawn in favour of the central bank. 

IV  End program. 
 

6 CONCLUSION 
The novelty of our scheme is its application to 

hierarchical access structures having the ability to 
activate the access structure dynamically, all within 
the same framework. 

As our scheme is based on elliptic curves, it 
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ensures higher levels of security for shorter key 
sizes. The shares function as digital signatures of the 
corresponding officials in the network for the life-
time of the pair of keys. The shares of the secret can 
be generated easily and their authenticity can be 
verified at the time of reconstruction of the secret. 
Also, the generation of additional shares for new 
participants of the scheme does not compromise on 
the secrecy of existing shares. This makes it 
relatively easy to include new participants to the 
scheme without having to change the secret itself. 
Moreover, the fact that the Pollard rho attack on 
ECDLP uses negligible memory space during the 
iterative process contributes to the efficiency of our 
scheme. All these factors enable an easy 
implementation of our scheme for a very practical 
application in modernising the Payments System in 
Banks. However, care should be taken to set the life 
time period of the public and private key pairs to be 
a specified period of hours and the validity period of 
the ePayment Instruments encrypted using that 
public key should lie within this stipulated number 
of hours. Also, a better choice of the hash function 
and iteration function pair can result in more 
efficient computations of the secret key. 

Thus our scheme eliminates the possibility of the 
adversary pre-determining the choice of the servers 
he/she may have to corrupt at any instant of time. It 
is difficult for an adversary to know the 
distinguishing point and the resources required to 
compute the secret key within the specified validity 
period of the eCheque. 
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