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Abstract: Web log files, storing user activity on a server, may grow at the pace of hundreds of megabytes a day, or 
even more, on popular sites. They are usually archived, as it enables further analysis, e.g., for detecting attacks or other 
server abuse patterns. In this work we present a specialized lossless Apache web log preprocessor and test it with 
combination of several popular general-purpose compressors. Our method works on individual fields of log data (each 
storing such information like the client’s IP, date/time, requested file or query, download size in bytes, etc.), and utilizes 
such compression techniques like finding and extracting common prefixes and suffixes, dictionary-based phrase 
sequence substitution, move-to-front coding, and more. The test results show the proposed transform improves the 
average compression ratios 2.70 times in case of gzip and 1.86 times in case of bzip2. 
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1. INTRODUCTION 
Plain text, as a medium for data conveyance and 

storage, is living its second youth. It is enough to 
mention the XML format and web languages 
(HTML, XHTML, CSS, web scripts etc.) to easily 
support this claim, but a more complete list should 
also include DNA and protein sequence databases, 
mail folders, plain text newsgroup archives, IRC 
archives, and so on. Human-readable textual data are 
easy to analyze (e.g., in order to track bugs in 
serialized objects or detect suspicious user behavior 
in a web traffic analyzer or an OS activity log), edit, 
and extract snippets from. An interesting feature of 
“texts” of the mentioned kinds, however, is their 
redundancy, typically much greater than the 
redundancy of natural language texts, e.g., fiction 
books with no markup. Redundancy not only 
increases the costs of data transmission and storage, 
but can also slow down query handling. Another 
issue concerning redundant data are increased 
memory requirements, which may pose trouble in 
the notoriously multitasking and multi-user systems. 

A natural approach to overcome the verbosity of 
textual data is, of course, to apply data compression. 
In fact, the current (April 2008) number of published 
papers dedicated to specialized XML compression 
exceeds 50 (see a bibliography at http://www. 
ucalgary.ca/~grleight/research/xml-comp.html), not 
counting works dedicated to specialized 

compression of some other structured text formats. It 
should be stressed that specialized methods, even if 
limited to text preprocessing before running a 
general-purpose compressor, can achieve 
compression ratios significantly better than universal 
compression algorithms, at more or less retained (or 
even decreased) computational requirements for the 
process of data encoding and decoding [1]. 

So far, most research on structured text 
compression focused on XML. Log data – e.g., 
database operation logs, file system access logs, 
installation logs – have rarely been subject of 
specialized text compression. A possible explanation 
of this little interest in the subject could be that log 
data form a rather vague category of files 
documenting human and machine activity: they may 
have same structure format in each line, but not 
necessarily so; they may have a fixed number of 
fields on a line, but not necessarily so; their fields 
may be whitespace separated, but other separators 
are possible too, and so on. 

Among the most important log file types in 
everyday life we should definitely mention web logs, 
storing page requests at a given web server. Logging 
the activity at popular sites can easily add even 
hundreds of megabytes a day, which needs disk 
space, increases backup costs, and makes log data 
analysis and searches slow and cumbersome. Here is 
where, we believe, compression should enter the 
stage. 
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We assume that in many scenarios queries or log 
data analyses are not performed often enough to 
make queriable compression necessary. Our 
compression techniques are devised for succinct 
storage and efficient backuping. Prior to handling 
any queries, the log archive must be decompressed. 
This is a disadvantage of course, but on the other 
hand, non-queriable compression algorithms enable 
reaching better compression ratios and are simpler. 
We show that it is possible to compress log data 
about 15–80 times (about 40–45 times on average, 
even if the back-end compressor is mediocre gzip), 
preserving fast decompression. A side goal of the 
current work is to stress on how inappropriate the 
widely used (also in log storage and analysis 
systems) Deflate method is, if the data to compress 
are typical large log files. 

We focus on efficient preprocessing in order to 
improve the compression in the next stage, that is, 
using some general-purpose backup compressor. Not 
all redundancy can be squeezed out using this 
approach, but its benefits are simplicity and easiness 
of experimentation, because a significant part of the 
compression machinery is readily available. 

The current paper extends our previous algorithm 
[2] with techniques manipulating on field values, 
and more advanced exploitation of field repetitions 
in proximity, which helped us decrease the average 
archive size on our test set by an extra 3–17 percent, 
depending on the back-end compressor used. A 
preliminary version of the current work was 
presented in [3]. 
 
2. SOURCES OF REDUNDANCY IN WEB 

LOGS 
Typically, web logs have regular structure. Even 

across different web server log formats (Apache, IIS, 
etc.) we can easily track down common 
characteristics. Below we list our observations: 
• there is one-to-one correspondence between 

events (page requests) and single lines in the log 
file; 

• web log files are similar to tables in a relational 
database: lines (rows) are composed of fields 
(attributes) in a fixed order, typically separated 
with blank spaces; 

• several pattern types are very frequent: IP 
addresses, timestamps (in a fixed format), 
URL’s; 

• there are (long) text sequences which occur many 
times, e.g., clients’ web browser ID strings, 
clients’ OS platform names, names of frequently 
accessed files, IP’s of frequent visitors; 

• successive lines tend to store requests from the 
same user, consequently with repeating IP 
addresses and client OS / browser data; 

• field values repeat in proximity (although not 
necessarily in successive lines); 

• timestamps of the successive entries are often 
very similar, which suggests differential 
encoding as an effective means to squeeze out the 
redundancy; 

• there exist strong correlations across fields, e.g., 
between user’s IP and his web browser (a 
subsequent request from the same IP, even if 
thousands of lines apart, is very likely to be 
followed by the “old” web browser ID string); 

• the plain ASCII character set is almost 
exclusively used in web logs, which means that 
the byte values over 127 (plus most byte values 
below 32) are unused and could be spent for 
cheap substitution of frequent sequences. 
Table 1 presents how the mentioned properties of 

most web log files can be utilized by (general 
purpose or specialized) compression algorithms. As 
can be seen, some effects are relevant only (or 
mostly) for LZ compressors, but others, like phrase 
substitution and differential encoding of timestamps, 
serve other compressors (e.g., from the PPM or 
BWT family) in a similar degree. 

We note that really huge log collections (on the 
order of millions requests) may instigate to more 
refined and more quantitative observations, like, 
e.g., stating that the distribution of page access count 
is Zipf-like [4]. 
 

3. RELATED WORK 
Most existing utilities for archiving and 

analyzing log data use zip / gzip (Deflate) 
compression, while some make use of a newer and 
stronger compressor bzip2 (e.g., Web Log Mixer). 
We know about only one non-research application, 
SafeLog (http://www.solution-soft.com/safelog. 
shtml), incorporating a proprietary compression 
format, which is claimed to produce up to twice 
smaller log archives than gzip. No details on the 
algorithm are disclosed.  

Rácz and Lukács developed the differentiated 
semantic log compression (DSLC) algorithm [5], but 
some details of this scheme were not given. It works 
on the level of web log lines, uses specific treatment 
for each individual field, replaces frequent field 
values with references to a semi-static dictionary, 
and at the end runs a general-purpose compressor. 
As the reader will see later, our techniques are 
inspired by DSLC. The results cited in the original 
work are quite impressive, but the authors of [6] 
claim that the Rácz and Lukács scheme “works well 
only on huge log files (over 1 GB) and it requires 
human assistance before the compression, on 
average about two weeks for a specific log file”. 
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Table 1. Properties of web log data and the resulting compression opportunities 

data property how compression is affected 

1–1 line–request corresp. Processing simplicity. Spatial closeness of identical sequences (good for LZ compression). 

Frequent patterns Efficient phrase substitution (typically as a preliminary compression step) possible. Phrases, 
added to a dictionary, can be whole field values or only snippets. 

Long repeating text 
sequences 

Can be encoded efficiently as LZ77-matches. 

Request from the same 
user on successive lines 

Can be encoded efficiently as LZ77-matches, thanks to a cheap LZ77-match offset. 

Field values repeat in 
proximity 

Can be encoded efficiently as LZ77-matches, but also an algorithm for the list update 
problem (LUP) [7] can be applied 

Similar timestamps on 
successive lines 

Differential encoding (as a preliminary compression step) can be very efficient. 

DB table like field 
ordering 

Fields can be processed separately. Domain knowledge for the field (which may be inferred 
in the analysis stage) is precious for compression. For example, knowing that a field 
contains IP’s means that the sequences of digits always form integers in 0...255 range, 
separated with single dots. 

Strong correlations 
across fields 

Fields can be joined, to improve LZ compression due to prolonged matches. Also, longer 
phrases can be added to the dictionary, for a preliminary phrase substitution step. 

Only ASCII symbols 
32...127, plus EOLs, 
used 

The remaining symbols could be spent for cheap substitution of frequent phrases. 

 
A highly specialized log compression scheme 

was developed by Kulpa et al. [8]. They encode the 
web user activity logs in a client-side monitoring 
system, written in JavaScript. The obtained 
compression is mediocre, but this was to be expected 
because the system has to be fast in the given 
environment, and works on small log chunks; the 
involved compression techniques comprise string 
substitution and differential date/time encoding 
techniques. 

In 2007, Skibiński and Swacha [6] proposed a 
couple of simple preprocessing variants intended to 
facilitate further compression of diverse log files. 
Since their goal was broader than ours (the tested 
logs were from different applications), they used 
more general means of transforming data. In the 
simplest variant, each line is encoded with reference 
to the previous line, storing the length of the longest 
match on a single byte (using symbols 128...255), 
followed by the mismatching subsequence copied 
verbatim, until the nearest field end, where again the 
longest match in the previous line for the 
corresponding field is sought for. The next two 
variants are more flexible in choosing the reference 
line which helps especially for log types where not 
all lines have identical structure (e.g., MySQL 
database logs). Later variants add a dictionary 
substitution for words found in a prepass (an idea 
used earlier, e.g., in [9], for plain text compression), 
and compact encoding of numbers, dates, times and 

IP addresses. In their experiments, the transform 
help shorten Deflate (the default zip algorithm) 
archives by 37% on average. Significant 
improvements (on the order of 20%) have also been 
noticed when stronger back-end compression 
algorithms (LZMA, PPMVC) were used. 

Capturing dependency among columns in two-
dimensional tables was the subject of the work by 
Vo and Vo [10]. They considered reordering 
columns to maximize compression; although solving 
this problem optimally is NP-hard, they gave 
efficient solutions in restricted settings, and also 
tested their ideas on a number of real tables. There 
was no web log in their test collection but it is likely 
that their scheme fits this application domain too. 
 

4. APACHE WEB LOG FORMAT 
The default field order in Apache logs is fixed  

(http://www.jafsoft.com/searchengines/log_sample. 
html). We list them below. The field numbers are 
only for reference in the latter sections. 

#0 – visitor’s IP address, 
#1, #2 – username etc. Set to – –, unless 

accessing password-protected content, 
#3 – timestamp of the visit (date, time, timezone), 
#4 – access request (e.g., GET /full/j35.jpg 

HTTP/1.0), 
#5 – result status code (200 – success, a number 

of error codes exist as well), 
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#6 – byte transferred (usually the requested 
filesize; less means a failed or partial download), 

#7 – referrer URL (e.g., http://www.fighter-
planes.com/data6070.htm). This is the page the 
visitor came from to the current location, 

#8 – user agent ID string (e.g., Mozilla/4.0 
(compatible; MSIE 6.0; Windows NT 5.1)). Usually 
a web browser, but could be a web robot, a link 
checker etc. 

An Apache server administrator may configure 
the log format with an entry of the conf/httpd.conf 
file. For example, it may happen that fields #7 and 
#8 are missing, and it was the case of our access 
file. 
 

5. OUR ALGORITHM 
The current work is an extension of our previous 

attempts [2,3] to design a transform suitable for 
efficient compression of web log files. The 
enhancements and novelties compared to the 
previous work will be explicitly stated. 

At the start, we split the data into individual 
fields, and each is compressed separately. In [2], 
we tried two variants; in the more advanced one, 
two pairs of fields (#0, #8 and #4, #6) were merged 
at some step of the transform (not at its start), 
before further processing. This helps on average, 
but for some files a little compression loss was 
observed. Also, hard-coding which fields should be 
merged cannot be called an elegant solution, and 
we have not been able so far to find a satisfactory 
technique to analyze the compression-directed 
correlation between fields. From those reasons, we 
abandoned field merging in the current paper. 

The rule for splitting a line into fields is quite 
simple. The separators are spaces (one or more), 
except for those that occur with a pair of brackets 
[] or quote marks "". The closing quote mark " is 
the nearest one after the opening ", with our 
exception (needed to handle properly one of the 
test files, rmaccess). If the sequence is something 
like "abc de" fgh", i.e., the third (supposedly, an 
opening) quote mark is not prepended with a space, 
then its predecessor, i.e., the second quote mark in 
our example, is considered an internal character of 
the field, and the third one is the closer. 

Processing the data field by field, or, in other 
words, column by column, is equivalent to 
transposing a relational database table, which is a 
well-known idea attempting to increase 
compression [11]. The approach has a number of 
benefits: it is easier to perform dictionary 
substitution on individual fields; limiting the scope 
of the compression model to what is relevant 
results in lower CPU and memory requirements, 
recency effects (e.g., runs of occurrences of the 

same field value) can be conveniently exploited, 
and so on. Another possibility is to compress the 
fields with a separate model for each, and switch 
between those models with every field value. This 
approach has the benefit of being on-line but 
requires housing several models at the same time, 
i.e., needs more memory to work. Moreover, this 
approach seems to exclude compressors from the 
LZ77 family, unless for the price of significant 
complications and decompression slow-downs. 

Below we present the processing of the 
successive fields, as listed in Section IV. 
Sometimes there are extra fields (the file rmaccess 
in our test collection), they obtain “default” 
treatment, as it will be described later. 

Field #0. We noticed that recently occurring IP 
addresses are more likely to occur again than novel 
IP’s. To exploit this, the well-known move-to-front 
(MTF) transform [12] could be applied for this field, 
which encodes a given value v as the number of 
unique values between the previous and the current 
occurrence of v. Indeed, this is the solution we used 
in [2,3]. Namely, in the cited works, for each field 
value v we sent into the first stream either 0 (which 
means v occurred just in the previous row), or 1 (v 
appeared before), or 2 (v is new and never appeared 
before). Then, if we had encoded 1, we put into the 
second stream the MTF code, i.e., the number of 
unique values since last occurrence of v. If we had 
encoded 2, we put into the third stream the value v 
as is. We found experimentally that high MTF 
values make the compression ratio worse, so if the 
number of unique values since last appearance of v 
was larger than 256, we treated v as a never-
appeared-before value and encoded both 2 and v. In 
[3], MTF codes and the stream of ternary flags were 
order-2 PPMd compressed, if the back-end 
compressor is gzip, bzip2 or LZMA, or just the 
chosen PPM back-end is used otherwise. Analogous 
MTF processing was used in [2], with the only 
difference of using order-1 arithmetic encoding (via 
the archiver arhangel, v1.40a2). Wherever in the 
current scheme we used PPM for encoding flag 
streams, order-1 arithmetic coding had been used 
earlier. What was sent to the third stream, the raw IP 
addresses, were naturally encoded on four bytes 
each, without separators, and given to the chosen 
back-end compressor. 

Currently, we refine this idea. We use three 
streams again, let us denote them with s1, s2 and s3. 
If field value v occurred just in the previous row, we 
send 0 to s1. If field value v is new or its MTF rank 
is high enough (to be specified later), value 1 is sent 
to s1, and v itself is sent to s3. The novelty is in 
handling all intermediate values of MTF. We 
distinguish between low and high MTF ranks. Low 
ranks are those from 1 up to thresh, high ranks 



Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42 
 

 39

exceed thresh. Field values v with low MTF ranks 
are encoded in s1 as 2+MTF(v). Field values v with 
high MTF ranks emit two codes: 2 to stream s1, and 
MTF(v) – thresh to stream s2. The value of thresh 
was experimentally set to 128. In this way, the MTF 
list stores 256 + thresh = 384 symbols; even higher 
ranks are handled as field values never seen before. 
This modification improves overall compression by 
about 1–2%, depending on the chosen back-end 
compressor. We have tried some other variants too, 
like MTF-1 [14], but they were unsuccessful. 

Fields #1, #2. They usually contain – (dash) 
values. We remove duplicates in those fields, which 
can be seen as an extremely simplified MTF variant: 
if the current field value is just like on the previous 
line, we sent 0 to a flag stream, otherwise we sent 
there 1 and the current value to the other stream. The 
flag streams are PPM-compressed. 

Field #3. Timestamps need special handling. 
Things would be easier if all requests were from the 
same time zone (which is also specified in this field; 
here is an example: “+0100”), but of course this is 
not always the case. Our algorithm produces two 
files. In one of them the time zones are ignored, and 
it contains encoded time differences (as if all the 
requests were from the same time zone) between 
successive lines. Those differences are expressed in 
seconds (the grain of recorded time), and are 
encoded either on a single byte, if the difference is in 
the range 0...253, or on five bytes otherwise: 255 
(254) stands for a flag for a positive (negative) 
difference, and the following four bytes encode the 
absolute value of the difference. The other file, 
representing time zones, contains one byte per line, 
and it keeps on individual bits the sign (plus or 
minus), the hour (0...23) and two bits to distinguish 
if the local time deviation from Greenwich Mean 
Time can be expressed in full hours, and if not, how 
many quarter-hours (1, 2 or 3) have to be added); the 
latter cases are rare but are also used in some regions 
of the world). Both output files are PPM-
compressed. 

Field #4. Handling this field is most complex, 
and differs significantly to the solution in our 
previous algorithm. First, if the number of distinct 
field prefixes is not more than 16, and also the 
number of common suffixes is not more than 16, 
they are chopped off and sent to two extra prefix 
streams and two extra suffix streams: one of a pair is 
merely the prefix (suffix) vocabulary, the other 
holds the prefix (suffix) indexes, item by item. By 
prefixes (suffixes), we understand the starting 
(ending) characters up to the first (last) whitespace 
in a field. It often happens that the prefix/suffix 
vocabularies are empty. For example, they are empty 
if a given field contains no spaces. The prefix and 
suffix index streams are order-2 PPMd compressed, 

while the vocabulary files are given to the main 
back-end compressor. On the “stub” file, MTF 
processing is performed, like it was described for the 
field #1. Those steps were used in the previous 
version of our algorithm (with the only difference of 
using PPMd -o2 this time). The next step is new: we 
noticed that the remaining main stream sometimes 
stores text sequences which share common prefixes 
or suffixes, hence we remove them to another pair of 
extra streams. What we write to those streams are 
pairs of bytes: one tells which of the 16 previous 
lines starts with the longest matching prefix (suffix), 
and the other tells the length of this match. More 
precisely, our rule some prefers not longest matches 
if they are much closer. Finally, on what remains 
after removing the prefix and suffix, we perform 
phrase substitution, which is also a novelty in the 
algorithm. In this step, (up to) 156 “most valuable” 
phrases are found (slightly less, up to 145, was used 
in [3]), where a phrase is any field subsequence 
between any pair of the delimiters: /, &, ?, ., +, = and 
a blank space (this choice was partly dictated by the 
set of frequent PHP separators). Allowed delimiters 
are also the beginning and the end of the (remaining) 
field value. Those phrases (of length at least 2 
characters) are then encoded on 128...255 and 1..9, 
11, 12, 14...30 ASCII symbols. The set of selected 
phrases contains those phrases that have the greatest 
weight, understood as the product of phrase 
occurrence frequency and phrase length. 

We note that occasionally (very rarely) some 
characters from 128...255 range do appear in some 
log files. We use the ASCII character 31 to flag any 
such atypical occurrence, and the non-ASCII 
character (or character 31) goes to another stream. 

Fields #5, #6, #7, #8. Those fields are treated 
alike, using the MTF-based stream-splitting routine 
as described for the field #0. 

We cared for making the transform fully 
lossless. To this end, we create a small 
configuration file, storing the End-Of-Line 
convention in a given log to compress, number of 
spaces between fields, and so on. 

 
6. EXPERIMENTAL RESULTS 

We have run several experiments to evaluate the 
performance of our algorithm, in both current and 
previous version [2]. The variant shown in this work 
was implemented in C++ and compiled with 
Microsoft Visual Studio 2008. All tests were run on 
an AMD Athlon64 3000+ machine with 2 GB of 
RAM, running Windows XP (SP2) operating 
system. For order-2 statistical encoding, applied in 
some stages of our transform, we used PPMd, var. J 
(links to all mentioned general-purpose compressors 
can be found at http://www.maximumcompression. 
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com/programs.php). 
The test collection comprises six files, varying in 

size from 3 MB to over 110 MB. Four of them, 
access, latexeditor, netaccess and fp, were used in 
[2], while two new files, 2005access and rmaccess, 
were taken from [6], provided to us by Przemysław 
Skibiński. 

Rmaccess was quite a problematic file. It had 7 
extra fields at the lines’ end, and we processed them 
all, starting from field #9, like its preceding fields 
#5...#8 (described in the previous section). Also, 
extracting the fields from the file required a special 
rule (see Section V). 

Our previous implementations [2, 3] were written 
in Python, which by no means can compete with 
compiled languages (like C++) in execution speed. 
Now, we can provide compression times of our 
transform, which demonstrate that our transform 
should be practical. 

For comparison, we were able to get only one 
specialized log compressor, logpack [6]. It works on 
arbitrary logs (not only web logs) and is able to 
make use of built-in back-end compression libraries 
(zlib and others), but for test compatibility, we ran it 
with the -l0 switch for preprocessing only. Its output 
was then submitted to an external compressor, 
exactly like we did when testing our algorithm. 

To measure how well our algorithms compete in 
their domain with respected universal compression 
methods, we chose a few well-known compressors 
for a comparison: 
• gzip, v1.3.12, implementing the Deflate method 

from the LZ77 family, in its default mode -6, 
• 7z, v4.57, using its default algorithm, LZMA, a 

modern representative of the LZ77 family, with 
default settings, 

• bzip2, v1.0.2, a compressor based on the 
Burrows–Wheeler transform, using 900 kB 
blocks, 

• PPMd, var. J, a efficient implementation of the 
PPM algorithm, tested in order-6 and order-16, 
using up to 256 MB of memory, 

• PPMonstr, var. J, a state-of-the-art PPM 
algorithm, where excellent compression comes at 
a price of high computational requirements; 
tested in order-6 and order-16, using up to 512 
MB of memory. 
Table 2 contains the results, with compressed 

files in columns and compression methods in rows. 
The first group of rows, under the raw file sizes, 
stores the compression ratios from the bare general-
purpose compressors used in the comparison. In the 
next group, Logpack (variant 5) results in 
combination with those compressors are presented. 
In the third group, Logpack preprocessing is 

replaced with our previous [2] transform for web log 
data, still the results are somewhat different than in 
[2]. This is due to two reasons: one is that, 
unfortunately, the compression ratios given for the 
latexeditor file in [2], for our both variants presented 
there, were wrong (due to a bug which did not affect 
any other file). Another reason for the discrepancy is 
that now we replaced order-1 arithmetic coding with 
PPM coding, as it is described in Section V. In this 
way, those two groups of results – old and new – are 
directly comparable. The last group of rows stores 
the results of our current transform combined with 
external compressors. The rightmost column 
contains the average compression ratios across the 
collection, expressed in bits per character (bpc). 

Table 3 gives compression times for the back-end 
compressors run alone, and the execution times of 
our transform in the last row. Although we believe 
there is still room for speed optimizations in our 
C++ implementation, we see that using the 
transform with bzip2, 7z (LZMA) or PPMonstr 
speeds up overall compression significantly. On the 
other hand, the faster compressors, gzip and PPMd, 
suffer a big speed drop. 

It is worth to note that efficient preprocessing for 
web logs flattens the compression results from 
different back-end compressors, hence using faster 
algorithms in the latter stage is more justified. 
 
7. CONCLUSIONS AND FUTURE WORK 

We presented a relatively simple off-line 
preprocessing scheme for web log compression. Our 
implementation works with the nowadays most 
popular web log format, Apache, but the entry fields 
occurring there are typical for other formats (e.g., 
IIS) too. The algorithm processes each field 
separately. The biggest improvement, as expected, 
was achieved in combination with gzip, the weakest 
(but also fastest and most widely used) among the 
tested compressors. On average, the archives shrunk 
2.7 times with gzip, but those factors varied 
significantly from file to file. 

As expected, with stronger back-end compressors 
the gains diminished but are still very significant: 
the respective speedup factors are 1.86 with bzip2, 
2.33 with 7z (LZMA) and 1.74 with order-6 PPMd. 
Our advantage over logpack, a specialized log 
compressor, is also impressive, the average 
compression gain factor is 1.74 with gzip back-end. 
Still, on some files it disappears when the strongest 
of the tested compressors, PPMonstr, comes into 
play (especially in a high-order regime). For most 
files, it seems hard to improve the results of order-16 
PPMonstr significantly, by more than 10-15%. 
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Table 2. Compression results in bits per character (bpc). Second top row holds the original file sizes in bytes. 

log file → 2005access access fp latexeditor netaccess rmaccess average
raw file (in bytes) 16 706 861 17 517 060 20 617 071 30 381 282 3 105 150 116 914 549 –

gzip 0.445 0.419 0.562 0.388 0.306 0.960 0.513
bzip2 0.246 0.256 0.281 0.212 0.168 0.736 0.316

LZMA 0.336 0.357 0.360 0.274 0.294 0.732 0.392
PPMd -o6 –m256 0.224 0.201 0.254 0.227 0.162 0.651 0.286

PPMd -o16 –m256 0.165 0.173 0.226 0.175 0.131 0.576 0.241
PPMonstr -o6 -m512 0.131 0.126 0.191 0.134 0.111 0.501 0.199
PPMonstr -o16 -m512 0.104 0.111 0.174 0.109 0.097 0.458 0.176

LP5 + gzip 0.173 0.270 0.333 0.234 0.152 0.825 0.331
LP5 + bzip2 0.116 0.185 0.244 0.157 0.124 0.601 0.238

LP5 + LZMA 0.133 0.222 0.252 0.169 0.127 0.598 0.250
LP5 + PPMd -o6 0.132 0.140 0.210 0.139 0.102 0.530 0.212
LP5 + PPMd -o16 0.110 0.131 0.204 0.128 0.109 0.494 0.196

LP5 + PPMonstr –o6 0.105 0.100 0.192 0.124 0.102 0.483 0.184
LP5 + PPMonstr -o16 0.091 0.093 0.185 0.116 0.097 0.447 0.172

[2], v1 + gzip 0.193 0.229 0.166 0.103 0.107 0.572 0.228
[2], v1 + bzip2 0.125 0.168 0.149 0.096 0.098 0.476 0.185

[2], v1 + LZMA 0.117 0.203 0.156 0.100 0.104 0.452 0.189
[2], v1 + PPMd -o6 0.131 0.135 0.146 0.095 0.097 0.463 0.178
[2], v1 + PPMd -o16 0.107 0.126 0.145 0.094 0.097 0.433 0.167

[2], v1 + PPMonstr -o6 0.093 0.100 0.145 0.094 0.093 0.403 0.155
[2], v1 + PPMonstr –o16 0.085 0.098 0.143 0.093 0.093 0.384 0.149

current + gzip 0.096 0.134 0.157 0.099 0.107 0.549 0.190
current + bzip2 0.091 0.122 0.147 0.095 0.099 0.469 0.170

current + LZMA 0.093 0.122 0.150 0.097 0.104 0.442 0.168
current + PPMd -o6 0.082 0.103 0.146 0.095 0.099 0.461 0.164

current + PPMd -o16 0.081 0.101 0.146 0.095 0.099 0.438 0.160
current + PPMonstr -o6 0.075 0.094 0.139 0.090 0.090 0.398 0.148
curr. + PPMonstr -o16 0.073 0.092 0.138 0.090 0.090 0.384 0.144

 
Table 3. Compression times in seconds. Rightmost column, lower rows, in parentheses:  

the ratio (transform_time + backend_compressor_time) / bare_backend_compressor_time. 

log file → 2005access access fp latexeditor netaccess rmaccess total time 
Gzip 0.67 0.70 0.91 1.13 0.12 6.94 10.47
bzip2 11.10 12.09 14.41 18.99 2.24 59.04 117.87

LZMA 5.50 5.09 6.93 8.42 0.88 78.32 105.14
PPMd -o6 –m256 0.67 0.75 0.90 1.25 0.12 12.76 16.45

PPMd -o16 –m256 0.90 1.03 1.26 1.52 0.14 19.91 24.76
PPMonstr -o6 -m512 15.96 16.54 20.22 28.16 3.00 153.60 237.48
PPMonstr -o16 -m512 18.56 19.30 24.18 32.84 3.47 207.16 305.51

our transform 1.77 3.09 2.29 2.16 0.41 24.79 34.51
transf. + gzip 5.07 6.48 6.56 6.78 4.36 36.30 65.55 (626.1%)
transf. + bzip2 5.09 6.41 6.59 6.79 4.28 42.16 71.32 (60.5%)

transf. + LZMA 5.19 6.71 6.68 6.86 4.30 54.17 83.91 (79.8%)
transf. + PPMd -o6 5.10 6.47 6.56 6.84 4.26 40.38 69.61 (423.2%)

transf. + PPMd -o16 5.17 6.54 6.65 6.86 4.32 42.58 72.12 (291.3%)
transf. + PPMonstr –o6 8.88 10.48 13.14 13.01 5.77 111.51 162.79 (68.5%)
transf. + PPMonstr -o16 9.12 10.84 13.54 13.64 5.80 117.47 170.41 (55.8%)

 
It is well known that data compression in 

databases can speed-up overall processing [11,13], 
because the increase in CPU work due to 
compression/decompression operations is more than 
offset by reduced I/O. We are ignoring this aspect, 
since we assume that web log files are compressed 
mainly for speeding-up backuping and saving 
storage. Still, queriable compression is also an 
interesting research goal, preferably performed on-
line to allow fast incremental archive updates. 
Logpack is an example of an on-line compressor, but 

this also seriously hampers the compression ratios it 
attains. We believe that a compromise between those 
solutions is possible, with column-oriented 
processing in relatively small blocks. 

Even in the off-line setting, several techniques 
require polishing. It was noticed in our experiments 
that some ideas help, e.g., to gzip but harm with 
PPMd, etc. In the future, we are going to tailor the 
transform for two or three back-end compressor 
targets (e.g.: LZ compressors, practical PPM 
compressors, top performance PPM compressors). 
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The MTF transform is a simple and well-known 
representative of the family of transforms coping 
with the list update problem [7]. Still, in the context 
of BWT compression, there are known more 
successful solutions (see, e.g., [14]) and it will be 
interesting to try them out in our application. 
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