
Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 35

EFFICIENT PREPROCESSING FOR WEB LOG COMPRESSION

Sebastian Deorowicz 1), Szymon Grabowski 2)

1) Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16, 44-100 Gliwice, POLAND,
sebastian.deorowicz@polsl.pl

2) Politechnika Łódzka, Katedra Informatyki Stosowanej, al. Politechniki 11, 90-924 Łódź, POLAND,
sgrabow@kis.p.lodz.pl

Abstract: Web log files, storing user activity on a server, may grow at the pace of hundreds of megabytes a day, or
even more, on popular sites. They are usually archived, as it enables further analysis, e.g., for detecting attacks or other
server abuse patterns. In this work we present a specialized lossless Apache web log preprocessor and test it with
combination of several popular general-purpose compressors. Our method works on individual fields of log data (each
storing such information like the client’s IP, date/time, requested file or query, download size in bytes, etc.), and utilizes
such compression techniques like finding and extracting common prefixes and suffixes, dictionary-based phrase
sequence substitution, move-to-front coding, and more. The test results show the proposed transform improves the
average compression ratios 2.70 times in case of gzip and 1.86 times in case of bzip2.

Keywords: web logs, text compression, table compression.

1. INTRODUCTION
Plain text, as a medium for data conveyance and

storage, is living its second youth. It is enough to
mention the XML format and web languages
(HTML, XHTML, CSS, web scripts etc.) to easily
support this claim, but a more complete list should
also include DNA and protein sequence databases,
mail folders, plain text newsgroup archives, IRC
archives, and so on. Human-readable textual data are
easy to analyze (e.g., in order to track bugs in
serialized objects or detect suspicious user behavior
in a web traffic analyzer or an OS activity log), edit,
and extract snippets from. An interesting feature of
“texts” of the mentioned kinds, however, is their
redundancy, typically much greater than the
redundancy of natural language texts, e.g., fiction
books with no markup. Redundancy not only
increases the costs of data transmission and storage,
but can also slow down query handling. Another
issue concerning redundant data are increased
memory requirements, which may pose trouble in
the notoriously multitasking and multi-user systems.

A natural approach to overcome the verbosity of
textual data is, of course, to apply data compression.
In fact, the current (April 2008) number of published
papers dedicated to specialized XML compression
exceeds 50 (see a bibliography at http://www.
ucalgary.ca/~grleight/research/xml-comp.html), not
counting works dedicated to specialized

compression of some other structured text formats. It
should be stressed that specialized methods, even if
limited to text preprocessing before running a
general-purpose compressor, can achieve
compression ratios significantly better than universal
compression algorithms, at more or less retained (or
even decreased) computational requirements for the
process of data encoding and decoding [1].

So far, most research on structured text
compression focused on XML. Log data – e.g.,
database operation logs, file system access logs,
installation logs – have rarely been subject of
specialized text compression. A possible explanation
of this little interest in the subject could be that log
data form a rather vague category of files
documenting human and machine activity: they may
have same structure format in each line, but not
necessarily so; they may have a fixed number of
fields on a line, but not necessarily so; their fields
may be whitespace separated, but other separators
are possible too, and so on.

Among the most important log file types in
everyday life we should definitely mention web logs,
storing page requests at a given web server. Logging
the activity at popular sites can easily add even
hundreds of megabytes a day, which needs disk
space, increases backup costs, and makes log data
analysis and searches slow and cumbersome. Here is
where, we believe, compression should enter the
stage.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 36

We assume that in many scenarios queries or log
data analyses are not performed often enough to
make queriable compression necessary. Our
compression techniques are devised for succinct
storage and efficient backuping. Prior to handling
any queries, the log archive must be decompressed.
This is a disadvantage of course, but on the other
hand, non-queriable compression algorithms enable
reaching better compression ratios and are simpler.
We show that it is possible to compress log data
about 15–80 times (about 40–45 times on average,
even if the back-end compressor is mediocre gzip),
preserving fast decompression. A side goal of the
current work is to stress on how inappropriate the
widely used (also in log storage and analysis
systems) Deflate method is, if the data to compress
are typical large log files.

We focus on efficient preprocessing in order to
improve the compression in the next stage, that is,
using some general-purpose backup compressor. Not
all redundancy can be squeezed out using this
approach, but its benefits are simplicity and easiness
of experimentation, because a significant part of the
compression machinery is readily available.

The current paper extends our previous algorithm
[2] with techniques manipulating on field values,
and more advanced exploitation of field repetitions
in proximity, which helped us decrease the average
archive size on our test set by an extra 3–17 percent,
depending on the back-end compressor used. A
preliminary version of the current work was
presented in [3].

2. SOURCES OF REDUNDANCY IN WEB

LOGS
Typically, web logs have regular structure. Even

across different web server log formats (Apache, IIS,
etc.) we can easily track down common
characteristics. Below we list our observations:
• there is one-to-one correspondence between

events (page requests) and single lines in the log
file;

• web log files are similar to tables in a relational
database: lines (rows) are composed of fields
(attributes) in a fixed order, typically separated
with blank spaces;

• several pattern types are very frequent: IP
addresses, timestamps (in a fixed format),
URL’s;

• there are (long) text sequences which occur many
times, e.g., clients’ web browser ID strings,
clients’ OS platform names, names of frequently
accessed files, IP’s of frequent visitors;

• successive lines tend to store requests from the
same user, consequently with repeating IP
addresses and client OS / browser data;

• field values repeat in proximity (although not
necessarily in successive lines);

• timestamps of the successive entries are often
very similar, which suggests differential
encoding as an effective means to squeeze out the
redundancy;

• there exist strong correlations across fields, e.g.,
between user’s IP and his web browser (a
subsequent request from the same IP, even if
thousands of lines apart, is very likely to be
followed by the “old” web browser ID string);

• the plain ASCII character set is almost
exclusively used in web logs, which means that
the byte values over 127 (plus most byte values
below 32) are unused and could be spent for
cheap substitution of frequent sequences.
Table 1 presents how the mentioned properties of

most web log files can be utilized by (general
purpose or specialized) compression algorithms. As
can be seen, some effects are relevant only (or
mostly) for LZ compressors, but others, like phrase
substitution and differential encoding of timestamps,
serve other compressors (e.g., from the PPM or
BWT family) in a similar degree.

We note that really huge log collections (on the
order of millions requests) may instigate to more
refined and more quantitative observations, like,
e.g., stating that the distribution of page access count
is Zipf-like [4].

3. RELATED WORK
Most existing utilities for archiving and

analyzing log data use zip / gzip (Deflate)
compression, while some make use of a newer and
stronger compressor bzip2 (e.g., Web Log Mixer).
We know about only one non-research application,
SafeLog (http://www.solution-soft.com/safelog.
shtml), incorporating a proprietary compression
format, which is claimed to produce up to twice
smaller log archives than gzip. No details on the
algorithm are disclosed.

Rácz and Lukács developed the differentiated
semantic log compression (DSLC) algorithm [5], but
some details of this scheme were not given. It works
on the level of web log lines, uses specific treatment
for each individual field, replaces frequent field
values with references to a semi-static dictionary,
and at the end runs a general-purpose compressor.
As the reader will see later, our techniques are
inspired by DSLC. The results cited in the original
work are quite impressive, but the authors of [6]
claim that the Rácz and Lukács scheme “works well
only on huge log files (over 1 GB) and it requires
human assistance before the compression, on
average about two weeks for a specific log file”.

Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 37

Table 1. Properties of web log data and the resulting compression opportunities

data property how compression is affected

1–1 line–request corresp. Processing simplicity. Spatial closeness of identical sequences (good for LZ compression).

Frequent patterns Efficient phrase substitution (typically as a preliminary compression step) possible. Phrases,
added to a dictionary, can be whole field values or only snippets.

Long repeating text
sequences

Can be encoded efficiently as LZ77-matches.

Request from the same
user on successive lines

Can be encoded efficiently as LZ77-matches, thanks to a cheap LZ77-match offset.

Field values repeat in
proximity

Can be encoded efficiently as LZ77-matches, but also an algorithm for the list update
problem (LUP) [7] can be applied

Similar timestamps on
successive lines

Differential encoding (as a preliminary compression step) can be very efficient.

DB table like field
ordering

Fields can be processed separately. Domain knowledge for the field (which may be inferred
in the analysis stage) is precious for compression. For example, knowing that a field
contains IP’s means that the sequences of digits always form integers in 0...255 range,
separated with single dots.

Strong correlations
across fields

Fields can be joined, to improve LZ compression due to prolonged matches. Also, longer
phrases can be added to the dictionary, for a preliminary phrase substitution step.

Only ASCII symbols
32...127, plus EOLs,
used

The remaining symbols could be spent for cheap substitution of frequent phrases.

A highly specialized log compression scheme

was developed by Kulpa et al. [8]. They encode the
web user activity logs in a client-side monitoring
system, written in JavaScript. The obtained
compression is mediocre, but this was to be expected
because the system has to be fast in the given
environment, and works on small log chunks; the
involved compression techniques comprise string
substitution and differential date/time encoding
techniques.

In 2007, Skibiński and Swacha [6] proposed a
couple of simple preprocessing variants intended to
facilitate further compression of diverse log files.
Since their goal was broader than ours (the tested
logs were from different applications), they used
more general means of transforming data. In the
simplest variant, each line is encoded with reference
to the previous line, storing the length of the longest
match on a single byte (using symbols 128...255),
followed by the mismatching subsequence copied
verbatim, until the nearest field end, where again the
longest match in the previous line for the
corresponding field is sought for. The next two
variants are more flexible in choosing the reference
line which helps especially for log types where not
all lines have identical structure (e.g., MySQL
database logs). Later variants add a dictionary
substitution for words found in a prepass (an idea
used earlier, e.g., in [9], for plain text compression),
and compact encoding of numbers, dates, times and

IP addresses. In their experiments, the transform
help shorten Deflate (the default zip algorithm)
archives by 37% on average. Significant
improvements (on the order of 20%) have also been
noticed when stronger back-end compression
algorithms (LZMA, PPMVC) were used.

Capturing dependency among columns in two-
dimensional tables was the subject of the work by
Vo and Vo [10]. They considered reordering
columns to maximize compression; although solving
this problem optimally is NP-hard, they gave
efficient solutions in restricted settings, and also
tested their ideas on a number of real tables. There
was no web log in their test collection but it is likely
that their scheme fits this application domain too.

4. APACHE WEB LOG FORMAT
The default field order in Apache logs is fixed

(http://www.jafsoft.com/searchengines/log_sample.
html). We list them below. The field numbers are
only for reference in the latter sections.

#0 – visitor’s IP address,
#1, #2 – username etc. Set to – –, unless

accessing password-protected content,
#3 – timestamp of the visit (date, time, timezone),
#4 – access request (e.g., GET /full/j35.jpg

HTTP/1.0),
#5 – result status code (200 – success, a number

of error codes exist as well),

Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 38

#6 – byte transferred (usually the requested
filesize; less means a failed or partial download),

#7 – referrer URL (e.g., http://www.fighter-
planes.com/data6070.htm). This is the page the
visitor came from to the current location,

#8 – user agent ID string (e.g., Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1)). Usually
a web browser, but could be a web robot, a link
checker etc.

An Apache server administrator may configure
the log format with an entry of the conf/httpd.conf
file. For example, it may happen that fields #7 and
#8 are missing, and it was the case of our access
file.

5. OUR ALGORITHM
The current work is an extension of our previous

attempts [2,3] to design a transform suitable for
efficient compression of web log files. The
enhancements and novelties compared to the
previous work will be explicitly stated.

At the start, we split the data into individual
fields, and each is compressed separately. In [2],
we tried two variants; in the more advanced one,
two pairs of fields (#0, #8 and #4, #6) were merged
at some step of the transform (not at its start),
before further processing. This helps on average,
but for some files a little compression loss was
observed. Also, hard-coding which fields should be
merged cannot be called an elegant solution, and
we have not been able so far to find a satisfactory
technique to analyze the compression-directed
correlation between fields. From those reasons, we
abandoned field merging in the current paper.

The rule for splitting a line into fields is quite
simple. The separators are spaces (one or more),
except for those that occur with a pair of brackets
[] or quote marks "". The closing quote mark " is
the nearest one after the opening ", with our
exception (needed to handle properly one of the
test files, rmaccess). If the sequence is something
like "abc de" fgh", i.e., the third (supposedly, an
opening) quote mark is not prepended with a space,
then its predecessor, i.e., the second quote mark in
our example, is considered an internal character of
the field, and the third one is the closer.

Processing the data field by field, or, in other
words, column by column, is equivalent to
transposing a relational database table, which is a
well-known idea attempting to increase
compression [11]. The approach has a number of
benefits: it is easier to perform dictionary
substitution on individual fields; limiting the scope
of the compression model to what is relevant
results in lower CPU and memory requirements,
recency effects (e.g., runs of occurrences of the

same field value) can be conveniently exploited,
and so on. Another possibility is to compress the
fields with a separate model for each, and switch
between those models with every field value. This
approach has the benefit of being on-line but
requires housing several models at the same time,
i.e., needs more memory to work. Moreover, this
approach seems to exclude compressors from the
LZ77 family, unless for the price of significant
complications and decompression slow-downs.

Below we present the processing of the
successive fields, as listed in Section IV.
Sometimes there are extra fields (the file rmaccess
in our test collection), they obtain “default”
treatment, as it will be described later.

Field #0. We noticed that recently occurring IP
addresses are more likely to occur again than novel
IP’s. To exploit this, the well-known move-to-front
(MTF) transform [12] could be applied for this field,
which encodes a given value v as the number of
unique values between the previous and the current
occurrence of v. Indeed, this is the solution we used
in [2,3]. Namely, in the cited works, for each field
value v we sent into the first stream either 0 (which
means v occurred just in the previous row), or 1 (v
appeared before), or 2 (v is new and never appeared
before). Then, if we had encoded 1, we put into the
second stream the MTF code, i.e., the number of
unique values since last occurrence of v. If we had
encoded 2, we put into the third stream the value v
as is. We found experimentally that high MTF
values make the compression ratio worse, so if the
number of unique values since last appearance of v
was larger than 256, we treated v as a never-
appeared-before value and encoded both 2 and v. In
[3], MTF codes and the stream of ternary flags were
order-2 PPMd compressed, if the back-end
compressor is gzip, bzip2 or LZMA, or just the
chosen PPM back-end is used otherwise. Analogous
MTF processing was used in [2], with the only
difference of using order-1 arithmetic encoding (via
the archiver arhangel, v1.40a2). Wherever in the
current scheme we used PPM for encoding flag
streams, order-1 arithmetic coding had been used
earlier. What was sent to the third stream, the raw IP
addresses, were naturally encoded on four bytes
each, without separators, and given to the chosen
back-end compressor.

Currently, we refine this idea. We use three
streams again, let us denote them with s1, s2 and s3.
If field value v occurred just in the previous row, we
send 0 to s1. If field value v is new or its MTF rank
is high enough (to be specified later), value 1 is sent
to s1, and v itself is sent to s3. The novelty is in
handling all intermediate values of MTF. We
distinguish between low and high MTF ranks. Low
ranks are those from 1 up to thresh, high ranks

Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 39

exceed thresh. Field values v with low MTF ranks
are encoded in s1 as 2+MTF(v). Field values v with
high MTF ranks emit two codes: 2 to stream s1, and
MTF(v) – thresh to stream s2. The value of thresh
was experimentally set to 128. In this way, the MTF
list stores 256 + thresh = 384 symbols; even higher
ranks are handled as field values never seen before.
This modification improves overall compression by
about 1–2%, depending on the chosen back-end
compressor. We have tried some other variants too,
like MTF-1 [14], but they were unsuccessful.

Fields #1, #2. They usually contain – (dash)
values. We remove duplicates in those fields, which
can be seen as an extremely simplified MTF variant:
if the current field value is just like on the previous
line, we sent 0 to a flag stream, otherwise we sent
there 1 and the current value to the other stream. The
flag streams are PPM-compressed.

Field #3. Timestamps need special handling.
Things would be easier if all requests were from the
same time zone (which is also specified in this field;
here is an example: “+0100”), but of course this is
not always the case. Our algorithm produces two
files. In one of them the time zones are ignored, and
it contains encoded time differences (as if all the
requests were from the same time zone) between
successive lines. Those differences are expressed in
seconds (the grain of recorded time), and are
encoded either on a single byte, if the difference is in
the range 0...253, or on five bytes otherwise: 255
(254) stands for a flag for a positive (negative)
difference, and the following four bytes encode the
absolute value of the difference. The other file,
representing time zones, contains one byte per line,
and it keeps on individual bits the sign (plus or
minus), the hour (0...23) and two bits to distinguish
if the local time deviation from Greenwich Mean
Time can be expressed in full hours, and if not, how
many quarter-hours (1, 2 or 3) have to be added); the
latter cases are rare but are also used in some regions
of the world). Both output files are PPM-
compressed.

Field #4. Handling this field is most complex,
and differs significantly to the solution in our
previous algorithm. First, if the number of distinct
field prefixes is not more than 16, and also the
number of common suffixes is not more than 16,
they are chopped off and sent to two extra prefix
streams and two extra suffix streams: one of a pair is
merely the prefix (suffix) vocabulary, the other
holds the prefix (suffix) indexes, item by item. By
prefixes (suffixes), we understand the starting
(ending) characters up to the first (last) whitespace
in a field. It often happens that the prefix/suffix
vocabularies are empty. For example, they are empty
if a given field contains no spaces. The prefix and
suffix index streams are order-2 PPMd compressed,

while the vocabulary files are given to the main
back-end compressor. On the “stub” file, MTF
processing is performed, like it was described for the
field #1. Those steps were used in the previous
version of our algorithm (with the only difference of
using PPMd -o2 this time). The next step is new: we
noticed that the remaining main stream sometimes
stores text sequences which share common prefixes
or suffixes, hence we remove them to another pair of
extra streams. What we write to those streams are
pairs of bytes: one tells which of the 16 previous
lines starts with the longest matching prefix (suffix),
and the other tells the length of this match. More
precisely, our rule some prefers not longest matches
if they are much closer. Finally, on what remains
after removing the prefix and suffix, we perform
phrase substitution, which is also a novelty in the
algorithm. In this step, (up to) 156 “most valuable”
phrases are found (slightly less, up to 145, was used
in [3]), where a phrase is any field subsequence
between any pair of the delimiters: /, &, ?, ., +, = and
a blank space (this choice was partly dictated by the
set of frequent PHP separators). Allowed delimiters
are also the beginning and the end of the (remaining)
field value. Those phrases (of length at least 2
characters) are then encoded on 128...255 and 1..9,
11, 12, 14...30 ASCII symbols. The set of selected
phrases contains those phrases that have the greatest
weight, understood as the product of phrase
occurrence frequency and phrase length.

We note that occasionally (very rarely) some
characters from 128...255 range do appear in some
log files. We use the ASCII character 31 to flag any
such atypical occurrence, and the non-ASCII
character (or character 31) goes to another stream.

Fields #5, #6, #7, #8. Those fields are treated
alike, using the MTF-based stream-splitting routine
as described for the field #0.

We cared for making the transform fully
lossless. To this end, we create a small
configuration file, storing the End-Of-Line
convention in a given log to compress, number of
spaces between fields, and so on.

6. EXPERIMENTAL RESULTS

We have run several experiments to evaluate the
performance of our algorithm, in both current and
previous version [2]. The variant shown in this work
was implemented in C++ and compiled with
Microsoft Visual Studio 2008. All tests were run on
an AMD Athlon64 3000+ machine with 2 GB of
RAM, running Windows XP (SP2) operating
system. For order-2 statistical encoding, applied in
some stages of our transform, we used PPMd, var. J
(links to all mentioned general-purpose compressors
can be found at http://www.maximumcompression.

Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 40

com/programs.php).
The test collection comprises six files, varying in

size from 3 MB to over 110 MB. Four of them,
access, latexeditor, netaccess and fp, were used in
[2], while two new files, 2005access and rmaccess,
were taken from [6], provided to us by Przemysław
Skibiński.

Rmaccess was quite a problematic file. It had 7
extra fields at the lines’ end, and we processed them
all, starting from field #9, like its preceding fields
#5...#8 (described in the previous section). Also,
extracting the fields from the file required a special
rule (see Section V).

Our previous implementations [2, 3] were written
in Python, which by no means can compete with
compiled languages (like C++) in execution speed.
Now, we can provide compression times of our
transform, which demonstrate that our transform
should be practical.

For comparison, we were able to get only one
specialized log compressor, logpack [6]. It works on
arbitrary logs (not only web logs) and is able to
make use of built-in back-end compression libraries
(zlib and others), but for test compatibility, we ran it
with the -l0 switch for preprocessing only. Its output
was then submitted to an external compressor,
exactly like we did when testing our algorithm.

To measure how well our algorithms compete in
their domain with respected universal compression
methods, we chose a few well-known compressors
for a comparison:
• gzip, v1.3.12, implementing the Deflate method

from the LZ77 family, in its default mode -6,
• 7z, v4.57, using its default algorithm, LZMA, a

modern representative of the LZ77 family, with
default settings,

• bzip2, v1.0.2, a compressor based on the
Burrows–Wheeler transform, using 900 kB
blocks,

• PPMd, var. J, a efficient implementation of the
PPM algorithm, tested in order-6 and order-16,
using up to 256 MB of memory,

• PPMonstr, var. J, a state-of-the-art PPM
algorithm, where excellent compression comes at
a price of high computational requirements;
tested in order-6 and order-16, using up to 512
MB of memory.
Table 2 contains the results, with compressed

files in columns and compression methods in rows.
The first group of rows, under the raw file sizes,
stores the compression ratios from the bare general-
purpose compressors used in the comparison. In the
next group, Logpack (variant 5) results in
combination with those compressors are presented.
In the third group, Logpack preprocessing is

replaced with our previous [2] transform for web log
data, still the results are somewhat different than in
[2]. This is due to two reasons: one is that,
unfortunately, the compression ratios given for the
latexeditor file in [2], for our both variants presented
there, were wrong (due to a bug which did not affect
any other file). Another reason for the discrepancy is
that now we replaced order-1 arithmetic coding with
PPM coding, as it is described in Section V. In this
way, those two groups of results – old and new – are
directly comparable. The last group of rows stores
the results of our current transform combined with
external compressors. The rightmost column
contains the average compression ratios across the
collection, expressed in bits per character (bpc).

Table 3 gives compression times for the back-end
compressors run alone, and the execution times of
our transform in the last row. Although we believe
there is still room for speed optimizations in our
C++ implementation, we see that using the
transform with bzip2, 7z (LZMA) or PPMonstr
speeds up overall compression significantly. On the
other hand, the faster compressors, gzip and PPMd,
suffer a big speed drop.

It is worth to note that efficient preprocessing for
web logs flattens the compression results from
different back-end compressors, hence using faster
algorithms in the latter stage is more justified.

7. CONCLUSIONS AND FUTURE WORK

We presented a relatively simple off-line
preprocessing scheme for web log compression. Our
implementation works with the nowadays most
popular web log format, Apache, but the entry fields
occurring there are typical for other formats (e.g.,
IIS) too. The algorithm processes each field
separately. The biggest improvement, as expected,
was achieved in combination with gzip, the weakest
(but also fastest and most widely used) among the
tested compressors. On average, the archives shrunk
2.7 times with gzip, but those factors varied
significantly from file to file.

As expected, with stronger back-end compressors
the gains diminished but are still very significant:
the respective speedup factors are 1.86 with bzip2,
2.33 with 7z (LZMA) and 1.74 with order-6 PPMd.
Our advantage over logpack, a specialized log
compressor, is also impressive, the average
compression gain factor is 1.74 with gzip back-end.
Still, on some files it disappears when the strongest
of the tested compressors, PPMonstr, comes into
play (especially in a high-order regime). For most
files, it seems hard to improve the results of order-16
PPMonstr significantly, by more than 10-15%.

Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 41

Table 2. Compression results in bits per character (bpc). Second top row holds the original file sizes in bytes.

log file → 2005access access fp latexeditor netaccess rmaccess average
raw file (in bytes) 16 706 861 17 517 060 20 617 071 30 381 282 3 105 150 116 914 549 –

gzip 0.445 0.419 0.562 0.388 0.306 0.960 0.513
bzip2 0.246 0.256 0.281 0.212 0.168 0.736 0.316

LZMA 0.336 0.357 0.360 0.274 0.294 0.732 0.392
PPMd -o6 –m256 0.224 0.201 0.254 0.227 0.162 0.651 0.286

PPMd -o16 –m256 0.165 0.173 0.226 0.175 0.131 0.576 0.241
PPMonstr -o6 -m512 0.131 0.126 0.191 0.134 0.111 0.501 0.199
PPMonstr -o16 -m512 0.104 0.111 0.174 0.109 0.097 0.458 0.176

LP5 + gzip 0.173 0.270 0.333 0.234 0.152 0.825 0.331
LP5 + bzip2 0.116 0.185 0.244 0.157 0.124 0.601 0.238

LP5 + LZMA 0.133 0.222 0.252 0.169 0.127 0.598 0.250
LP5 + PPMd -o6 0.132 0.140 0.210 0.139 0.102 0.530 0.212
LP5 + PPMd -o16 0.110 0.131 0.204 0.128 0.109 0.494 0.196

LP5 + PPMonstr –o6 0.105 0.100 0.192 0.124 0.102 0.483 0.184
LP5 + PPMonstr -o16 0.091 0.093 0.185 0.116 0.097 0.447 0.172

[2], v1 + gzip 0.193 0.229 0.166 0.103 0.107 0.572 0.228
[2], v1 + bzip2 0.125 0.168 0.149 0.096 0.098 0.476 0.185

[2], v1 + LZMA 0.117 0.203 0.156 0.100 0.104 0.452 0.189
[2], v1 + PPMd -o6 0.131 0.135 0.146 0.095 0.097 0.463 0.178
[2], v1 + PPMd -o16 0.107 0.126 0.145 0.094 0.097 0.433 0.167

[2], v1 + PPMonstr -o6 0.093 0.100 0.145 0.094 0.093 0.403 0.155
[2], v1 + PPMonstr –o16 0.085 0.098 0.143 0.093 0.093 0.384 0.149

current + gzip 0.096 0.134 0.157 0.099 0.107 0.549 0.190
current + bzip2 0.091 0.122 0.147 0.095 0.099 0.469 0.170

current + LZMA 0.093 0.122 0.150 0.097 0.104 0.442 0.168
current + PPMd -o6 0.082 0.103 0.146 0.095 0.099 0.461 0.164

current + PPMd -o16 0.081 0.101 0.146 0.095 0.099 0.438 0.160
current + PPMonstr -o6 0.075 0.094 0.139 0.090 0.090 0.398 0.148
curr. + PPMonstr -o16 0.073 0.092 0.138 0.090 0.090 0.384 0.144

Table 3. Compression times in seconds. Rightmost column, lower rows, in parentheses:

the ratio (transform_time + backend_compressor_time) / bare_backend_compressor_time.

log file → 2005access access fp latexeditor netaccess rmaccess total time
Gzip 0.67 0.70 0.91 1.13 0.12 6.94 10.47
bzip2 11.10 12.09 14.41 18.99 2.24 59.04 117.87

LZMA 5.50 5.09 6.93 8.42 0.88 78.32 105.14
PPMd -o6 –m256 0.67 0.75 0.90 1.25 0.12 12.76 16.45

PPMd -o16 –m256 0.90 1.03 1.26 1.52 0.14 19.91 24.76
PPMonstr -o6 -m512 15.96 16.54 20.22 28.16 3.00 153.60 237.48
PPMonstr -o16 -m512 18.56 19.30 24.18 32.84 3.47 207.16 305.51

our transform 1.77 3.09 2.29 2.16 0.41 24.79 34.51
transf. + gzip 5.07 6.48 6.56 6.78 4.36 36.30 65.55 (626.1%)
transf. + bzip2 5.09 6.41 6.59 6.79 4.28 42.16 71.32 (60.5%)

transf. + LZMA 5.19 6.71 6.68 6.86 4.30 54.17 83.91 (79.8%)
transf. + PPMd -o6 5.10 6.47 6.56 6.84 4.26 40.38 69.61 (423.2%)

transf. + PPMd -o16 5.17 6.54 6.65 6.86 4.32 42.58 72.12 (291.3%)
transf. + PPMonstr –o6 8.88 10.48 13.14 13.01 5.77 111.51 162.79 (68.5%)
transf. + PPMonstr -o16 9.12 10.84 13.54 13.64 5.80 117.47 170.41 (55.8%)

It is well known that data compression in

databases can speed-up overall processing [11,13],
because the increase in CPU work due to
compression/decompression operations is more than
offset by reduced I/O. We are ignoring this aspect,
since we assume that web log files are compressed
mainly for speeding-up backuping and saving
storage. Still, queriable compression is also an
interesting research goal, preferably performed on-
line to allow fast incremental archive updates.
Logpack is an example of an on-line compressor, but

this also seriously hampers the compression ratios it
attains. We believe that a compromise between those
solutions is possible, with column-oriented
processing in relatively small blocks.

Even in the off-line setting, several techniques
require polishing. It was noticed in our experiments
that some ideas help, e.g., to gzip but harm with
PPMd, etc. In the future, we are going to tailor the
transform for two or three back-end compressor
targets (e.g.: LZ compressors, practical PPM
compressors, top performance PPM compressors).

Sebastian Deorowicz, Szymon Grabowski / Computing, 2008, Vol. 7, Issue 1, 35-42

 42

The MTF transform is a simple and well-known
representative of the family of transforms coping
with the list update problem [7]. Still, in the context
of BWT compression, there are known more
successful solutions (see, e.g., [14]) and it will be
interesting to try them out in our application.

8. REFERENCES
[1] P. Skibiński, Sz. Grabowski Sz., J. Swacha,

Effective asymmetric XML compression,
Software–Practice and Experience, accepted.

[2] Sz. Grabowski, S. Deorowicz. Web log
compression, AGH Automatyka 11 (3) (2007).
pp. 417–424.

[3] S. Deorowicz, Sz. Grabowski. Sub-atomic field
processing for improved web log compression.
Proceedings of the 9th International
Conference on Modern Problems of Radio
Engineering, Telecommunications and
Computer Science (TCSET'2008), Lviv-
Slavsko, Ukraine, 19–23 Feb. 2008, pp. 551–
556.

[4] A. A. Benczúr, K. Csalogány, K. Hum, A.
Lukács, B. Rácz, Cs. I. Sidló, M. Uher, L.
Végh. Architecture for mining massive web
logs with experiments. Proceedings of the
HUBUSKA Open Workshop on Generic Issues
of Knowledge Technologies, 2005. http://www.
sztaki.hu/~alukacs/Papers/origomining.pdf

[5] B. Rácz, A. Lukács. High density compression
of log files. Proceeding of the IEEE Data
Compression Conference (DCC), Snowbird,
UT, USA, 2004, p. 557.

[6] P. Skibiński, J. Swacha. Fast and efficient log
file compression. CEUR Workshop
Proceedings of the 11th East-European
Conference on Advances in Databases and
Information Systems (ADBIS), Varna, Bulgaria,
23 Sept. – 3 Oct. 2007, pp. 330–342.

[7] S. Albers. Online algorithms. Book chapter in
Interactive Computation: The New Paradigm
edited by D.Q. Goldin, S.A. Smolka and P.
Wegner, Springer, 2006, pp. 143–164.

[8] A. Kulpa, J. Swacha, R. Budzowski. Script-
based system for monitoring client-side
activity. Book chapter in Technologies for
Business Information Systems edited by W.
Abramowicz, H. Mayer, Springer, Dordrecht,
Netherlands, 2007, pp. 393–402.

[9] P. Skibiński, Sz. Grabowski, S. Deorowicz.
Revisiting dictionary-based compression,
Software–Practice and Experience 35 (15)
(2005). pp. 1455–1476.

[10] B. D. Vo, K.-P. Vo. Compressing table data
with column dependency, Theoretical
Computer Science 387 (3) (2007). pp. 273–283.

[11] G. Graefe G., L. Shapiro. Data Compression
and Database Performance, Proceedings of
ACM/IEEE-CS Symposium on Applied
Computing, Kansas City, MO, USA, 1991, pp.
22–27.

[12] J. L. Bentley, D. D. Sleator, R. E. Tarjan, V. K.
Wei. A locally adaptive data compression
scheme, Communications of ACM 29 (4)
(1986). pp. 320–330.

[13] B. R. Iyer, D. Wilhite. Data Compression
Support in Databases. Proceedings of the 20th
International Conference on Very Large Data
Bases (VLDB), Santiago de Chile, Chile, 12–15
Sept. 1994, pp. 695–704.

[14] S. Deorowicz. Universal lossless data
compression algorithms. Ph.D. dissertation,
Silesian University of Technology, 2003.

Sebastian Deorowicz (b.
1974) received his MSc degree
in Silesian University of
Technology in 1998 and PhD
degree in the same university
in 2003, both in computer
science. His research interest
are in data compression, string
matching, sequence alignment,
and combinatorial optimization.
He has published over 10

journal and conference papers. He is currently an
assistant professor at Silesian University of
Technology in Gliwice.

Szymon Grabowski (b. 1973)
received his MSc degree in
Łódź University in 1996 and
PhD degree in AGH University
of Science and Technology
(formerly known as University
of Mining and Metallurgy) in
Cracow in 2003, both in
computer science. His former
research, including PhD
dissertation, involved nearest-

neighbor classification methods in pattern
recognition, also with applications in image
processing. Currently, his main interests are focused
in string matching and text indexing algorithms, and
data compression. Some of his particular research
topics include various approximate string matching
problems, compressed text indexes, and XML
compression. He has published about 60 papers in
journals and conferences. He is currently an
assistant professor at Computer Engineering
Department of Technical University of Łódź.

