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Abstract: Many buildings are already equipped with a WLAN infrastructure, as an inexpensive communication 
technology. In this paper two methods that estimate the position and the heading (pose) of a mobile robot using WLAN 
technology are described. The proposed techniques for localizing a mobile robot are based on the use of received signal 
strength values of WLAN access points in range. Both use a radio map based method. For interpolation of the radio 
map weigthed Euclidean distance and Euclidean distance in combination with Delaunay triangulation is proposed. 
Measured signal strength values of an omnidirectional antenna and a beam antenna are compared with the values of a 
radio map, in order to estimate the pose of a mobile robot, whereby the directionality of the beam antenna is used to 
estimate the heading of the robot. The paper presents the experimental results of measurements in an office building. 
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1. INTRODUCTION 
Navigation is a key ability of mobile robots. The 

task of navigation can be divided into localization 
and path planning. Aim of localization is to estimate 
the pose (position and heading) of a mobile robot 
with respect to its environment. There are three 
different kinds of localization problems in mobile 
robotics: position tracking, global localization and 
kidnapped robot problem. Position tracking requires 
knowledge of the start position and is also known as 
local localization. The problem is called global 
localization, if there is no priori estimate of the pose. 
The kidnapped robot problem describes a situation, 
where a localized robot is moved to a different place 
without its knowledge. It is often used to test a 
robot's ability to recover from localization failures. 
Approaches which are capable of solving the global 
localization problem can be modified such that they 
can also solve the kidnapped robot problem [1]. 

Usually robot odometric sensors are used to solve 
the localization problem of wheeled robots. 
Odometric sensors provide information about robot 
movements, but the provided information is noisy 
and accumulates errors over time. Odometrie is 
accurate enough for local movements but is not 
suitable for long term localization and global 
localization [2]. 

Additional sensors such as laser and vision 
provide information about the environment of a 
mobile robot. Several methods have been proposed 

to use this information to estimate the pose of a 
mobile robot. Unfortunately laser sensors are 
expensive and vision needs computational overhead 
of image processing. Furthermore this techniques 
require a map and usually a start position. If the start 
position is unknown, the pose have to be searched in 
the whole map, which is difficult and time 
consuming in a large environment. A global pose 
estimation using WLAN technology can support 
such methods by finding the starting pose. 
Furthermore it can solve the kidnapped robot 
problem by detecting localization failures and by 
providing a new starting pose. 

Nowadays mobile robots often are equipped with 
IEEE 802.11 WLAN adapters, in order to 
communicate with computers or other mobile 
devices. Furthermore, many buildings are already 
equipped with an IEEE 802.11 WLAN 
infrastructure, as a popular and inexpensive 
technology. Most WLAN adapters are able to 
measure the signal strengths of received packets as 
part of their standard operation. The signal strengths 
of received packets vary noticeably by changing the 
position. Thus, the signal strength can be used to 
estimate the position of a mobile device by cheap 
technology. 

In this paper, the problem of global localization is 
solved using the WLAN infrastructure in an indoor 
scenario. It extends the existing WLAN localization 
techniques in two ways. First, it describes two 
techniques for estimating the heading of a mobile 
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robot. A measured set of signal strength values of an 
omnidirectional antenna and a beam antenna is 
compared with a radio map in order to estimate 
position and heading of a mobile robot. Second, 
interpolation is proposed in order to reduce the 
density of the calibration points in the radio map and 
thus minimizing the manual effort to build the map. 
Furthermore the proposed techniques can support 
other map based pose estimation methods by finding 
a global start position. The paper extends the work 
presented in [3] by refining the algorithm of heading 
estimation and by presenting more experimental 
results, which show the effectiveness of the 
technique. 

 
2. RELATED WORK 

Up to now there are developed several kinds of 
localization techniques for the use in wireless 
networks. A review of the existing techniques is 
given in [4]. This techniques can be classified by the 
information they use: 

• Connectivity information, 
• Angle of Arrival (AoA), 
• Time of Arrival (ToA), 
• Time Difference of Arrival (TDoA), 
• Received Signal Strength (RSS). 

Connectivity information is available in all kinds 
of wireless networks. The accuracy of the 
localization depends on the range of the used 
technology and the density of the beacons. In 
cellular networks, Cell-ID is a simple localization 
method based on cell sector information [5]. In 
infrastructure mode of a Wireless LAN (WLAN), 
the access point (AP) to which the mobile device is 
currently connected, can be determined since mobile 
devices know the MAC hardware address of the AP, 
which they are connected to. Bluetooth is another 
technology, which allows a relatively accurate 
localization because of its low radio range [6]. 
Besides the deployment of Radio Frequency 
Identification (RFID) in Supply Chain Management 
[7], the RFID technology is also suitable for position 
estimation. RFID tags can be deployed at known 
positions in the environment, in order to obtain 
position information when they are in range. This 
information can be be fused with data from other 
sensors (e.g. odometers) for the purpose of 
improving the accuracy of localization (see [8] and 
[9]). 

AoA determines the position with the angle of 
arrival from fixed anchor nodes using triangulation. 
A method, where a wireless sensor node localizes 
itself by measuring the angle to three or more 
beacon signals is in [10] proposed. Each signal 
consists of a continuous narrow directional beam, 
that rotates with a constant angular speed. Drawback 

of AoA based methods is the need for a special and 
expensive antenna configuration e.g. antenna arrays 
or rotating beam antennas. 

ToA and TDoA estimate the range to a sender by 
measuring the signal propagation delay. The Cricket 
localization system [11] developed at MIT utilizes a 
radio signal and a ultrasound signal for position 
estimation based on trilateration. TDoA of these two 
signals are measured in order to estimate the 
distance between two nodes. This technique can be 
used to track the position of a mobile robot [12]. 
ToA as wells as TDoA require a complex wireless 
network infrastructure, which is usually not present 
in today's WLAN installations. 

RSS information can be used in most wireless 
technologies, since mobile devices are able to 
monitor the RSS as part of their standard operation. 
The distance between sender and receiver can be 
obtained with the Log Distance Path Loss Model 
described in [13]. Unfortunately, the propagation 
model is sensitive to disturbances such as reflection, 
diffraction and multi-path e ffects. The signal 
propagation depends on building dimensions, 
obstructions, partitioning materials and surrounding 
moving objects. Own measurements show, that this 
disturbances make the use of a propagation model 
for accurate localization in an indoor environment 
almost impossible [3]. Fingerprinting, which is a 
method to overcome this disadvantage by utilizing a 
radio map is in [14] introduced. Fingerprinting is 
divided in two phases: In the initial calibration 
phase, the radio map is built by moving around and 
storing RSS values at various predefined points of 
the environment. In the localization phase, the 
mobile device moves in the same environment and 
the position is estimated by comparing the current 
RSS values with the radio map. A metric to compare 
the measured RSS values with the radio map is 
Euclidean distance proposed by [14]. A Bayesian 
algorithm is used in [15] and [16] proposed 
Delaunay triangulation with lines of constant signal 
strength. 

Several methods for localization in WLAN 
environments using RSS have been developed, in 
order to improve the accuracy of the estimation. A 
Kalman filter is proposed by [17], a Monte-Carlo 
algorithm is used by [18] as well by [19], Statistical 
learning is applied by [20] and Fuzzy is used by [21] 
and by [22]. All of these methods utilize a radio map 
and estimate only the position but not the heading of 
the mobile device. The main disadvantage of radio 
map based methods is the high manual effort to 
build the map in the calibration phase. The use of 
Delaunay triangulation and interpolation allows a 
radio map with a low density of calibration points 
and reduces the time for manual generation of the 
map [3]. 
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3. CHARACTERISTIC OF RECEIVED 
SIGNAL STRENGTH (RSS) 

3.1. MEASUREMENT OF SIGNAL 
STRENGTHS 

Most mobile devices are able to monitor the RSS 
values from APs in range as part of their standard 
operation. There are two kinds of scanning modes: 
passive scanning and active scanning. In passive 
scanning mode the WLAN card is put into 
monitoring mode and waits for incoming packets. In 
active scanning mode the mobile device sends a 
probe request packet on every frequency and waits 
for the probe response packets of the APs in range. 
Active scanning is an important feature in WLAN 
positioning, because it obtains new RSS values of all 
APs in range at the time of scanning. 

 
3.2. MODELING OF SIGNAL STRENGTH 

The propagation model of RSS depends on the 
free space loss of the signal. The free space loss F is 
defined as 
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where PRx is the power of the received signal, PTx is 
the power of the transmitted signal, c is the speed of 
light, f is the frequency of the signal, d is the 
distance to the sender and λ is the wavelength of the 
signal. Equation (1) can be expressed in logarithmic 
scale: 
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where the unit of f is MHz and the unit of d is km. 

In an indoor environment, where multi path 
effects occur, equation (2) leads to the log distance 
path loss model [13], 
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where P0 is the RSS value at the distance d0 and γ is 
the path loss exponent. Parameters P0, d0 and γ  have 
to be adapted to the geometry of every room in the 
building. Fig. 1 compares the log distance model 
with measurements in an office building. It shows, 
that there are several measurements with equal 
signal strength at points with distances of more than 

10 m. 
The propagation model is sensitive to 

disturbances as reflections, diffractions and 
multi-path e ffects. The signal propagation depends 
on building dimensions, obstructions, partitioning 
materials and surrounding moving objects. This 
problem makes the use of a propagation model for 
accurate localization in an indoor environment 
almost impossible. 

 

 
Fig. 1. – Propagation model versus real measurements. 

 
 

3.3. Distribution of Signal Strengths 
At a fixed location, the RSS value from an AP 

varies with time. This effect is caused by people 
moving around, doors open and closes and other 
disturbances as Bluetooth senders. Furthermore the 
distribution of the RSS values are non-Gaussian and 
the median is not stable over long time. This limits 
the accuracy of the position estimation significantly. 
Fig. 2 shows the distributions of measurements at 
three days at the same location. 

 

 
Fig. 2. – Distributions of three different 

measurements. 
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4. LOCALIZATION APPROACH 
The proposed methods for localizing the mobile 

robot are based on the use of RSS values of WLAN 
APs in range. For both, a radio map based method 
and Euclidean distance in combination with 
interpolation is used, because of the described 
reasons. A measured set of RSS values of the 
omnidirectional antenna and the beam antenna is 
compared with the radio map. The radio map is built 
in an initial calibration phase and contains measured 
sets of RSS values at various predefined poses (x, y, 
θ). In the experiments, four headings (0°, 90°, 180°, 
270°) at every position are stored. In the localization 
phase, RSS values of several APs are recorded and 
compared with the radio map. One observation in 
both phases consists of RSS values of both antennas 
and all APs. Values of APs out of range are set to a 
minimal value cmin = –100 dBm. 

 
4.1. ESTIMATION OF THE POSITION 
WITH EUCLIDEAN DISTANCE 

The Euclidean distance is a metric to compare the 
observations of the localization phase with the radio 
map. The Euclidean distance between two points 
P = (p1, p2, ..., pn) and Q = (q1, q2,..., qn), is defined 
as: 
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In WLAN localization the calibration data are 

compared with the measured data: 
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where iAP

jc  is the RSS value of APi at pose j in the 

radio map, iAP
ks  is the RSS value of APi at 

measurement k and n is the total number of APs. The 
Euclidean distance dj,k is a metric for the distance 
between the calibration data cAPi and the measured 
data skAPi. After calculating dj,k for all calibration 
points, there will be at least one pose with minimal 
dj,k. One approach is to declare this pose to be the 
estimated pose of the mobile robot. The accuracy of 
this method depends beside other factors on the 
density of the underlying grid of calibration points. 

The main problem of radio map based 
localization systems is the manual generation of the 
map [23]. In order to reduce the manual effort to 
build the map, the density of calibration points 

should be as low as possible [16]. Thus, the 
interpolation of the estimated position is proposed. 
In this case a lower density of calibration points is 
possible. The algorithm that is described in this 
section interpolates the position and heading of the 
mobile robot with weighted Euclidean distance. The 
set of poses (xi, yi, θi) in the database is arranged by 
the Euclidean distance. A fixed number of poses 
with least Euclidean distance are used for estimation 
of the pose. 

For interpolation purposes of the position, only 
the signals of the omnidirectional antenna are used. 
The weights are built with the reciprocal of the 
Euclidean distance: 
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where J is the number of weighted poses (least 
Euclidean distance) and ( kx̂ , kŷ ) is the estimated 
position of the mobile robot. 

 
4.2. ESTIMATION OF THE HEADING 
WITH EUCLIDEAN DISTANCE 

The estimated heading ( kθ̂ ) is interpolated with 
values of the beam antenna. The headings are 
weighted and interpolated as vectors: 
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where atan2() is used in order to interpolate the 
heading in the range from -π to π. Interpolation of 
the estimated heading allows a relatively low density 
of headings in the calibration phase. At every 
location, only four headings (∆90°) are stored in the 
database. 

 
4.3. ESTIMATION OF THE POSITION 
WITH DELAUNAY TRIANGULATION 

This method uses the interpolation based on 
Delaunay triangulation and lines of constant signal 
strength (isolines). For interpolation purposes of the 
position, the received signals of the omnidirectional 
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antenna are used only. With Delaunay triangulation 
a network of triangles for a set of points (nodes) in 
the plane is developed, such that no point is inside 
the circumcircle of any triangle [24]. The nodes are 
represented by the calibration points. Given a 
measured RSS value of one AP, triangles whose 
nodes show RSS values higher and lower than the 
measured value can be selected. Linear interpolation 
between node values within the triangle delivers a 
more detailed radio map consisting of a surface of 
interpolated RSS values over the triangle. Moreover, 
it is possible to calculate an interpolated line of 
constant RSS (isoline) within the triangle and in the 
whole area of triangulation. Fig. 3 shows the isolines 
of AP1, Fig. 4 shows the isolines of AP2. 

 

 
Fig. 3. – Lines of constant RSS (isolines) for AP1. 

 
 

 
Fig. 4. – Lines of constant RSS (isolines) for AP2. 

 
Given two RSS values of different APs, it is 

possible to select triangles whose interpolation 
surfaces include the according isolines. If there is an 
intersection of both isolines, the intersection point 
within the triangle can be calculated. Fig. 5 shows 
the merged radio map for AP1 and AP2. There are 
two points of intersection in the radio map for this 
measurement. 

 

 
Fig. 5. – Merged radio map for AP1 and AP2. 

 
The pose is estimated using the points of 

intersection. Points with a large distance to the real 
position have to be eliminated from the calculation 
of the estimated position. The elimination of points 
of intersection is performed using an acceptance 
circle. This circle is built by a triangle of three points 
in the radio map with least Euclidean distance to the 
measured RSS values. It is assumed that the real 
position is near by this triangle. The center of the 
circle is the balance point of the triangle. The radius 
of the circle is built by the largest edge of the 
triangle. All intersection points outside of the 
acceptance circle were excluded from the 
calculation. 

Fig. 6 shows a radio map with calibration poses 
(red arrows), acceptance circle (cyan) and points of 
intersection (magenta). The real pose of the robot is 
shown as blue arrow, while the green arrow 
represents the estimated pose. 

 

 
Fig. 6. – Visualization of estimation technique. 

 
The estimated position ( kx̂ , kŷ ) is calculated 

with weighted points of intersection: 
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where wi is the weight of intersection xi, yi and N is 
the total number of intersections inside the 
acceptance circle. 

Experiments have shown, that measured RSS 
values closer to APs are more reliable than those in 
larger distance [3]. Hence, the weight wi of 
intersection i is calculated with RSS values of the 
crossing isolines: 
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where si,1 and si,2 are the RSS values of the isolines 
at intersection i and smin is the lowest possible RSS 
value. Higher RSS values are measured closer to 
APs and lead to larger weights. 

 
4.4. ESTIMATION OF THE HEADING 
WITH DELAUNAY TRIANGULATION 

Here the heading is estimated with RSS values of 
the beam antenna. For every point of intersection i a 
heading #, with assigned vector length p, is 
calculated, p, is a metric for the quality of the 
estimation and is used as weight. The estimation of 
(?€i,?€i) is calculated with radio map values of the 
surrounding triangle: 
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where J is the number of weighted headings (with 
least Euclidean distance) at the nodes of the 
surrounding triangle, dj is the Euclidean distance 
between measured RSS values from the beam 
antenna and stored RSS values in the radio map and 
wi is the weight of intersection i (Eqn. 10). In Fig. 6 
( iθ̂ , ip̂ ) are represented by magenta arrows. 

The heading of the mobile robot θ̂  is estimated 
by adding the headings of all intersections: 
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In Fig. 6 0,p) is represented by the green arrow. 

Fig. 7 compares ip̂  with the estimation error of 
the heading of 10 measurements at the same 
location. Measurements 7 and 8 achieve large 
estimation errors of 180°. This large errors 
correspond with very low values of ip̂ , which 
indicate a low estimation accuracy. It is proposed to 
use ip̂  in a later signal processing stage to weight 
the estimated heading. 

 

 
Fig. 7. – ip̂  versus estimation error. 

 
 

5. EXPERIMENTAL SETUP 
The experiments are carried out with a mobile 

robot Pioneer3-AT manufactured by ActivMedia 
(Fig. 8). The robots is equipped with four wheels 
which are driven by two motors. This driving 
concept is called skid-steering locomotion and is 
similar to the operation of an army tank. Fig. 9 
shows the chassis of the robot with four wheels 
(blue). The wheels are driven over belts and gears 
(brown) by two motors (green). The position of the 
mobile robot is estimated with dead reckoning 
(odometry) over two encoders (yellow), which are 
mounted at the end of the motors. Position 
estimation with dead reckoning is highly inaccurate 
for skid-steered robots, because of slippage, which 
occurs when the robot moves curves [25]. For global 
localization, it is necessary to use additional sensor 
information, as GPS, laser or WLAN RSS.  
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Fig. 8. – Pioneer3-AT. 

 

 
Fig. 9. – Skid-steering locomotion. 

 
The robot has four wheels with Since only two 

motors drive the robot, the wheel speeds on every 
side of the robot are always the same. This leads to 
skid-steering kinematics, where the velocities in the 
robot's local reference frame are given by: 
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where vx is the velocity in forward direction, vy is the 
velocity in sidewards direction, ωR is the rotation 
speed, rightϕ&  are the angular velocities of the wheels 

on the right side and leftϕ&  are the angular velocities 
of the left side of the robot, r is the radius of the 
wheels and b is the wheel offset (Fig. 10). The 
velocities in the global frame (world frame) depend 
on the heading (θ) of the robot: 
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Fig. 10. – Velocities in the robot reference frame. 

 
The robot is equipped with an embedded 

computer for real time robot control and an 
additional PC with two WLAN cards for 
communication and localization. One WLAN card is 
connected to an omnidirectional antenna, the other 
card is connected to a beam antenna. The 
directionality of the beam antenna is used to 
estimate the heading of the robot. Fig. 11 shows the 
measured polar plots of the beam and the 
omnidirectional antenna. 

 
 

 
Fig. 11. – Characteristic of beam (left) and 

omnidirectional antenna (right). 

 
A robot server is included in the operating system 

of the embedded computer. It manages the low-level 
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tasks of robot control and operation, including 
motion and odometry. The robot server receives the 
commands from the PC via RS-232 serial link. It is 
the job of a program running on the PC to perform 
robotics tasks such as sensor fusion, localization, 
mapping, and navigation. For programming 
purposes ActivMedia provides the toolkit ARIA 
(ActivMedia Robotics Interface for Application) 
[26]. ARIA is a object oriented, cross-platform 
(Windows/Linux) toolkit for ActivMedia mobile 
robots. It is written entirely in C++, but access to the 
API is also available from the Java programming 
languages via "wrapper" libraries. ARIA provides an 
interface to control the robot's velocity, heading, 
relative heading, and provide detailed information 
about odometry and operating conditions from the 
mobile robot. 

The operation system on the PC is Ubuntu Linux, 
which offers support for wireless communication by 
the wireless extension (WE) [27]. WE is an 
application programming interface (API) allowing a 
user space program to configure a WLAN driver and 
receive statistic information. The WE provide an 
interface via ioctl(), which is documented in 
wireless.h. Good examples for programming 
WE are the wireless tools for Linux. The program 
iwlist scans the WLAN for accessible APs and 
monitors the RSS values along with hardware MAC 
addresses of APs in range. There are two kinds of 
scanning modes: passive scanning and active 
scanning. In passive scanning mode the WLAN card 
is put into monitoring mode and waits for incoming 
packets. In active scanning mode the mobile device 
sends a probe request packet on every frequency and 
waits for the probe response packets of the APs in 
range. Active scanning is an important feature in 
WLAN positioning, because the time of the 
measurements for all RSS values can be determined. 
Active scanning obtains new RSS values of all APs 
in range at the time of scanning. Since version 21 of 
the WE, active scanning mode is supported. In older 
Linux kernel versions active scanning is not 
supported and it is necessary to modify the kernel 
driver in order to receive packets from all APs in 
range [28]. On up to date Linux distributions, there 
is no need to modify kernel drivers. 

 
 

6. SOFTWARE DESIGN 
The software is divided into three parts: a 

localization engine, a graphical user interface (GUI) 
and a WLAN scanner (Fig. 12). The localization 
engine and the GUI are written in the Matlab script 
language, the WLAN scanner is implemented in C. 

The WLAN scanner uses the WE 
ioctl()-Interface for reading RSS values from 
both WLAN adapters. 

 

 
Fig. 12. – Design of the localization software. 

 
The communication between localization engine 

and WLAN scanner is build with TCP/IP sockets. 
Since the localization engine are built on Matlab, it 
is possible to run it on every computer which offers 
a Matlab environment and a network access. The 
GUI is used for monitoring information to the user 
and for building the radio map. Fig. 13 shows the 
GUI with a map of a room in the Computer Science 
building. The red arrows around the red dots show 
the four headings of the robot in every calibration 
point of the radio map. The colored lines represent 
the RSS isolines. In order to build the radio map, the 
user moves the robot to the predefined poses (red 
arrows) and stores the RSS values. It is optional to 
change the Server IP address, the network interfaces 
for both antennas and the ESSID of the APs. In the 
localization phase, the blue arrow represents the real 
pose of the mobile robot and green and yellow arrow 
visualizes estimated poses. The estimates changes 
with time without moving the robot, because of the 
noisy RSS values. 
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Fig. 13. – Matlab Localization engine and GUI. 

 
7. EXPERIMENTAL RESULTS 

Experiments are performed in an office building 
of the Computer Science Department. A test series 
was measured at the hallway shown in Fig. 6. The 
existing WLAN-infrastructure was used for the 
measurements. Fig. 14 shows a histogram of 
position errors achieved in this test series, which are 
in a range from 0 to 4 m. In most cases, the accuracy 
is better than 1.0 m. The accuracy depends directly 
on the position of the APs in range. For a good and 
reliable estimation, three ore more APs in a short 
distance are required. The placement of additional 
APs increases the accuracy of the estimation. 

 

 
Fig. 14. – Histogram of estimation error of position. 

 
Fig. 15 compares the estimation accuracy of 

Delaunay isoline interpolation with Euclidean 
distance interpolation. In most cases estimations 
with isoline method achieve a better accuracy than 
estimations with Euclidean distance only. 

 

 
Fig. 15. – Comparison of Euclidean distance and 

Delaunay interpolation. 

 
Fig. 16 shows a histogram of the heading error. 

Heading errors are in the full range from 0 to 180°. 
In most cases an accuracy better than 45° can be 
achieved and worse estimations can be detected by 
low values of p̂ . 
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Fig. 16. – Histogram of estimation error of heading. 

 
8. CONCLUSION AND FURTHER WORK 

This paper has presented two methods for 
estimating the pose of a mobile robot. The methods 
are based on a radio map and use RSS values of 
WLAN APs in range. In order to reduce the density 
of calibration points in the radio map, Delaunay 
triangulation and weigthed Euclidean distance is 
applied to interpolate the position of the mobile 
robot. Furthermore the estimation of the heading of a 
mobile robot with the aid of a beam antenna was 
presented. Since the accuracy of the estimation 
depends highly on the positions of the APs in the 
environment, the placement of the APs has to be 
optimized, in order to get a good and reliable 
position estimation. 

In future work the accuracy of the estimation 
should be improved by using a Kalman filter or a 
Monte Carlo particle filter. Furthermore the 
accuracy may be improved by fusion with position 
information obtained from other sensor e.g. 
odometry, sonar or laser. 
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