
Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 6

COMBINING BAYESIAN NETWORKS AND ROUGH SETS:
FURTHER STEP TOWARDS REASONING ABOUT UNCERTAINTY

Janusz Zalewski 1), Sławomir T. Wierzchoń 2), Henry L. Pfister 3)

1) Florida Gulf Coast University, Ft. Myers, FL 33965, USA, zalewski@fgcu.edu, http://www.fgcu.edu/zalewski/

2) Polish Academy of Sciences, Ordona 21, 01-237 Warsaw, Poland, and University of Gdańsk, 80-953 Gdańsk, Poland,
stw@ipipan.waw.pl, http://www.ipipan.waw.pl/staff/s.wierzchon/

3) Air Force Research Lab, Eglin AFB, FL 32542, USA, henry.pfister@eglin.af.mil,
http://www.reef.ufl.edu/Faculty%20pages/Old%20faculty/Pfister/Pfister.htm

Abstract: This paper discusses a combination of Bayesian belief networks and rough sets for reasoning about
uncertainty. The motivation for this work is the problem with assessment of properties of software used in real-time
safety-critical systems. A number of authors applied Bayesian networks for this purpose, however, their approach
suffers from problems related to calculating the conditional probability distributions, when there is scarcity of
experimental data. The current authors propose enhancing this method by using rough sets, which do not require
knowledge of probability distributions and thus are helpful in making preliminary evaluations, especially in real-time
decision making. The combination of Bayesian network and rough sets tools, Netica and Rosetta, respectively, is used
to demonstrate the applicability of this method in a case study of the Australian Navy exercise.

Keywords: Bayesian belief networks, rough sets, approximate reasoning, software safety, safety analysis.

1. INTRODUCTION
Bayesian Belief Networks (BBN’s) have been

widely used in solving various computational
problems with insufficient information and
uncertainty. Some of these applications are briefly
reviewed in [1], and most of them are collected in
the bibliography [2]. Although, in general, BBN’s
have been very effective, because they allow
reasoning and making predictions based on small
sets of probabilities with backwards inference, they
are still based on probability theory. A significant
disadvantage of BBN’s is that, in realistic cases,
they require extensive computations of the
conditional probability values. In most of the
previous studies, it has been recognized that this is
one of the method’s major limitations.

With this in mind, one wants to look at a
complementary method of evaluating data in the
input data set, which would not rely strictly on
probability densities. One of the theories that offer
such an approach, with values of data attributes and
events measured by likelihoods rather than
probabilities, is the rough sets theory [3-4]. Rough
sets have been used since the early eighties in a wide
range of industries to reason about uncertainty. The
most recent discussions of these applications can be
found in [5] and in the rough sets bibliography [6].

In a previous paper [1], we gave an outline of the
combination of using BBN’s and rough sets in
decision making under uncertainty, and suggested
the enhancement of pure Bayesian reasoning by
additional use of rough sets for preliminary
evaluation of data. The objective of the current paper
is to extend the original concept by using specific
techniques to evaluate the missing values in the
reasoning process [7]. The paper is structured as
follows. In Section 2, the motivation for this project
is outlined, which is the automatic assessment of
certain critical software properties. Section 3
presents elementary information about rough sets,
and Section 4 gives an overview of the method
developed for decision making under uncertainty
with the use of BBNs and rough sets. General
conclusions are derived in Section 5.

2. MOTIVATION: SAFETY-CRITICAL

SOFTWARE ASSESSMENT
In recent years, some of the present authors have

dealt with various aspects of assessing software
quality in real-time safety-critical applications [8-9].
The basic idea for the current project comes from
multiple previous attempts to assess various
software properties in critical applications. They are
briefly outlined below.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 7

A. USE OF BBN’S TO ASSESS
SOFTWARE QUALITY

In one of the first studies reported [10], Neil and
Fenton addressed the eternal question: “Can we
predict the quality of our software before we can use
it?”, by applying BBN’s to assess the defect density
as a measure of software quality. A simplified
diagram from their study is presented in Figure 1.
The nodes were built based on the understanding of
life-cycle processes, from requirements specification
through testing.

ProblemComplexity
V High
High
Medium
Low
V Low

100.
 0
 0
 0
 0

DesignEffort
V High
High
Medium
Low
V Low

 0
100.
 0
 0
 0

ResidualDefects
V High
High
Medium
Low
V Low
None

.020
1.22
13.7
41.0
31.7
12.2

DefectsDetected
V High
High
Medium
Low
V Low
None

0.12
1.16
4.07
10.7
26.4
57.3

TestingEffort
V High
High
Medium
Low
V Low
None

 0
 0
 0

100.
 0
 0

DefectsIntroduced
V High
High
Medium
Low
V Low
None

1.35
11.9
27.6
32.2
21.6
5.18

DesignComplexity
V High
High
Medium
Low
V Low

0.55
91.4
8.00
.005
.005

Fig. 1 – Simplified BBN assessing software density

The probabilities of respective states were based
on the analysis of literature and common-sense
assumptions about the relations between variables.
The node variables are shown on histograms of the
predictions obtained by execution of the network
after the evidence entered (the evidence is
represented by nodes with probabilities equal to 1.0).
As the authors say, the advantage of their model is
that it “provides a way of simulating different events
and identifying optimum courses of action based on
uncertain knowledge.

B. BBN’S IN THE ASSESSMENT OF
SOFTWARE SAFETY

Dahll and Gran [11] applied BBN’s to address
safety assessment of software for acceptance
purposes, in a more comprehensive way, using
multiple information sources, such as complexity,
testing, user experience, system quality, etc. Their
BBN network for system quality, which is only a
part of the entire model, is shown in Figure 3. It
involves two root nodes: UserExperience and
VendorQuality, and a number of leaf nodes,
corresponding to observable variables, of which
QualityMeasures is of particular importance. This
node shows evidence about the system quality,
grouping quality attributes, such as readability,
structuredness, etc., and can be expanded further.

Other observable variables include Failures-
InOther Products, those related to the user
experience (NoOfProducts and TotalUseTime), as

well as those related to quality assurance policy.
When evidence becomes available, entering
respective observation data into these nodes and
executing the network provides assessment of the
variable in question, which in this case is
SystemQuality.

SystemQuality
Low
Medium
High

43.8
28.4
27.8

DevelopmentQuality
Bad
Acceptable
Excellent

34.8
37.0
28.2

Documentation
Bad
Acceptable
Excellent

41.3
30.8
27.9

QualityMeasure
LTzeroPTone
Between
GTzeroPTeight

40.7
29.9
29.4

QApolicy
Bad
Acceptable
Excellent

34.8
37.0
28.2

VendorQuality
Low
Medium
High

25.0
50.0
25.0

VendorPedigree
Lousy
Average
Reasonable

34.8
37.0
28.2

QAstandards
None
Generic
Detailed

31.3
34.6
34.1

UserExperience
Low
Medium
High

30.0
40.0
30.0

QualityControl
Strict
Lousy

44.5
55.5

QualityCtrlDocs
None
Partial
Complete

27.7
36.6
35.6

NoOfProducts
LT10
Between
GT100

31.0
38.0
31.0

TotalUseTime
LT100hrs
Between
GT10000hrs

31.0
38.0
31.0

FailuresInOtherProducts
Low
Medium
High

29.9
28.7
41.5

Fig. 2 – BBN for the system quality in safety

assessment

The authors note, however, that their example is
intended more as an illustration of the method rather
than as a real attempt to compute the quality of the
system. Their probability assignments to the node
variables were chosen somewhat ad hoc, and not
based on any deeper analysis of the problem.
However, as the authors say in conclusion, the
results of the study were positive and showed “that
the method reflects the way of an assessor’s thinking
during the assessment process.”

C. DEPENDABILITY AND RELIABILITY
ASSESSMENT

Delic et al. [12] used BBNs to formalize
reasoning about software dependability to facilitate
the software assessment process. They constructed a
network for evaluating dependability of a software-
based safety system. It used the data associated with
two primary assumptions: the excellence in
development (called a process argument) and
failure-free statistical testing (called a product
argument). The network topology includes taking
into consideration variables such as: Test Failures,
Operational Failures, Initial Faults, Faults Found,
Faults Delivered, and System PFD (Probability of
Failure per Demand). The probability distributions
have been derived from a sample of programs from
an academic experiment.

The authors were interested in estimating the
probabilities of failure during acceptance testing and
during the operational life of the product

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 8

(represented by two variables mentioned in previous
paragraph), given the prior probabilities and
observed events. In particular, positive results of an
acceptance test allowed deriving numerical estimates
about the PFD and operational performance of the
product.

Helminen [13] used BBN’s to attack the problem
of software reliability estimation. His primary
motivation to apply BBN’s was that they allow all
possible evidence (large number of variables,
different potential sources, etc.) to be used in the
analysis of the reliability of a safety-critical system.
The essential characteristic of such systems is that
they involve a significant number of variables
related to reliability, with very limited evidence.

The reliability of such systems is modeled as a
probability of failure, that is, the probability that the
programmable system fails when it is required to
operate correctly. To develop an estimate of
probability of failure, the authors built a series of
BBN models, using evidence from such sources, as
the system development process, system design
features, and pre-testing, before the system is
deployed. This is later enhanced by data from
testing and operational experience.

The essential part of this work was building BBN
models for various operational profiles for multiple
test cycles, involving continuous probability
distributions. As a result, using software combining
Bayesian inference with Gibbs sampling, via
Markov chain Monte Carlo (MCMC) simulation, it
was possible to estimate, how many tests had to be
run for a single system in a particular operational
environment to achieve certain level of reliability.
To decrease the huge number of necessary tests,
multiple operational profiles for the same system
were used, which required building replicated BBN
models to include other profiles’ evidence. In
essence, by expanding the BBN models further, this
approach also allows reliability estimation over the
entire lifespan of the software, but respective
experiments have not been conducted in this study.

3. ROUGH SETS: AN INTRODUCTION
Since there are essentially no statistical data for

making the types of assessments discussed in the
previous section, applying BBN’s to reason about
software properties based on limited information
available from experiments is problematic because
of the necessity to calculate conditional probability
distributions. To deal with this problem, we are
proposing the use of rough sets [1]. In this section, a
brief introduction to rough sets theory is given.

A. BACKGROUND
Rough Set theory was invented by Zdzisław

Pawlak to cope with limited perception of the
surrounding world. The theory is especially helpful
in dealing with vagueness and uncertainty in
decision situations. Its main purpose is the
“automated transformation of data into knowledge”
[4]. The data are perceived in terms of objects and
their features, i.e., values of the attributes used to
characterize these objects. The knowledge deduced
from these data is expressed in terms of surely and
possibly certain statements describing notions of
interests. More formally, such descriptions can be
divided into so-called lower and upper
approximations of entire notions. Below, we
describe a qualitative procedure containing all steps
needed to form appropriate description of the
concepts under consideration.

We start from a relational database, i.e., a table
with rows corresponding to objects and columns
corresponding to the attributes. Each entry of the
table represents attribute value of a corresponding
object (i.e., its feature). In a rough set formalism, the
database is considered as an information system, i.e.,
a quadruple IS = (U, A, V, f), where:
• U = {u1, …, ,un} stands for a (usually discrete)

set of objects
• A = {a1, …, ,am} is a set of attributes
• V = V1 ∪ … ∪ Vm, where Vi is the domain of an

i-th attribute, and
• f: U × A → V is a so-called information function

providing the description of objects, that is,
f(ui, aj) assigns a value of j-th attribute to i-th
object.

Usually the set A is decomposed into two disjoint
subsets A = C ∪ D and the attributes from C are
used to characterize objects and form so-called
condition attributes, while the attributes in D are so-
called decision attributes and they are used in
decision-making or classification tasks.

The above mentioned concepts are illustrated in
Table 1, in which:

U = {u1, u2, u3, u4, u5, u6, u7, u8},
A = {a1, a2, a3}, and
V = V1 ∪ V2 ∪ V3, = {Low, Med, High} ∪ {Min,

Under, Over, Max} ∪ {yes, no}.
Because of the limited knowledge, we cannot

fully discern objects, i.e., there are such objects u, v
in U that f(u, c) = f(v, c) for all the condition
attributes c. This fact leads to the notion of
indiscernibility relation E being in fact an
equivalence relation on U. For example, for the
information system in Table 1, objects u2 and u8 are
indiscernible. So are objects u5 and u7.

It appears that in many cases we can identify
proper subsets C' of C such that the indiscernibility
relation EC' induced by the attributes in C' is identical
with the original relation E. Such sets of attributes

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 9

are called reducts. Existence of reducts proves that
not all of the attributes are necessary to form the
equivalence classes. In other words, identifying
reducts allows more economic description of objects
as we need smaller number of descriptors (features)
to characterize these objects. Unfortunately, from a
computational point of view this is an NP-hard task.
No such reducts exist for the example shown in
Table 1.

Table 1. Example of an information system.

f: U × A
→ V

Condition attributes C Decision
attr. D

Obj. U a1 a2 a3

u1 Low Max yes

u2 Low Min no

u3 Med Under no

u4 Med Under yes

u5 High Over no

u6 Low Over yes

u7 High Over no

u8 Low Min no

B. DEFINITION OF A ROUGH SET
Now we are ready to introduce the key concepts of

rough set theory. Let B be a subset of the condition
attributes and let [v]B stand for an equivalence class,
i.e., a set of objects u in U with identical description
(narrowed to the set B) as the object v. The subset X
of U can be characterized using information
contained in B by means of so-called B-lower and B-
upper approximations defined as

B(X)* = {u ∈ U|[u]B ⊆ X} (1a)
B(X)* = {u ∈ U|[u]B ∩ X ≠ ∅} (1b)

The lower approximation of X is the collection of

objects which can be viewed surely as members of
the set X, while the upper approximation of X is the
collection of objects that possibly are members of X.
Obviously B(X)* ⊆ B(X)*. If B(X)* = B(X)* we say
that X is B-definable and otherwise it is only
partially definable. The set BNB = B(X)* – B(X)* is
called B-boundary region; it specifies the objects
that cannot be classified with certainty to be neither
inside X, nor outside X.

There are many grades of partial definability. We
say that the set X is [14]:
• roughly B-definable iff B(X)* ≠ ∅ & B(X)* ≠ U
• internally B-indefinable iff B(X)* =∅, B(X)* ≠ U
• externally B-indefinable iff B(X)*≠∅, B(X)*=U
• totally B-indefinable iff B(X)* = ∅, B(X)* = U.
Obviously, if B = C, i.e., the full set of condition

attributes is used, we omit the prefix B- in all above

definitions. In such a case a set X is characterized by
the pair (X*, X*) and we say that X is a rough set (or
B-rough set).

To get a numerical characterization of the
“roughness” of a set X we introduce a so-called
accuracy of approximation [14]

αB(X) = |B(X)*|/|B(X)*| (2)

where the symbol |Y| stands for the cardinality of the
set Y. X is said to be crisp (or precise) with respect to
the set of attributes B iff αB(X) = 1, and otherwise X is
said to be rough (or vague) with respect to B.

Another characterization of the set of objects can
be gained by introducing so-called rough
membership function µB,X: U → [0,1] defined as
follows [14]

µB,X(x) = |[x]B ∩ X|\|[x]B| (3)

With such a definition a relationship between

rough and fuzzy sets theory is established. Further,
we can relax the definitions of the lower and upper
approximation, namely

Bβ(X)* = {u ∈ U|µB,X(x) ≥ β} (4a)
Bβ(X)* = {u ∈ U|µB,X(x) > 1-β} (4b)

where 0 ≤ β ≤ 1. If β = 1 we obtain original
definitions (1a) and (1b).

С. ROUGH RULES
Note that in practical applications of interest are

the sets of objects with identical set of decision
attributes, that is, we define X as the set of objects
satisfying the equality f(x1, d) = f(x2, d) for all
attributes d in D. If, for example, D is a set of
diseases then X is a set of persons suffering on
particular disease, and the equivalence classes [x]B
contain patients with identical symptoms (restricted
to the set B). Hence, it is natural to find such
condition attributes which can be used to
discriminate between different diseases. This leads
us to the practical aspects of rough set theory: rough
rules.

The already mentioned process of
“transformation of data into knowledge” translates
now into refining the dependencies between sets of
attributes. Intuitively, if C and D are two sets of
attributes, we say that D depends totally on C if all
values of the attributes from D are uniquely
determined by values of attributes from C. This is
functional dependency known from database theory.

Rough set theory enables relaxing this definition
by introducing a dependency in a degree k ∈ (0, 1].
For details, please see [4] and [15]. There are at least
two successful computer programs allowing rough
data analysis: LERS [14] and Rosetta [16].

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 10

Finally, if a new object is introduced into the data
set with the decision value missing, one could
attempt to determine this value using previously
generated rules.

D. HANDLING MISSING VALUES IN A
ROUGH SET

Grzymala-Busse [7] describes several algorithms
of dealing with missing values in information
systems, based on three types of such values:
• those which are lost and no longer available
• totally irrelevant values, and
• partially relevant values.
They are marked in Table 2, using the following

symbols: a question mark “?” for not available
values, an asterisk “*” for irrelevant values, and a
dash “-“ for partially relevant values.

Table 2. Information system with missing values.

f: U × A
→ V

Condition attributes C Decision
attr. D

Obj. U a1 a2 a3

u1 ? Max yes

u2 Low Min no

u3 Med Under no

u4 - Under yes

u5 High Over no

u6 Low Over yes

u7 High Over no

u8 Low * no

The trouble with such systems is that their
information function, that assigns a value of j-th
attribute to i-th object

 f: U × A → V

is incompletely specified (partial), so the theory
developed for total (complete) information functions
does not apply here. In such case, however, the
indiscernibility relation is replaced by a
characteristic relation, and the entire process of
calculating lower and upper approximations changes
slightly, which is explained below for the
information system in Table 2.

To calculate the approximations, one has to start
with the meaning of the atomic formulas in a given
information system. For the information system in
Table 1, these meanings, called also blocks in [7],
are as follows:

||a1 = Low|| = { u1, u2, u6, u8 }
||a1 = Med|| = { u3, u4 }
||a1= High|| = { u5, u7 }

||a2 = Min|| = { u2, u8 }
||a2 = Under|| = { u3, u4 }
||a2 = Over|| = { u5, u6, u7 }
||a2 = Max|| = { u1 }

These sets have to be modified for an information
system with missing values in Table 2, as follows.
For the missing value of the attribute a1, which is not
available for object u1 and marked “?”, object u1 has
to be removed from all blocks created for this
attribute, that is, block ||a1 = Low|| will change to:

||a1 = Low|| = { u2, u6,, u8 }

with two other blocks for a1 remaining unchanged,
because they do not include objects with lost value
of a1.

For the missing value of the attribute a2, which is
irrelevant and marked “*”, its corresponding object,
u8, has to be included in blocks for all values of this
attribute, which will lead to the following
modifications:

||a2 = Min|| = { u2, u8 }
||a2 = Under|| = { u3, u4, u8 }
||a2 = Over|| = { u5, u6, u7, u8 }
||a2 = Max|| = { u1, u8 }

Finally, for the missing value of the attribute a1,

which is marked “-”, as partially relevant, respective
object u4 has to be added to the blocks containing
objects corresponding to the decision attribute’s
value the same as the value of this decision attribute
for the partially relevant value. In case of Table 2,
the partially relevant value of attribute a1 for object
u4 corresponds to the decision attribute’s value
“yes”.

Thus, this attribute’s value is relevant to this
particular decision attribute, and this is the meaning
of the term “partially relevant”. Two other objects
exist, which have “yes” as their decision attribute’s
value: u1, whose value of attribute a1 is unavailable,
so we drop it from consideration, and u6, whose
value of a1 equals Low; therefore u4 has to be added
to the block, which contains a1 = Low, because it is
partially relevant to a corresponding decision
attribute.

So the final list of blocks looks as follows:

||a1 = Low|| = { u2, u4,, u6,, u8 }
||a1 = Med|| = { u3, u4 }
||a1= High|| = { u5, u7 }
||a2 = Min|| = { u2, u8 }
||a2 = Under|| = { u3, u4, u8 }
||a2 = Over|| = { u5, u6, u7, u8 }
||a2 = Max|| = { u1, u8 }

Because of the limited length of this paper, we

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 11

can only mention here that for further computations
the so called characteristic sets have to be
calculated, for each object, which is done as follows:

1) The characteristic set K of an object is defined
as an intersection of blocks for specific values
of the attributes for this object.

2) If the value of an attribute is irrelevant “*” or
unavailable “?”, then the entire universe U is
taken as a corresponding block for this
attribute.

3) If the value of an attribute is partially relevant
“-“, then for this specific block it is substituted
by a union of blocks representing particular
values of the attributes for the corresponding
decision attribute’s value.

A more formal presentation of these concepts,
with respective algorithms, is given in [7]. Below
we present the computation of characteristic sets for
the list of blocks corresponding to Table 2:

Ku1 = U ∩ { u1, u8 } = { u1, u8 }
Ku2 = { u2, u4, u6, u8 } ∩ { u2, u8 } = { u2, u8 }
Ku3 = { u3, u4 } ∩ { u3, u4, u8 } = { u3, u4 }
Ku4 = { u2, u4, u6, u8 } ∩ { u3, u4, u8 } = { u4, u8 }
Ku5 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 }
Ku6 = {u2, u4, u6, u8} ∩ { u5, u6, u7, u8 } = {u6,u8}
Ku7 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 }
Ku8 = { u2, u4, u6, u8 } ∩ U = { u2, u4, u6, u8 }

As explained in [7], computation of lower and

upper approximations, depends on their definitions.
The author presents three such definitions and for
one of them:

B(X)* = { u1, u4, u6, u8 }
B(X)* = { u1, u2, u4, u6, u8 }

The interpretation of this result is such that the

missing values cause broadening of the potential
span for the lower approximation, because they have
to be inferred from the rest of the set. The upper
approximation can change either way, because the
missing values change the entire structure of a set

4. COMBINING BAYESIAN NETWORKS
WITH ROUGH SETS: A CASE STUDY
As mentioned earlier, Bayesian belief networks

are models that depict variables with probabilistic
descriptions and their dependencies among each
other. In general, the probability distribution
function that reflects the state of a node is a
conditional distribution that depends on the
multidimensional distribution consisting of the
node’s parents (each state of the node has a
probability for every combination of states the

parent nodes may take). When evidence about the
states of one of the nodes is found, the rest of the
network is also updated according to the conditional
probability tables and dependency relations of the
nodes. However, the whole updating process
becomes a problem, if the new evidence is distorted
or missing.

This situation may not be a problem with off-line
computations, such as assessment of software
properties, which was outlined in Section 2. But if
one wants to use BBN’s for situation assessment in
real time, when missing or distorted data come into
play, as in circumstances such as sensor noise or
sensor failure, especially over extended period of
time, then the value of Bayesian reasoning becomes
problematic. The cure for this, proposed in current
work, is to use rough sets to infer the missing or
distorted data.

A related problem is finding initial probabilities
for a Bayesian network, which are often derived
using expert knowledge. Uncertainty and vagueness
in collecting data often create difficulties in giving
meaningful values to the initial probabilities. In this
project, we attempt to address both problems using
rough set theory.

A. SOFTWARE TOOLS
To check the feasibility of the proposed idea, we

decided to automate the entire inference process by
using the public domain tools and a comprehensive
case study. One of several software packages that
can be used for BNN computations is called Netica
[17]. In Netica, networks can be easily constructed
and compiled to use for inference. In particular, the
conditional probability tables (CPT’s) may be
generated from data in case files or the probabilities
may be manually entered by the user. In real
applications, probabilities and data may change in
real time, however, the CPTs may be updated
automatically as new data become available.
Bayesian networks could then be used in situations,
which change in real time, while the program is
operating.

In this project, for a problem defined in terms of
BBN’s, with new data appearing in real time, Netica
calculates the probabilities and updates them in the
CPT’s, reading from a case file, updating the nodes
of a Bayesian network, and displaying the results.
The logic of Netica code for reading a Bayesian
network that updates it in real time is shown below.

while (true){
 // Remove CPTables of nodes in net,
 // so new ones can be learned.
 for (int n = 0; n < numNodes; n++) {
 Node node = (Node) nodes.get (n);
 node.deleteTables();
 }
 nd = (Node)nodes.get(node index);

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 12

 net.reviseCPTsByCaseFile(caseFile,
 nodes, 1.0);
 net.write (new Streamer ("BName.dne"));
 net.compile();
 float tab[] = nd.getBeliefs();
 //Print the probabilities for a node.
 System.out.println(tab[0]+","+tab[1]);
}

The entire implementation depicted in Figure 3

works as follows. One program (the rough set tool
that acts as a preprocessor) generates data for the
case file and the Netica is able to read the data from
this file consistently, even when it is being updated
during operation. If the data are written into a case
file after it is computed by rough set preprocessor,
then the Bayesian network may be systematically
updated with new data as they arrive.

Fig. 3 – Implementation outline

The rough set tool we use, Rosetta [16], is able to
import and export files in several different formats,
but none of them are compatible with the case files
used by Netica. Therefore, a text converter has been
written to convert text files (a format that Rosetta
exports) to case files that Netica software reads.

B. CASE STUDY
An application involving naval warfare,

originating from the Australian Navy research [18],
is used as a case study to demonstrate the
implementation. Briefly speaking, there are two
military forces called the Blue and Orange forces
that are hostile towards each other and a country that
the Orange forces obtain fuel supplies from and the
Blue forces treat as neutral. The Blue forces have
communications and surveillance facilities that the
Orange forces want to destroy. Blue has set up a
restricted area that contains the communication
facilities and will consider any military activity or
transportation of supplies to be hostile. Orange has
a supply route that passes through the restricted area
that it wants to defend.

Blue monitors the restricted area sensors and
reconnaissance. Orange vessels that are likely to be
detected are Guided Missile Frigates (FFG), Free
Mantle Class Patrol Boats (FCPB), and
Communication vessels. Oil tankers from the
neutral country may also be detected. The position,
mobility, and communications activity of the vessel

are also recorded to try to determine the intent of the
Orange Forces.

The Bayesian Network in Figure 4 is used to try
to determine what the intentions of the Orange
Forces are and how to respond to it by entering the
findings from the sensors and reconnaissance into
the appropriate nodes. However the probability
distributions of all variables have just been
initialized to uniform distributions and values for the
conditional probability tables are needed.

Fig. 4 – Bayesian network for the case study

The file whose contents is partially shown in Fig.
5 contains a table of several cases that are used to
calculate the initial values for the conditional
probability tables of the nodes. While Rosetta adds
data to this file, based on real-time sensor
computations, Netica takes input for each node and
recalculates periodically the entire network,
reducing uncertainty in case some sensor values are
corrupted or missing.

Fig. 5 – Bayesian network for the case study

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 13

5. CONCLUSION

BBN’s proved to be a valuable tool when making
decisions in systems with uncertain information.
They loose their power, however, when some pieces
of the evidence (i.e., input information) are
corrupted or missing, which becomes especially
critical in real time. A possible solution to this
problem consists of two steps. First, a probability
distribution over possible outcomes of the
unknown/uncertain quantity is defined, and next this
new information is communicated to the original
BBN by additional nodes pointing to the nodes of
interest. Surely, the network grows in this case, and
what is more important, the process of assessing
probabilities may be non-trivial.

Hopefully, rough sets theory provides a number
of tools allowing coping with incomplete
information. That is why we postulate to combine
the two formalisms to obtain a universal machinery
supporting the process of reasoning under
uncertainty, in case of missing values of certain
attributes of objects. To implement this idea, the use
of two easily available tools: Netica (for BBN’s) and
Rosetta (for rough sets), has been proposed and
tested to work cooperatively when solving instances
of two real-life problems.

The proposed approach can be extended further
towards mining interesting relationships among the
entities constituting a problem under consideration
(see, for example [19]). BBN’s can be viewed as a
concise summarization of a large data collection. On
the other hand, rough sets offer additional tools to
analyze possible dependencies among the data.

6. ACKNOWLEDGEMENT

The authors would like to thank student David
Hatfield from Florida Gulf Coast University for
performing the calculations using Netica and
Rosetta.

Janusz Zalewski gratefully acknowledges the
fellowship under the 2008 Air Force Summer
Faculty Fellowship Program that enabled him work
on this project.

7. REFERENCES

[1] J. Zalewski, S. Wierzchon, Combining
Bayesian Networks and Rough Sets: A New
Approach to Reasoning about Uncertainty,
Proc. ICNNAI2008, 5th Int’l Conference on
Neural Networks and Artificial Intelligence,
Minsk, Belarus, May 27-30, 2008, pp. 22-27.

[2] Agena Ltd., Bayesian Net References. Version
4, London, 13 July. 2008, 39 pp., URL:
http://agena-risk.com/resources/BN_refs.doc

[3] Z. Pawlak, Rough Sets, International Journal
of Computer and Information Sciences, vol. 11,
no. 5, pp. 341-356, 1982.

[4] Z. Pawlak, Rough Sets – Theoretical Aspects of
Reasoning about Data, Dordrecht: Kluwer
Academic Publishers, 1991.

[5] Z. Pawlak, AI and Intelligent Industrial
Applications: The Rough Set Perspective,
Cybernetics and Systems: An International
Journal, vol. 31, pp. 227-252, 2000.

[6] Rough Set Database System – A Bibliographic
Database on Wide Aspects of Rough Sets,
University of Rzeszów, Poland, April 2008,
URL: http://rsds.univ.rzeszow.pl/

[7] J. Grzymala-Busse, Three Approaches to
Missing Attribute Values – A Rough Set
Perspective. Proc. Workshop on Foundation of
Data Mining at the 4th IEEE Int’l Conference
on Data Mining, Brighton, UK, November 1-4,
2004

[8] A. Kornecki, J. Zalewski, Experimental
Evaluation of Software Development Tools for
Safety-Sritical Real-Time Systems, Innovations
in Systems and Software Engineering: A NASA
Journal, vol. 1, pp. 176-188, 2005.

[9] J. Zalewski, A.J. Kornecki, H.L. Pfister,
Numerical Assessment of Software
Development Tools in Real-Time Safety
Critical Systems Using Bayesian Belief
Networks, Proc. Int’l Multiconference on
Computer Science and Information
Technology, Wisla, Poland, 6-10, November
2006, pp. 351-360.

[10] M. Neil, N. Fenton, Predicting Software
Quality Using Bayesian Belief Networks, in
Proc. SEW-21, Annual NASA Goddard
Software Engineering Workshop, Washington,
DC, 4-5 December 1996, pp. 217-230.

[11] G. Dahll, B.A. Gran, The Use of Bayesian
Belief Nets in Safety Assessment of Software
Based Systems, International Journal of
General Systems, vol. 29, no. 2, pp. 205-229,
2000.

[12] K.A. Delic, F. Mazzanti, L. Strigini,
Formalising Engineering Judgement on
Software Dependability via Belief Networks, in
Proc. DCCA-6, 6th IFIP International Working
Conference on Dependable Computing for
Critical Applications, M. Dal Cin, C.
Meadows, W.H. Sanders, (Eds.), Los Alamitos,
CA: IEEE Computer Society, 1998, pp. 291-
305.

[13] A. Helminen, Reliability Estimation of Safety-
Critical Software-Base Systems Using Bayesian
Networks, Report STUK-YTO-TR 178,
Radiation and Nuclear Safety Authority,
Helsinki, Finland, June 2001.

Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14

 14

[14] J. Grzymała-Busse, LERS – A System for
Learning from Examples Based on Rough
Sets,” in R. Słowiński, ed., Intelligent Decision
Support: Handbook of Applications and
Advances of Rough Set Theory, Dordrecht:
Kluwer, 1992, pp. 3-18.

[15] J. Komorowski, L. Polkowski, A. Skowron,
Rough Sets: A Tutorial, in S.K. Pal and A.
Skowron, Eds., Rough-Fuzzy Hybridization: A
New Method for Decision Making, Berlin:
Springer-Verlag, 1998.

[16] Rosetta, The Linnaeus Centre for
Bioinformatics, Uppsala Univ., Sweden, URL:
http://rosetta.lcb.uu.se/general/download/

[17] Netica, Norsys Software Corporation,
Vancouver, BC, Canada, URL:
http://www.norsys.com/

[18] B. Das, Representing Uncertainties Using
Bayesian Networks, Report No. DSTO-TR-
0918, Defence Science and Technology
Organization, Information Technology
Division Electronics and Surveillance Research
Lab, Sydney, Australia, December 1999.

[19] J. Shao, Knowledge Discovery in Alarm Data
Analysis. Proc. SOFSEM’96, 23rd Seminar on
Current Trends in Theory and Practice of
Informatics, Milovy, Czech Republic,
November 23-30, 1996, Springer-Verlag, pp.
433-440.

Janusz Zalewski is a
professor of computer science
and engineering at Florida Gulf
Coast University. His research
interests include real-time
embedded systems, safety-
critical systems and computing
education. He worked on
projects for nuclear research

institutes and several industrial companies, including
Harris, Boeing, Lockheed Martin and others.

Sławomir T. Wierzchoń is a
professor of computer science
at the University of Gdańsk and
at the Polish Academy of
Sciences, where he leads a
group on artificial intelligence.
His current research interests
include artificial immune
systems, fuzzy sets and rough
sets, theory of evidence,

evolutionary computations and decision making
under uncertainty.

Henry Pfister is a research
scientist at the Air Force Research
Lab in the Eglin Air Force Base
and an adjunct professor at the
Research and Engineering
Education Facility of the University
of Florida. His research interests
include modeling, analysis,
simulation and optimization of

engineering systems, as well as the analysis of
uncertainty using fuzzy sets and other non-
traditional techniques.

