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Abstract: Pareto set generation methods are considered with respect to their application for multi criteria portfolio 
selection. Several such methods were compared experimentally including some recently proposed evolutionary methods 
and the method of adjustable weights. Test problems were based on standard portfolio quality criteria and data on 
stocks of 10 Lithuanian companies. The experimental data on the performance of the considered algorithms in different 
metrics are presented and discussed. 
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1. INTRODUCTION 
Optimization methods have a long history in 

many financial domains. Many computational 
finance problems ranging from asset allocation to 
risk management, from option pricing to model 
calibration can be solved efficiently using modern 
optimization techniques.  

The question of optimal portfolio allocation has 
been of long-standing interest for academics and 
practitioners in finance. In 1950s Harry Markowitz 
published his pioneering work where he has 
proposed a simple quadratic program for selecting a 
diversified portfolio of securities [1]. His model for 
portfolio selection can be formulated mathematically 
either as a problem of maximization of expected 
return where risk, defined as variance of return, is 
(upper) bounded or as a problem of minimization of 
risk where expected return is (lower) bounded. The 
classical Markowitz approach to portfolio selection 
reduces the problem of two criteria optimization to a 
one criterion optimization where the second criterion 
is converted to a constraint. Reduction of a multi-
criteria problem to one criterion problem not always 
is the best method to solve multi-criteria problems 
especially in the case of vague comparability of 
criteria where whole Pareto set is of interest. 
Portfolio selection problem is naturally formulated 
as a multi-criteria optimization problem where 
compromise between criteria crucially depends on 
the subjective priorities of a decision maker. 
Therefore Pareto set generation is an important 

method for portfolio selection. 
Evolutionary optimization is claimed very 

promising for generation of Pareto sets in [2-6]. In 
this paper we experimentally investigate the 
efficiency of several evolutionary multi-criteria 
methods in problems of portfolio selection. For 
comparison we have implemented a method based 
on the classical scalarization idea of weighted 
summation of criteria; this method has been 
enhanced using branch and bound like procedure for 
choosing weights.  

Test problems were based on standard portfolio 
quality criteria, and data on stocks of 10 Lithuanian 
companies. We do not concern here in mach 
between analytical properties of the criteria 
functions and such properties favorable for the 
considered methods; we believe, however that 
general (global) structure of multi-criteria portfolio 
selection problem will be invariant with respect to 
switching from criteria defined by simple analytical 
formula to criteria defined by complicated numerical 
methods.  

The paper is organized as follows. In section 2 
the multi-objective portfolio optimization problem is 
outlined, section 3 describes the selected 
optimization methods and their characteristics. In 
section 4 and 5 we discuss the used performance 
metrics and the experimental results. The paper is 
completed with the section of conclusions.  

The paper is based on the talk on the international 
conference “Neural Networks and Artificial 
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Intelligence ICNAAI’ 2008; see [7]. 
 
2. MULTI-OBJECTIVE PORTFOLIO 

OPTIMIZATION PROBLEM 
Risk plays an important role in modern finance, 

including risk management, capital asset pricing and 
portfolio optimization. The problem of portfolio 
selection can be formulated as the problem to find an 
optimal strategy for allocating wealth among a 
number of securities (investment) and to obtain an 
optimal risk-return trade-off. The portfolio 
optimization problem may be formulated in various 
ways depending on the selection of the objective 
functions, the definition of the decision variables, 
and the particular constraints underlying the specific 
situation. Beyond the expected return and variance 
of return, like in Markowitz portfolio model [1], the 
additional objective function can include number of 
securities in a portfolio, turnover, amount of short 
selling, dividend, liquidity, excess return over of a 
benchmark random variable and other [8]. In the 
bank portfolio management, the additional criteria 
such as the prime rate, processing cost, expected 
default rate, probability of unexpected losses, 
quantity of the long-term and short-term can be 
considered [9]. For example, the multi-objective 
portfolio selection problem can include the 
following objectives [10]: (to be maximized) 
portfolio return, dividend,  growth in sales,  
liquidity,  portfolio return over that of a benchmark, 
and (to be minimized)  deviations from asset 
allocation percentages,  number of securities in 
portfolio,  turnover (i.e., costs of adjustment),  
maximum investment proportion weight,  amount of 
short selling. 

We considered two multi-objective portfolio 
problems. The first problem was based on a simple 
two objectives portfolio model including the 
standard deviation of the returns and mean of the 
returns, where the return Ri is one month return of 
stock i; return means percentage change in value. 
The second problem included three objectives, 
where annual dividend yield is added to two above 
mentioned objectives. For the experiment we used a 
dataset of 10 Lithuanian companies’ stock data from 
Lithuanian market. 

There are many methods to attack multi-criteria 
optimization problems including those aimed at 
generating a set of Pareto optimal solutions. 
However, the problem to find the whole Pareto set 
normally (e.g. in a case of continuum cardinality of 
Pareto set) is pure theoretical since can not be solved 
algorithmically. An important for applications 
revised version of the considered problem is a 
problem of algorithmic construction of an 
appropriate approximation of Pareto set. 

 
3. JUSTIFICATION OF SELECTION OF 

METHODS 
In this study we investigated five methods 

designed to approximate Pareto set by means of a 
finite set of points uniformly distributed in close 
vicinity of the Pareto set; the terms “uniformly” and 
“close vicinity” are defined more precisely in the 
section on experimental results. The weighting 
method was selected due to its simple 
implementation and good Pareto set approximation. 
Three methods: Fast Pareto genetic algorithm 
(FastPGA) [2], Multi-Objective Cellular genetic 
algorithm (MOCeLL) [3], and Archive-based hybrid 
Scatter Search algorithm [4] were proposed during 
the last two years. Their efficiency for various 
problems has been shown in original papers, but 
their application to portfolio optimization problem 
was not yet explored. NSGA-II [5], the state-of-the-
art evolutionary method, was chosen following 
many authors who use it as a standard for 
comparisons. 

 

A. WEIGHTING METHOD 
The weighting method is one of the most widely 

used methods for multi criteria optimization 
problems. It converts a multi criteria problem into a 
standard single criterion optimization problem where 
the objective function is a weighted sum of the 
criteria functions. Weights can be interpreted as 
indicators of the relative significance of different 
criteria and thus provide a solution that incorporates 
one’s preferences. However, they can also be 
considered as parameters defining weights 
dependent solutions in the Pareto set. The 
mathematical model of the weighting method takes 
the form of: 
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0≤ωi≤1, i=1, 2, …,m.  
Advantages. The method is relatively simple and 

easy to use. Assume that all fi(x) are convex 
functions; then for every point of Pareto set there 
exist weights such that this Pareto point is a 
minimizer of (1). 

Disadvantages. The violation of the convexity 
assumption can imply absence of minimizers of (1) 
in some subsets of Pareto set. In many cases it is not 
an easy task to choose the set of weights defining 
solutions of (1) that would be well (in some sense 
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uniformly) distributed in Pareto set. The mapping of 
the set of weights to the Pareto set using (1) is not 
necessarily a one-to-one mapping. 

To generate solutions of (1) well distributed over 
the Pareto set, weights should be distributed in a 
special but a priory unknown way. We propose a 
branch and bound type method for iterative 
distribution of weights aiming at the desirable 
distribution of solutions of (1).  

Our idea is to partition the feasible region of 
weights (which is a standard simplex) into sub 
simplices whose vertices are mapped to the Pareto 
set via (1). The sequential partition procedure is 
arranged as a branching of a tree of nods 
corresponding to sub simplices. The standard 
simplex is accepted as the root of the tree. Branching 
means partition of a simplex into two sub simplices 
where the new vertex is the midpoint of the 
favourable edge defined later. We aim to subdivide 
the original simplex into sub simplices in such a way 
that solutions of (1) corresponding to the vertices of 
these sub simplices would be well distributed over 
the Pareto set. A simplex is eligible for branching if 
the longest distance between the points in the criteria 
space corresponding to the vertices of the considered 
simplex in space of weights is longer than the 
predefined tolerance. The favourable edge of the 
selected simplex in the space of weights is defined 
by the longest distance between the corresponding 
points in the criteria space. Branching strategy is 
based on depth first search. The method of 
adjustable weights was implemented for two and 
three criteria cases in MATLAB using fminconstr 
for solving minimization problem (1). 

To illustrate the advantage of the proposed 
method of adjustable weights over the standard 
weighting method both methods were applied for the 
construction of Pareto set of two criteria portfolio 
optimization with the data mentioned above.  Fig. 1 
shows the distributions of the Pareto points found by 
both methods. In the standard method weights have 
been changed with the step for 0.05. Because of 
space limitation we do not describe in detail the 
tolerance for branching of the method of adjustable 
weights; it have been set aiming at generation of 
similar number of points as generated by weighting 
method. In this experiment the number of points 
generated by the weighting method was equal to 21, 
and that generated by our method was equal to 26. 

 

B. FastPGA 
Eskandari and Geiger [2] have proposed 

framework named fast Pareto genetic algorithm that 
incorporates a new fitness assignment and solution 
ranking strategy for multi-objective optimization 
problems where each solution evaluation is 

relatively computationally expensive. The new 
ranking strategy is based on the classification of 
solution into two different categories according to 
dominance. The fitness of non-dominated solutions 
in the first rank is calculated by comparing each 
non-dominated solution with one another and 
assigning a fitness value computed using crowding 
distance. Each dominated solution in the second 
rank is assigned a fitness value taking into account 
the number of both dominating and dominated 
solutions. New search operators are introduced to 
improve the proposed method’s convergence 
behaviour and to reduce the required computational 
effort. A population regulation operator is 
introduced to dynamically adapt the population size 
as needed up to a user-specified maximum 
population size, which is the size of the set of non-
dominated solutions. FastPGA is capable of saving a 
significant number of solution evaluations early in 
the search and utilizes exploitation in a more 
efficient manner at later generations.  

Characteristics: The regulation operator 
employed in FastPGA improves its performance for 
fast convergence, proximity to the Pareto optimal 
set, and solution diversity maintenance. 
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Fig. 1 – Points in Pareto set generated by weighting 

method and by the method of adjustable weights 

 

C. MOCeLL 
Nebro et al [3] presented MOCeLL, a multi-

objective method based on cellular model of GAs, 
where the concept of small neighborhood is 
intensively used, i.e., population member may only 
interact with its nearby neighbors in the breeding 
loop. MOCell uses an external archive to store the 
non-dominated solutions found during the execution 
of the method, however, the main feature 
characterizing MOCell is that a number of solutions 
are moved back into the population from the archive, 
replacing randomly selected existing population 
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members. This is carried out with the hope of taking 
advantage of the search experience in order to find a 
Pareto set with good convergence and spread. 

MOCell starts by creating an empty Pareto set. 
The Pareto set is just an additional population (the 
external archive) composed of a number of the non-
dominated solutions found. Population members are 
arranged in a 2-dimensional toroidal grid, and the 
genetic operators are successively applied to them 
until the termination condition is met. Hence, for 
each population member, the method consists of 
selecting two parents from its neighbourhood for 
producing an offspring. 

An offspring is obtained applying operators of 
recombination and mutation. After evaluating of the 
offspring as the new population member it is 
inserted in both the auxiliary population (if it is not 
dominated by the current population member) and 
the Pareto set. Finally, after each generation, the old 
population is replaced by the auxiliary one, and a 
feedback procedure is invoked to replace a fixed 
number of randomly chosen population members of 
the population by solutions from the archive. In 
order to manage the insertion of solutions in the 
Pareto set with the goal to obtain a diverse set, a 
density estimator based on the crowding distance has 
been used. This measure is also used to remove 
solutions from the archive when this becomes full. 

Characteristics: The method uses an external 
archive to store the non-dominated population 
members found during the search. The most salient 
feature of MOCeLL with respect to the other cellular 
approaches for multi-objective optimization is the 
feedback of members from archive to population. 

 

D. AbYSS 
AbYSS was introduced by Nebro et al [4]. It is 

based on the scatter search using a small population, 
known as the reference set, whose population 
members are combined to construct new solutions. 
Furthermore, these new population members can be 
improved by applying a local search method. For 
local search the authors proposed to use a simple 
(1+1) Evolution Strategy which is based on a 
mutation operator and a Pareto dominance test. The 
reference set is initialized from an initial population 
composed of disperse solutions, and it is updated by 
taking into account the solutions resulting from the 
local search improvement.  

AbYSS combines ideas of three state-of-the-art 
evolutionary methods for multi criteria optimization. 
On the one hand, an external archive is used to store 
the non-dominated solutions found during the 
search, following the scheme applied by PAES [5], 
but using the crowding distance of NSGA-II [6] as a 
niching measure instead of the adaptive grid used by 

PAES; on the other hand, the selection of solutions 
from the initial set to build the reference set applies 
the density estimation used by SPEA2 [4]. 

Characteristics: It uses an external archive to 
store the non-dominated population members found 
during the search. Salient features of AbYSS are the 
feedback of population members from the archive to 
the initial set in the restart phase of the scatter 
search, as well as the combination of two different 
density estimators in different parts of the search. 

 

E. NSGA-II 
The evolutionary method for multi-criteria 

optimization NGSA-II contains three main 
operators: a non-dominated sorting, density 
estimation, and a crowded comparison [6]. Starting 
from a random population the mentioned operators 
govern evolution whose aim is uniform covering of 
Pareto set.  

Non-dominated sorting maintains a population of 
non dominated members: if a descendant is 
dominated, it immediately dies, otherwise it 
becomes a member of population; all members of 
parent generation who are dominated by descendants 
die.  

The density at the particular point is measured as 
the average distance between the considered point 
and two points representing the neighbour (left and 
right) population members.  

The crowded comparison operator defines 
selection for crossover oriented to increase the 
spread of current approximation of Pareto front. 
Population members are ranked taking into account 
“seniority” (generation number) and local crowding 
distance.  

The worst-case complexity of NSGA-II 
algorithm is O(mN2), where N is the population size 
and m is the number of objectives [6]. 

Characteristics: This method is of the lower 
computational complexity than that of its 
predecessor NSGA. Elitism is maintained. No 
sharing parameter needs to be chosen because 
sharing is replaced by crowded-comparison to 
reduce computations. 

 
4. DESIGN OF EXPERIMENT 

There are some publications on comparison of 
evolutionary methods performance according 
different aspects. For example, in the study 
presented in [12] some general conclusions are 
drawn, however they could not be directly applied to 
a specific problem. 

For assessing of the considered methods several 
different performance measures can be taken into 
account: the distance between the approximated 
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Pareto set generated by the considered method and 
the true Pareto set, the spread of the solutions, and 
computational time. To determine the first measure 
the true Pareto set should be known. In this 
investigation we didn’t know true Pareto sets. 
Therefore, the best approximation found by means 
of combining results of all considered methods was 
used instead of true Pareto set. Although, 
computational time is one of the most important 
performance measures in comparison of 
optimization methods, it has not been included in 
our study. This can be justified only by the severe 
differences in implementations of the algorithms 
making direct comparison of running times unfair. 

We compared methods according to three 
performance measures:  
1. Generational distance (GD) shows how far the 

approximation is from the true Pareto set [4].  
2. Inverted generational distance (IGD) [11]. This 

quality indicator is used to measure how far the 
elements are in the Pareto optimal set from those 
in the set of non-dominated vectors found.  

3. Hypervolume (HV) [4]. This quality indicator 
calculates the volume (in the objective space) 
covered by members of a non-dominated set of 
solutions. Methods with larger values of HV are 
desirable. 
Before evaluating the fitness function in 

FastPGA, MOCeLL, AbYSS, and NSGAII the 
proportions of stocks in the portfolio were 
normalized as in reference [9]. These methods were 
run with different parameters that were 
recommended by the authors [2-4, 6]. They are 
given in Table 1.  

To evaluate each of these methods, while solving 
two objectives portfolio optimization problem we 
performed three series of experiments. First, we ran 
all the methods for 15000 function evaluations, and 
then repeated them with the execution of 25000 and 
35000 function evaluations as the stopping 
condition. In the case of three objectives portfolio, 
two series of experiments with 25000 and 50000 
function evaluations have been performed. For each 
problem we have executed 50 independent runs. 

 
Table 1. Method Parameters 

Method Parameters 
FastPGA Maximum population = 100, initial 

population = 100, crossover probability = 
1.0 

MOCeLL Population = 100, archive = 100, 
crossover probability = 0.9 

AbYSS Population = 20, archive = 100, crossover 
probability = 1.0, setref1=10, setref2=10 

NSGAII Population = 100, crossover probability = 
0.9 

 

5. DISCUSSION OF EXPERIMENTAL 
RESULTS 

The experiments were performed to compare 
performance of the selected evolutionary methods. 
The performance criteria of interest were calculated 
also for the method of adjustable weights usable for 
scaling of results. The experimental results for the 
two criteria problem are given in Table 2. The 
averages and standard deviations of all performance 
measures for each evolutionary method were 
calculated from the samples of 50 runs. It follows 
from the Table 2 that MOCeLL outperforms the 
other methods in all cases except of the case of 
maximal number of evaluations set equal to 25000, 
and comparison with respect to Inverted general 
distance; in the later case NSGAII was considerably 
better. The differences in performance weaken with 
increase of maximal number of evaluations as it is 
well illustrated by the results of experiments with 
this parameter set equal to 35000.  

The upper part of the Pareto set shown in Fig.1 is 
most difficult to reveal for all evolutionary methods. 
Approximation of the Pareto set with a curve of 
changing curvature shows that the curve is flattening 
at its upper part. Similar dependence between 
flatness of the Pareto front and decrease of quality of 
its approximation using evolutionary methods is 
mentioned also by the other authors. For illustration 
of this phenomenon the points generated by all 
methods in the mentioned part of Pareto set are 
presented in Fig. 2; maximal number of function 
evaluations was fixed equal to 25000. It can be 
noticed that the method of adjustable weights does 
not suffer from flattening of the Pareto front. 
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Fig. 2 – Pareto sets of AbYSS, FastPGA, MOCeLL, 

NSGAII, and Weighting method 

 
The experimental results of three criteria problem 

are given in Table 3. These results show that the best 
of the evolutionary methods according GD and HV 



Ingrida Radziukyniene, Antanas Žilinskas / Computing, 2008, Vol. 7, Issue 3, 22-29 
 

 27

measures is MOCeLL. NSGAII and FastPGA are 
the best methods with respect to IGD. It can be 
noticed that GD value of weighting method is equal 
zero; this means that all solutions lie precisely in 
Pareto set. 

The parts of Pareto sets obtained by evolutionary 
methods with 50000 function evaluations and the 
weighted-sum method are presented in Fig. 3. From 
this figure it can be seen how much the quality of 
approximation of Pareto set by evolutionary 
methods is behind of that of weighting method; this 
indicates the perspective for improvement of 
evolutionary methods. 
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Fig. 3 – Pareto sets of AbYSS, FastPGA, MOCeLL, 

NSGAII, and Weighting method. 

 
Table 2. Performance metrics of two objectives portfolio problem 

GD IGD HV Method 
Avg. Std. Avg. Std. Avg. Std. 

AdjW 0.0 2.97 E-5 0.8861 
Maximum number of evaluations is 15000 

AbYSS  5.470E-4 4.092E-4 1.86E-3 2.141E-3 0.8552 0.0331 
FastPGA  4.122E-4 2.808E-4 2.28E-3 1.636E-3 0.8563 0.0238 

MOCeLL 3.100 E-4 2.315E-4 1.226E-3 1.653E-3 0.8696 0.0212 
NSGAII 4.173 E-4 2.751E-4 1.4E-3 1.238E-3 0.8694 0.0141 

Maximum number of evaluations is 25000 
AbYSS  2.056 E-4 5.95E-5 1.60E-4 5.586E-4 0.8821 0.0055 

FastPGA  2.260 E-4 7.04E-5 4.88E-4 9.77 E-4 0.8786 0.0126 
MOCeLL 9.289 E-5 1.88E-5 1.11E-4 2.92 E-4 0.8836 0.0019 
NSGAII 2.356 E-4 2.87E-5 9.9E-5 1.28 E-5 0.8823 0.0003 

Maximum number of evaluations is 35000 
AbYSS  1.631 E-4 3.57E-5 7.2E-5 2.4 E-6 0.8834 3.2E-4 

FastPGA  2.108 E-4 2.72E-5 1.04E-4 1.16 E-4 0.8827 4.7E-4 
MOCeLL 6.339 E-5 8.9E-6 6.7E-5 9 E-7 0.8843 8.5E-5 
NSGAII 2.415 E-4 3.02E-5 9.7E-5 4.7 E-6 0.8824 1.8E-4 

 

Table 3. Performance metrics of three objectives portfolio problem 

GD IGD HV Method 
Avg. Std. Avg. Std. Avg. Std. 

AdjW 0.0 1.48E-4 0.7355 
Maximum number of evaluations is 25000 

AbYSS  1.438E-3 4.68E-4 2.16E-4 1.16E-4 0.7148 0.0063 
FastPGA  1.418E-3 3.85E-4 2.08E-4 1.9E-5 0.7161 0.0021 

MOCeLL 1.164E-3 3.62E-4 2.12E-4 1.9E-5 0.7181 0.0013 
NSGAII 1.327E-3 3.02E-4 2.10E-4 2.2E-5 0.7154 0.0019 

Maximum number of evaluations is 50000 
AbYSS  1.221E-3 4.04E-4 2.126E-4 1.9 E-5 0.7163 0.0015 

FastPGA  1.239E-3 3.59E-4 2.061E-4 1.5 E-5 0.7177 0.0014 
MOCeLL 1.14 E-3 2.77E-4 2.119E-4 1.8 E-5 0.7194 0.0012 
NSGAII 1.648E-3 5.05E-4 2.118E-4 2.2 E-5 0.7163 0.0015 
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6. CONCLUSION 
From the results of three sets of experiments for 

two criteria portfolio optimization it follows that 
MOCeLL is the best of four considered evolutionary 
methods with respect to all three performance 
criteria.  

The results of two sets of experiments with these 
methods for three criteria portfolio optimization 
reveal that MOCeLL provides the best results in 
terms of Hypervolume, and Generational distance, 
but is slightly outperformed by FastPga with respect 
to the Inverted generational distance.  

The evaluated performance criteria of 
evolutionary methods are only slightly worse than 
those of method of adjustable weights who is 
advantageous in the considered cases.  

Summarizing the results it seems promising to 
investigate a possibility of combining the advantages 
of evolutionary methods with those of the method of 
adjustable weights. 
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