
Mohamed Tellache, Youcef Lamhene, Brahim Haraoubia, Henri Baudrand / Computing, 2008, Vol. 7, Issue 3, 86-94 
 

 86 

 
 
 

AN NUMERICAL METHOD BASED ITERATIVE PROCESS TO 
CHARACTERIZE MICROWAVE PLANAR CIRCUITS 

 
Mohamed Tellache 1), Youcef Lamhene 1), Brahim Haraoubia 1), Henri Baudrand 2)  

 
1) Laboratory of Instrumentation (LINS), Faculty of Electronics and Computers,  

USTHB, B.P 32, Bab-Ezzouar, 16111, Algiers, Algeria, http://www.usthb.dz 
E-mail: tellachemoh@yahoo.fr, youcef_lamhene@yahoo.fr and haraoubiab@gmail.com, 

2) Laboratoire LAME, INP, ENSEEIHT  
2 Rue Charles Camichel, BP7122-31071, Toulouse Cedex 7, France, http://www. len7.enseeiht.fr 

E-mail: baudranh@len7.enseeiht.fr 
 

Abstract: In the present work, the modeling of microwaves planar circuits is proposed with an original method based 
on the Waves Concept Iterative Process (WCIP). It consists in the development of simulation software based on an 
iterative method. The iterative method is developed from the fast modal transform on a two-dimensional fast Fourier 
transform (FFT) algorithm. The method has been applied to the characterization and the modeling of patch antennas 
with notches in microstrip and coplanar technology and the quarter wavelength directive coupler. The obtained results 
are very powerful and successfully compared to others methods in term of time and reliability of convergence and 
particularly the accuracy of the results obtained in comparison with previous works. 
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I. INTRODUCTION 
The planar circuits are characterized by there 

abilities to integrate important electronic elements. 
The global circuit modeling requires the 
development of simulation software that uses 
optimized numerical methods. In this paper we used 
an iterative method based on the wave concept. 
Among the most recent and the most efficient 
iterative methods the Wave Concept Iterative 
Process (WCIP) was developed at first as an 
instrument for the study of in-guide and planar 
circuits scattering problems [1]. 

The integral formulation of the transmission line 
modeling (TLM) method [2] is usually defined in 
the time domain but is expressed in the spectral 
domain in [3]. This spectral representation is the 
basis of a proposed procedure called the wave 
concept iterative procedure (WCIP). The same link 
that relates the TLM method to WCIP relates the 
electric or magnetic field integral equation to the 
finite difference time-domain techniques [4]. The 
WCIP is based on the determination of the 
recurrence relation between the incident and the 
reflected waves, with respect to the continuity 
conditions in the spatial domain.  

The result is approached progressively by 

successive iterations until its convergence. This 
technique avoids the undesired phenomenon of 
unbounded operators; relations between currents and 
fields, obtained using unbounded impedance 
operators, are transposed to relations between 
waves, supplied by bounded scattering operators [5]. 
The method’s convergence is therefore always 
guaranteed [6]. This method has been applied since 
one decade to many kinds of Radio Frequency 
Integrated Circuits (RFIC) and diffraction problems 
and the power of the WCIP was first verified in the 
analysis of simple planar circuits by Akatimagool et 
al. [7] and Wane et al. [8].  

However, it is important to examine carefully the 
respective impact of the number of iterations and 
precision of pixellisation on the results of some 
sensible structures. Moreover, a very important gain 
in computation time is obtained by the use of the 
Two-Dimensional Fast Fourier transform (2DFFT) 
algorithm [9]. The method is applied to the 
characterization and modeling of patch antenna with 
notches in microstrip technology, coplanar antenna 
patch and finally a directive quarter wavelength 
coupler.  

The results were compared with moments and 
finite difference time domain (FDTD) methods [10]. 
We notice that the iterative and moments method 

 

computing@computingonline.net 
www.computingonline.net 

ISSN 1727-6209 
International  Journal  of  Computing 



Mohamed Tellache, Youcef Lamhene, Brahim Haraoubia, Henri Baudrand / Computing, 2008, Vol. 7, Issue 3, 86-94 
 

 87

use planar sources (horizontal) and metallic walls, 
while the FDTD method uses vertical sources and 
absorbents walls.  According to obtained results, a 
good efficiency and high spatial resolution is 
observed in spite of using weak resources. Good 
agreement between the simulation and measurement 
has been obtained. 

 
2. METHOD PRINCIPLES 

With the WCIP, the electromagnetic problem is 
solved in several steps [11]. First, the interfaces are 
characterized using space operators, and then the 
remaining space is represented using spectral 
operators. Finally, the electromagnetic sources 
involved in the model are added to the iterative 
process. Consider the diagram of figure 1 
representing an example of a planar circuit printed 
on a dielectric substrate. 

Fig.1 – The studied planar circuit 

 

2.1 WAVE CONCEPT 
Ωi (i stands for the medium 1 or 2), describes the 

boundaries interfaces on one side of the interface 
oriented with the normal vector ni toward the i 
region. The current density iJ

r
 is defined by,  

 
 i i iJ H n= ×

r r r  (1) 
 
where iH

r
is the tangent magnetic field to the 

discontinuity of the interface corresponding to the 
field electric iE

r
. The equation of wave [1] is defined 

by, 
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where iA
r

 the reflected waves, iB
r

the incident waves 
at the interface of discontinuity and Zoi the 
impedance of wave in the medium 1.   

The equations of the electric field iE
r

 and current 

density iJ
r

 are derived from the following equations, 
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2.2 THE ITERATIVE PROCESS 
The figure 2 shows the principle of the iterative 

process. It is based on the repetition of the equations 
process until problem resolution. 
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Fig. 2 – Iterative process scheme 

 
This method is governed by the following 

relations [9], 
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where €Γ  operator of reflection links the reflected 
waves to the incident waves in the spectral domain, 
S€ operator of diffraction  links the reflected waves 
to the incident waves in the spatial domain at the 
dielectric or metallic interface and oB

r
 is the 

excitation wave source. 

II.3 THE FOURIER TRANSFORM 
Equations 5 and 6 give fundamental principle of 

the fast Fourier transform in direct and inverse 
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In the spatial domain, the components of the 

electric field vector are defined analytically into two 
distinct bases [12], either according to the 
amplitudes of the fields in the Cartesian basis, 
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According to the TE and TM amplitudes modes 

on the modal basis. 
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The combination of equations (4) and (5) with 

other equations leads to the matrix relations, 
defining the transition  operator  from  the  spatial  
domain  to the modal domain as follows: 
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xmnK  and  ymnK  are constants of  normalization 

and defined as: 
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2.4 THE DIFFRACTION OPERATOR €S  IN 
SPATIAL DOMAIN  

The global operator of diffraction near the whole 
interface is given by, 
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where: 
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d = I, M, S corresponds respectively to dielectric 
domains (insulating), metal and source and χ, κ, ξ, ζ  
depend on the type of used source [12]. 

 

2.5 THE REFLECTION OPERATOR Γ€ IN 
MODAL DOMAIN 

The operator of modal reflection €Γ  insures the 
link between the waves diffracted at the interface iB

r
 

and the waves reflected by the superior and lower 
hood iA

r
.  

It is expressed in the modal domain by the 
following equation [9],  
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mnfα  the mode functions of periodical wall near 
the discontinuity surface (Ω), α the mode index (TE, 

TM) and ,i
mnYα  is the mode of admittance brought 

back. 
Where no closing ends exist, ,i

mnYα can be 
calculated by : 
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mnγ  being the propagation constant of the 
medium i and it is given by 
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In equation (16), εo, εri and µo  are respectively 

the permittivity of the vacuum, the relative 
permittivity of the medium i, and the permeability of 
the vacuum. 

When the structure along the z axis is terminated 
in the metallic wall (short circuit), the admittance 
seen by each mode at the interface is given by 

 

( )( )€ cothi i i
mn mn mn iY cc Y hα α= γ  (17)

 
Where h i  is the substrate thickness of the medium i.  
If a termination was an open circuit (no metallic wall 
at the end of the medium i), the admittance seen by 
each mode at the interface is given by 

 

( )( )€ cothi i i
mn mn mn iY oc Y hα α= γ  (18)

2.6 IMPEDANCE SEEN BY THE SOURCE 
For each iteration the impedance Zin  seen by the 

source (respectively the Yin admittance) is computed 
according to the electromagnetic magnitudes. This 
factor justify at the end the convergence ever of the 
problem. It is determined by following variational 
relation, 
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To use the electric device (R.F very high 

frequency, low-frequency or other), it is necessary to 

present a steady state during its use. From the 
convergence study of impedance Zin which is seen 
by the source of excitation, the point of electric 
stability could be determined. This point must be 
chosen so that the convergence is always assured, 
regardless of the frequency. 

 
3. EXAMPLES OF PLANAR DEVICES 
In order to show that the iterative method is 

working accurately, it is better to illustrate the theory 
exposed previously by some applications. Let’s look 
to the behavior of an antenna patch in microstrip and 
coplanar technologies, then to the application of 
directive quarter wavelength coupler [13], [14].  

3.1 PATCH ANTENNA WITH NOTCHES IN 
MICROSTRIP TECHNOLOGY 

Structure description 
In Figure 3 a patch working around  1.32 GHz is 

presented. It is composed with a line penetrating in 
the patch and with notches. The antenna which 
product a satisfactory adaptation presents at its 
extremity an input impedance of 50 Ω and has the 
following dimensions, 
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Fig. 3 – Patch antenna with notches 

 
Study of the convergence 
Observing the figure 4, we set up the minimum 

number of iterations required to establish the final 
result. In our case the convergence is reached after 
250 iterations at 1.32Ghz. Moreover, it appears that 
the real part of the admittance of the patch  seen by 
the source, converges to the value 0 which is 
relevant of a good convergence. 

 
Study of the S parameters 
In order to visualize the profile of the parameters 

S of the patch with respect to the frequency, the 
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program has been iterated 300 times, following all 
the constraints of simulation. The obtained results 
are represented by the following graph:   

Iteration Number 
0 150 100 50 200 250 300 
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 0 
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Real part
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Fig. 4 – Convergence curves 
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Fig. 5 – Module of S11 parameters versus frequency 

for a patch antenna with notches  

 
The objective of the method is to obtain the 

resonant frequency equal to 1.32 GHz. We notice on 
our profile that the results ( Fig.5.) given by our 
method are close to this frequency ( around 1.318 ), 
or even better than the result obtained from 
simulation [15]. Consequently, our method gives 
more reliable and precise results. 

3.2 PATCH ANTENNA IN COPLANAR 
TECHNOLOGY 

In this part, we present the study another 
structure given in figure 6, representing a patch 
antenna designed coplanar technology [15-19]. 

 
 
 
 
 
 
 
 
 

Structure description 

 

Fig. 6 – Coplanar patch antenna 

 
The dimensions and parameters of the antennas 

are defined as follows [17], 
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Study of the S parameters 
The frequency dependency results are 

represented by Figure.7. It has been noticed through 
the obtained results that the resonant frequency of 10 
GHz is well reached (our results). These results are 
in agreement with those obtained from experimental 
and simulated measures given in references [16]. 

We remark through the plots of the S parameters 
shown in Figures 5 and 7 that the results are very 
similar. The reason is that our method and the 
moments method use the same type of source, i.e. 
planar (horizontal) sources and metallic walls. 

 

3.2 QUARTER WAVELENGTH DIRECTIVE 
COUPLER 

In this part, the approach of the study for another 
structure shown in Figure 8 representing a directive 
quarter of wave coupler [15, 16]. The dimensions of 
the coupler are as follows, 
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Study of the coupler 
The S parameters of directive coupler are 

examined as function of frequency with our program 
set for 300 iterations. According to these studies, the 
obtained results are shown in the figures 9, 10 and 
11. 

As shown in Figures 9, the S11 coefficient is very 
weak at resonant frequency of 6.25 GHz, the coupler 
is adapted to this frequency. The S21 coefficient 
(Figure 10) is nearly zero at this resonant frequency,  
which  mean  that  the  line  2  is  well  isolated. The 
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S13 and S14 coefficients (Figure 11) have the same 
magnitude at this resonant frequency. The power 
injected in the line (1) is devised in two identical 
powers toward the direct line 3 and the coupled line 
4. 

           Our results 
          Simulated results 
          Measured results 
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Fig.7 – Module of S11 parameters versus frequency 

for coplanar patch antenna 

 

 

Fig. 8 – Quarter wavelength directive coupler 
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Fig. 9 – Module of S11 parameter versus frequency 

[10] 

We remark through the plots of the S parameters 

of Figures 9 and 10, a slight difference in the 
resonant frequency. The reason for that lies in the 
different nature of the type of source as well as the 
walls of the box. Again, we point to the fact that the 
FDTD method uses vertical sources and absorbent 
walls. 
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Fig. 10 – Module of S21 parameter versus frequency 
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Fig. 11 – S13 and S14 parameters versus frequency 

 
4. CONCLUSION 

In this paper the WCIP has been applied 
successfully to planar microwave circuits. The 
method has been extended to the modeling of path 
antenna. Its principles and properties have been 
described to show its flexibly against other 
techniques. The contribution of the FFT allows a fast 
processing and avoids the delicate choice of 
functions that is usually met in other integral 
methods. Hence, the WCIP seen to be very easy to 
implement, reliable in term of convergence and has 
the possibility to treat problems with large number 
of undefined parameters as the FFT is written 
without storing its matrix in memory.   
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The WCIP were applied with success to model 
two patches in microstrip and coplanar technologies 
and to a directive quarter wavelength coupler. The 
WCIP results and those previously reported in the 
literature are in very good agreement. This method 
seems highly suited for use on planar structures; its 
extension to problems of any shape is under 
investigation. The perspective of the method is to be 
applied to metamaterial, integrated circuits on 
subtract and to circuits with large number of layers 
including a large number of parameters. 

 
5. NOMENCLATURE 

iΩ  Interfacedi continuity 

in  Normal vector 
i  Indice of the medium 

iJ  Current density 
iH  Magnetic field 

iE  Electric field 

iA  Reflected wave 

iB  Incident wave 

0iZ  Impedance of wave 

€Γ  Operator of reflection 

€S  Operator of diffraction 

0B  Excitation wave 

mnxk , 

mnyk  

Constants of Propagation 

mnf α  
Basis mode function 

,i
mnY α

 
Mode admittance 

ih  Height 

inZ  Impedance seen by source 
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