
Aleksej Otwagin / Computing, 2008, Vol. 7, Issue 3, 107-113

 107

RELIABLE AND EFFICIENT PARALLEL COMPUTING
ON THE BASE OF MULTIAGENT SYSTEM

Aleksej Otwagin

United Institute of Informatics Problems, National Academy of Sciences of Belarus,

6 Surganov str., Minsk, 220012, Belarus. Email: forlelik@yahoo.com

Abstract: Basic principles of reliable parallel computations are considered. The parallel program is represented as a
graph computation schema, that executed by unreliable computing system with possible node faults. For organization
and optimization of parallel processing a kind of multiagent architecture was used. The proposed solution uses the
principles of runtime evolutionary optimization to increase performance characteristics.

Keywords: parallel processing, reliability, runtime optimization, multi-agent architecture, evolutionary algorithms.

1. INTRODUCTION
The reliability of computing is the most

important problem in many information systems,
especially in case of large amount of interacting
components and complicated architectures.

Increased requirements to data processing
systems (necessity of guaranteed computation results
in the conditions of active counteraction) are
characteristic for military science, extreme
situations, scale financial activity etc. In such
applications unreliable realization of computations
conducts to inevitable loss of the control over a
situation that, eventually, leads to the spontaneous
succession of events leading to inadmissible losses.

Computers with parallel architecture, and also the
distributed computer networks (such as
Internet/Intranet) are the most powerful systems for
large data-intensive computation tasks. Therefore in
such computing environments there are conditions
not only for increase of computing speed with
parallelization, but also for increase of their
reliability with introduction at a scheduling stage a
superfluous computing actions (duplication of
resources for storage, transformation and
transmission of data, and also carrying out of
repeated actions of transformation and delivery of
data). Thus quality of programs and computing
processes is defined by a combination of criteria of
parallelization speedup and reliability of
calculations.

High complexity of the machine environment
both in parallel computers and in the distributed
computer networks become the formidable factor as
various realization of programs differ by criterion of

quality. Realizations of poor quality are easier for
constructing, but they do not provide desirable
advantages. For achieving of realizations of high
quality the big additional expenses for optimization
are necessary. The decision of this problem is very
hard.

For the decision of large-scale problems of
computing by means of the distributed computer
networks the toolkit which will make possible direct
programming of algorithms, accessible both to
developers of algorithms, and experts is required.
The creation of such toolkit for the synthesis of
reliable parallel computing processes in the
distributed man-machine environment containing
unreliable components is an actual engineering task.

Multiprocessor systems allow applying of
effective technology of component reservations
which is directly realized by their structure.

The multiprocessor system contains p identical
processors, and l processors can be considered as
superfluous. The superfluous processor can replace
any of the basic ones, that its duplication is realized.
Each of the basic processors performs independent
parts of overall computing algorithm. The system
with duplication must be equipped with efficient
reconfiguration subsystem. This subsystem transfers
main processing functions on operable elements.
Reconfiguration is realized with the intermediate
layer of control and diagnostics software that is
provided for checkpoint and restart of processes.

The multiagent systems [1, 2] are one of
perspective technologies for realization such kind of
intellectual control middleware. The separate
subtasks solved during functioning of system agents

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Aleksej Otwagin / Computing, 2008, Vol. 7, Issue 3, 107-113

 108

forms an overall system behavior that emerges from
local interactions. Agents plan its own work and
interaction so that to achieve the maximum benefit
at the problem decision. When all agents achieve
high efficiency of functioning then all system will
solve whole problem more effectively.

Optimization of parallel computing system
architecture to solved problem structure guarantees
high real productivity of multiprocessing system for
many classes of problems with any computational
structure.

There are many examples of systems for parallel
and distributed data processing [3-6]. These systems
are different in used techniques and architectures,
for example CORBA [6] or agent-based architecture
[3].

Our contribution consists in development of a
multiagent object-oriented framework, which is
based on the MPI (Message Passing Interface
standard) [7] for parallel computations. Another
significant attribute of this framework consists in
application of new hybrid algorithms for
optimization of runtime scheduling. The realized
framework uses special mechanisms for achieving
reliable and effective computations in case of system
components failures. The ability of online
optimization allows applications to achieve high
speed and multicomputer utilization.

The rest of the paper is organized as follows.
Section 2 presents the model of developing parallel
applications on distributed PC or supercomputer
clusters. Section 3 describes the architecture of
runtime parallel framework for optimization of
computations. Section 4 presents the performance
evaluation of proposed framework on experimental
application.

2. A PARALLEL APPLICATION MODEL

The parallel processing of data assumes using of
computer cluster [8]. While most clusters are
homogeneous in real world, let’s consider a case of a
heterogeneous cluster that is more general. The
heterogeneous cluster of computers consists from
processors P={p1, p2,..., pm}, where pi is an
autonomous processor (also called node). Each
processor pi is weighted by wi, which represents the
time it takes to perform one unit of computation.
The nodes in the heterogeneous cluster are
connected by a high performance communication
subsystem. Each communication link between
computers pi and pj, denoted by lij, is weighted by sij,
which indicates the time for transfer one unit of
message data between pi and pj.

The main task of parallel computations consists
in execution of computing operations set that is
defined by program schema representing direct

acyclic graph. The parallel applications, considered
in this work, are used for processing of separate data
objects, which are different in its types and
processing schemas. A set of types { }nttT ,,

1
K=

forms different scenarios for processing that are
combined to one parallel program.

A processing system performs a set of processing
operations { }kooO ,,

1
K= . Each operation Ook ∈ is

executed on a dedicated node of cluster k
iP that has

enough resources for executing of this operation.
Each operation io is characterized by set of

execution costs },,{ 1 n
ooo iii

www K= for each data
type, which represents the amount of computations
while performing operation. Two operations for
different data objects, which are performed on some
fixed processor, cannot be executed in the same
time, and two instances of one operation for
different data objects also must be executed in
different times or by different processors.

We represent parallel application in the form of
Directed Acyclic Graph (DAG). DAG is represented
as a tuple),,,(CWEVG = , where:

V is a set of graph vertices NiVvi ≤≤∈ 1, . Each
vertex is associated with processing operation from
an operation set U jOO = . A set of graph vertices
represents decomposition of parallel program on the
separated operations;

E is a set of graph edges
jiNjNiEvve jiji ≠==∈= ,,1,,1,)},({ , . An edge

represents a precedence relation between operations
in program;

W is an operation cost matrix U T
oi

WW = , where
T indicates the type of processed object;
С is an edge cost set, where Cc ji ∈, determines

the communication volume between two data
processing operations, which is transferred by edge

Ee ji ∈, . We consider those operations, which are
related and connected by the edge, use an identical
data format for a predecessor output and a successor
input. Thus the transfer costs for all types of
processed objects are equal.

A design of parallel processing system consists in
mapping of the program graph onto cluster topology.
A parallel program is represented as a
decomposition U

Pp
pOPO

∈

⎯→⎯)())(),((, where

∅=⊃≠∀ I pkpkpk OOOOOO :, . Each operation
subset Op can be placed on selected processor node.

The main purpose of parallel program is
achieving of efficiency metrics (reduction of
processing time, processing speedup, minimization

Aleksej Otwagin / Computing, 2008, Vol. 7, Issue 3, 107-113

 109

of resource requirements etc.). Let’s denote as i
Ft

the ending moment of operation oi and the main
objective of processing system will be a
minimization of data object processing time

)min(

,1
∑
=

=
ni

i
FtZ (1)

For evaluation of the schedule the simulation

model is used, which is equal to real world parallel
computation process.

An example of parallel program graph is
presented in Fig.1, where each operation is denoted
as Oi with defined cost (on the top), each operation
process data objects with three different types
T1, T2, T3. Cost of information transfers between
operations pairs is equal for all data types. Some
operations are strictly oriented on specific processor
while others can be placed on each processor in
cluster. If the operation cost for some type of data is
equal to zero, then this operation must be skipped
for selected type of data.

Fig. 1 – An example of program graph and

denotation semantic

The main feature of systems for parallel

processing that are considered in this paper is
iterative computation mechanism. The task graph is
applied to each data object from input stream
according to the type of object and forms a cycle of
iterative computations. The application is able to
process a stream of data object with different size
and order.

A main task of processing system is a planning
and optimization of parallel program execution with
simultaneous provision of reliable computations and
guaranteed processing. There exist many algorithms
of DAG scheduling that use various optimization
techniques and heuristics [9-11]. However all static
scheduling algorithms are constructed mostly for
special graph topologies, or use special constraints,
such as a zero communication time between nodes
or an unbounded number of processors. Because of
possible stochastic nature of input stream for many

cases of parallel processing the static scheduling
approach can not realize effective optimization.

Another perspective search techniques use
evolutionary optimization. These techniques are
based on such well-defined algorithms as a tabu
search [12], simulated annealing, and genetic
algorithms [13]. The most powerful is a genetic
algorithm (GA) technique, and many algorithms are
proposed in this field. However, the classical genetic
algorithm is a blind search technique with extreme
large search space. To speedup search procedure of
genetic algorithms an algorithm of virtual
associative network [14-16] can be used, and
composition of these methods give us a kind of
hybrid genetic algorithm (memetic algorithm [17,
18].

The algorithm of a virtual network is based on a
concept of associations between the particular
operations and dedicated agents. Each agent contains

a vector of beliefs },,{
21 nOOO bbbB K= ,

where each belief
kOb determines a probability for

selection of operation Ok for execution by this agent.
Through runtime optimization agents could change
its beliefs to adapt agent functioning process to
general and local agent’s objectives.

The operation O and a agent P, that is associated
with corresponding processor, have linked by virtual
link with force),(, poZbB

pOpo ⋅= . A

restriction matrix Z (O,P) can be introduced with
following rules:

1, p)Z(o, = if processor p allow execution of
operation o (don’t have resource restrictions);

0, p)Z(o, = otherwise.
Restriction matrix is used in optimization

procedures and prevents erroneous allocation of
specified operations on some processors. The
restrictions arises because of heterogeneous cluster
structure and different operations requirements.

The algorithm uses associative memory for
optimization, which is constructed on the base of
association forces. This memory is learned by the
accumulated experience, obtained in a solution
search process. The algorithm is based on a GA
representation of solutions in a form of population of
chromosomes. Each chromosome represents a
variant of program graph decomposition.

Proposed genetic algorithm uses a two-part
chromosome representation, that allows simple
realization of a genetic operators – mutation and
crossover. Each chromosome C is a vector of
number pairs, and chromosome gene

),(, opcCc ii =∈ . Index of gene corresponds to
operation index in application DAG. The value of p

Aleksej Otwagin / Computing, 2008, Vol. 7, Issue 3, 107-113

 110

determines the number of processor, which executes
this operation, and a value of o defines operation
priority for scheduling. A priority is used when a
processor has two or more ready operations for
execution at present moment of time.

For genetic operators this chromosome is divided
on two separate parts PC and OC , and each part is
constructed using corresponding values from
original chromosome (fig. 2).

Fig. 2 - The chromosome structure.

The PC part is used to determine an operation

allocation, and OC part is used for scheduling with
priorities.

The mutation operator is performed by changing
of operation allocation, and the corresponding gene
is modified with new value for p, while o remains
unchanged. The order mutation operator changes all

OC part by means of topological sorting of graph
vertices. For example graph from figure 1 has the
topological sort 1-3-2-5-4 with correct precedence
relations between graph vertices. The PC remains
unchanged.

The crossover operator performs a classic one-
point crossover for PC parts of parent
chromosomes. The OC parts for child chromosomes
are copied from OC of parents.

These genetic operations exclude appearance of
invalid allocations models for given graph. In this
case the search procedure is reduced in time because
the validation check for chromosomes is not needed
now.

Each chromosome is evaluated by fitness
function, which is based on a simulation model and
satisfies the criterion (1). After the stage of
evaluation and selection of a best solution candidate,
the virtual network is learned by the positive
experience. When the selected solution for some
stage doesn’t outperform previous best model, the
virtual network is learned by previous experience.
The learning procedure increases the association
forces, which belongs to the best model.

The accumulation of experience allows the
realization of a guided search in the solution space.
This search is faster and gives better solutions at

earliest stages of search. The size of population in
the algorithm of the virtual associative network is
smaller (5-10 chromosomes), than in classical GA
(25-30 chromosomes), and requires less time for
evaluation.

The virtual network algorithm introduces a new
genetic operator – clusterization, which is performed
with use of an experience from an associative
memory. This operator allows a faster creation of
stable schema in chromosomes, and thus an
implementation of a genetic local search strategy.
The clusterization operator means grouping of
operations on processors with the strongest
associations.

Each agent in multiagent system realizes a search
procedure and selects a subset of operations, which
are performed by this agent. The individual agent
works on separate processor of cluster and uses a
learning and planning policy, which is based on an
association forces. The distributed version of virtual
associative network allows all agents to create
solution more effectively in cooperation. All agents
uses unified architecture that is based on a parallel
framework. Architecture of framework isolates the
behavior logic that is dependent on the data
processing schema, from the basic service code, that
is common for all agents at modeling or application
running.

3. THE FRAMEWORK ARCHITECTURE

AND AGENT BEHAVIOR
The architecture of agent framework for parallel

processing is presented in Fig. 3.

Fig. 3 – The architecture of parallel processing

framework

The framework architecture is based on MPI and

allows a fast communication between agents by
means of internal MPI virtual machine. The MPI
level of middleware realizes a name service for
agents. Using of MPI replaces a MTS (Message
Transport System) and DF (Directory Facilitator)
services that are required by to FIPA specification
for multiagent systems [19]. Basic agent structure is

Aleksej Otwagin / Computing, 2008, Vol. 7, Issue 3, 107-113

 111

presented on Fig. 4.

Fig.4. – The internal structure of agent

The input for multiagent system is a parallel

program graph and a set of data objects that are
different by their types. The parallel graph is
represented as a XML file, which allows specifying
all the characteristics of separate operations for all
types of data objects.

Each agent performs parsing of whole graph and
builds internal structures that are used for execution
of specified operations with correct parameters for
each object type. These operations are represented
by descriptors, which are used by scheduler to
control precedence relations and overall process.

The data object is represented by a data
descriptor. This descriptor contains an identifier,
type attributes and some additional information, for
example, name of data file, which contains
information for this object. When an operation
requires additional data for processing, this
descriptor must be extended for specified
applications in appropriate way.

As the descriptors are transferred between
processors of the parallel application, therefore the
application code must contain serialization
mechanisms. These mechanisms are realized for
interaction with MPI facilities for messaging. The
code is included in message transfer interface that is
extensible and allows use of an alternative message
transport systems.

Data objects are stored in a shared data storage
that is realized as descriptor storage. Each descriptor
is linked with universal container for storing of
different data objects. The storage interface allows
interaction with global storage for each agent in
system. This interface has some facilities for object
search, on-demand loading of remote objects and
deletion of unused objects from storage. Each agent
has a local copy of storage and uses it as a write-
through cache.

The purpose of the scheduler interface is
processing and scheduling control. It contains a
special component, which is called a scheduler and
makes decisions about the next processing operation
that must be placed in descriptor queue. All

descriptors of operations for processed objects are
stored in operation descriptors storage that contains
three sets of descriptors: ready, working and finished
pools. The scheduler chooses the next processed
operation from ready pool and sends its descriptor to
an appropriate processor agent. After processing this
descriptor is placed to the finished operations pool
and information about next stage of processing is
changed. The process repeats while the ready pool is
not empty.

For reliability of computations there exists an
intermediate working pool of descriptors. This pool
was used to mark descriptors that are now executed
by agents. When some agent is broken, then
corresponding descriptor remains in this pool a long
period of time. The scheduler periodically checks
the descriptor state and moves these waiting
descriptors back to ready pool. The descriptors then
have a possibility to allocate on different working
agent.

The agents are dynamically linked with a library
of processing operations. Each processor executes
operations that are specified by descriptors. The
processor receives the descriptor from the
coordinator, determines the next operation and
executes it using the descriptor data. After
completion of data processing, the descriptor is
returned to scheduler. The processor works while
stop instruction is not received.

Besides the process coordination, the runtime
agents check system state and characteristics. These
characteristics are collected and used for runtime
optimization. The optimization is based on the
measuring of data processing speed. When the input
data changes its pattern significantly, the system
must adapt to this situation. The adaptation performs
reconfiguration of the operation subsets for all
processor agents. The system tries to adapt to
changed conditions and to achieve a high processing
speed.

Agents use two different policies to choose of
next operation from descriptor pool. First one
consist in choosing operations on the base of agent’s
preferences. These preferences are formed in
working process by the means of virtual associative
network algorithm. Each agent have a vector of
weights, and probability of selection of operation O
for this agent A is:

),(P

O1,i
Ai,

AO, AOZ⋅=
∑
=

ω
ω . (2)

When an agent performs some operation and it’s

performance characteristics are increased, then
corresponding operation weight is corrected

Aleksej Otwagin / Computing, 2008, Vol. 7, Issue 3, 107-113

 112

according to:

αωω +=+)()1(,, tt AOAO , (3)

where α is a learning coefficient.

The weights of remaining operations are
corrected according to:

)1()()1(,, −−=+ Ntt AOAO αωω , (3)

where N means overall amount of agents. An agent
can choose from a subset of operations, taking first
ready operation.

The second policy for agent is a greedy policy
that consists in choosing of first ready operation
from ready pool. This policy is introduced to
eliminate a situation, when some descriptors are not
chosen by long time. The greedy agents execute
these operations and later they can choose this
operation type as preferable. Each agent can switch
between two scheduling policies when its local
objective can not improve.

A local objective for agent is used for scheduling
and interaction with other agents. Let the overall
uptime of multiagent system is denoted by T units of
time, and overall work time (time of operation
execution) for agent A is denoted by TA. The utility

coefficient for this agent T
TW A

A = , and a local

objective for agent functioning is a minimization
)min(AA WZ = .

4. AN EXPERIMENTAL STUDY

For evaluating of proposed algorithms and a
framework some experiments are performed. The
experimental application for parallel processing of
image data was used. All experiments have been
done on the massively multiprocessor system K-
1000, developed by United Institute of Informatics
Problems.

In table the results of comparison for static
decomposition schema and for dynamic optimization
by the multiagent system are shown. The values
shows relative improvement (in %) of processing
time for dynamic optimization.

Table. The comparison of static and dynamic
optimization

Data objects count Processors
count 20 40 80

2 0.78 2.15 4.73
4 1.49 4.41 5.19
8 3.06 4.83 5.46

The results shows, that the multiagent system
outperforms the static data processing schema in
case dynamic optimization of application structure.

5. CONCLUSION

An adaptive optimization improves image
dataflow processing and brings a new level of
intellectual behavior into systems. On the other
hand, the modern technologies of optimization allow
the minimization of expenses for design and
evaluation of such systems. The suggested approach
and framework will find their place at creation of
modern dataflow processing systems for industrial
applications.

The architecture of framework, based on an
algorithmic skeleton approach, is suitable for many
applications, which are distributed and use a graph
representation. This framework can be extended by
new operation sets for developing applications for
another distributed processing problem areas.

6. REFERENCES

[1]. H.S. Nwana. Software Agents: An Overview. //
The Knowledge Engineering Review. – 1996. –
№11. – P. 205-244.

[2]. M. Wooldridge. Agents and software
engineering // AI*IA Notizie. – 1998. - Vol. 11.
- № 3. - P. 31-37.

[3]. D. Argiro, S. Kubica, M. Young, and S.
Jorgensen. Khoros: An integrated development
environment for scientific computing and
visualization. Whitepaper, Khoral Research,
Inc., 1999.

[4]. M. Zikos, E. Kaldoudi, S. Orphanoudakis.
DIPE: A Distributed Environment for Medical
Image Processing. Proceedings of MIE'97,
Porto Carras, Sithonia, Greece, May 25-29,
1997, pp. 465-469.

[5]. M. Guld, B. Wein, D. Keysers, C. Thies, M.
Kohnen, H. Schubert, and T. Lehmann, "A
distributed architecture for content-based image
retrieval in medical applications," in
Proceedings of the 2nd International Workshop
on Pattern Recognition in Information Systems,
pp. 299–314, 2002.

[6]. J. Wickel, P. Alvarado, P. Dörfler, T. Krüger,
and K.-F. Kraiss. Axiom — a modular visual
object retrieval system. In M. Jarke, J. Koehler,
and G. Lakemeyer, editors, KI 2002: Advances
in Artificial Intelligence, LNAI 2479. Springer,
2002, p. 253–267.

[7]. W. Gropp, E. Lusk, and A. Skjellum Using
MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, 1995.

Aleksej Otwagin / Computing, 2008, Vol. 7, Issue 3, 107-113

 113

[8]. K. Hwang, Z. Xu. Scalable Parallel Computing
– Technology, Architecture, Programming.
McGraw-Hill, USA, 1998.

[9]. B. S. Macey, A. Y. Zomaya. A performance
evaluation of CP list scheduling heuristics for
communication intensive task graphs. In Proc.
of IPPS/SPDP, 1998, p. 538-541.

[10]. D. A. Menasce, D. Saha et al. Static and
dynamic processor scheduling disciplines in
heterogeneous parallel architecture. Journal of
Parallel and Distributed Computing. Vol. 28,
1995. – pp. 1-18.

[11]. H. Oh, S. Ha. A Static Scheduling Heuristic for
Heterogeneous Processors. Second
International EuroPar Conference
Proceedings, Vol II., Lyon, France, 1996, p.
573-577.

[12]. A. S. Porto, A. C. Ribeiro. A Tabu Search
Approach to Task Scheduling on
Heterogeneous Processors under Precedence
Constraints. International Journal of High-
Speed Computing, 2 (7), 1995, p. 45-71.

[13]. Z. Michalewicz. Genetic Algorithms + Data
Structures = Evolution Programs. Second,
Extended Edition. Springer-Verlag. 1994.

[14]. Y. M. Yufik, T. B. Sheridan. Virtual Networks:
New framework for operator modeling and
interface optimization in complex supervisory
control systems // A Rev. Control, vol. 20, p.
179-195.

[15]. R. Kh. Sadykhov, A.V. Otwagin. Solution
search algorithm of solution search for systems
of parallel processing based on a virtual neural
network model. Automatic Control and
Computer Science, vol. 35 (1), 2001, Allerton
Press Inc., New York, p. 25-33.

[16]. R. Kh. Sadykhov, A. V. Otwagin. Algorithm
for optimization of parallel computation on the
basis of genetic algorithms and model of a
virtual network. In Proceedings of the
International Workshop on Discrete-Event
System Design DESDes’01, Przytok, Poland,
June 27-29, 2001, p.121-126.

[17]. R.W. Cheng, M. Gen. Parallel machine
scheduling problems using Memetic
Algorithms // Computers & Industrial
Engineering. – Vol. 33. - № 3-4. – 1997. - P.
761-764.

[18]. N.J. Radcliffe. Formal memetic algorithms //
Evolutionary Computing: AISB Workshop; ed.

T.C. Fogarthy. - Springer Verlag, 1994. – P. 1-
16.

[19]. S. Poslad, P. Buckle, R. Hadingham. Open
Source, Standards and Scaleable Agencies.
International Workshop on Infrastructure for
Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems, June 03-07, 2000,
Manchester, UK, p.296-303.

This research is partially supported by Belarusian
Republican Foundation of Fundamental Research,
grant F08R-186.

Aleksej Otwagin was
graduated in Belarussian State
University of Informatics and
Radioelectronics (BSUIR) in
1998. He receives Ph.D. in
Computer Sciences degree in
2007 and currently works as
Assistant Professor in
Computer Science Department
at BSUIR. His scientific

interests include parallel and distributed computing,
evolutionary optimization and multi-agent
architectures.

