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Abstract: The objective of this paper is to set the context for the potential application of rough sets in prognostics. 
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1. INTRODUCTION 
This paper builds on a previous limited survey of 

AI techniques in prognostics [1]. Since the first 
comprehensive survey of AI methods used for 
prognostics, completed in 2007 [2], a number of new 
algorithms based on various AI approaches have 
been either developed or applied to prognostics 
problems. Moreover, the entire discipline of 
Prognostics and Health Management (PHM) has 
been significantly developed during this time, and 
even though no specific new survey paper has been 
published, perhaps with one exception [3], several 
articles appeared, which summarize the 
accomplishments thus far, or set up the scene for the 
future [4-8]. 

For the purpose of this paper, we adopt the 
terminology and classification of AI methods for 
prognostics as outlined in [2]. Fault diagnostics is 
defined as fault isolation and fault identification, that 
is, making attempts to “determine the location of 
fault” (fault isolation) and actually “determining 
what is wrong” (fault identification). Fault 
prognostics is defined as “determining when a 
failure will occur based conditionally on anticipated 
future usage”, which essentially means predicting 
how much time is left before a failure occurs. The 
fundamental term used in prognostics is the 
Remaining Useful Life (RUL) of a device or other 

equipment defined as “an estimation of a remaining 
life of a component prior to occurrence of a failure” 
[8]. 

This paper concerns only prognostics of technical 
systems, including electromechanical and electronic 
systems, leaving out other disciplines where 
prognostics is essential for proper operation, such as 
production systems and medical applications, for 
example. Respective survey papers exist, which 
review issues and techniques related to these other 
areas, for example [9] in medical prognostics. 

Limited to the discussion of prognostics in 
technical systems, this paper is structured as follows. 
Section 2 discusses the taxonomy of prognostics 
algorithms, which is followed by a brief review of 
two basic categories of these algorithms in Section 3 
(model based algorithms) and Section 4 (data-driven 
algorithms), including a discussion of the application 
of rough sets in prognostics. This is followed by a 
conclusion in Section 5. 

 
2. PROGNOSTICS ALGORITHMS 

TAXONOMY 
The essential categorization of prognostics 

algorithms, shown in Fig. 1, is based on the 
distinction between using analytical models 
(mathematical equations) for prediction, which leads 
to model-based approaches, and deriving 
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conclusions about system behavior from the analysis 
of measurement data, which leads to data-driven 
approaches [2]. This categorization is not disjoint, 
however, because analytical models can be enhanced 
and refined with the use of experimental data, and 
behavioral data can be analyzed using mathematical 
methods, which leads to hybrid approaches. 
Nevertheless, for the purpose of this paper such 
categorization seems logical, since it captures the 
essential difference between two views of 
approaching prognostics. 
 

 
Fig. 1 – Taxonomy of prognostics algorithms 

Model-based approaches can vary significantly, 
since there are a variety of mathematical theories 
one can use to describe the operation of technical 
systems, and they may include: differential 
equations, finite state machines, rule based systems, 
queuing theory, and other discrete models, such as 
various sorts of networks: Petri nets, Bayesian belief 
networks, and others. Many of these models are not 
purely analytical and use inference techniques 
typical to AI. 

Data-driven models, on the other hand, rarely 
include analytical knowledge, therefore they all 
involve some sort of inference. When probability 
densities governing the distribution of data are 
available, then one can use well defined statistical 
methods, for example, linear regression. However, 
exact knowledge of probability distributions is rarely 
the case, so methods, which handle incomplete 
information are applied, including neural networks, 
support vector machines, and other machine learning 
approaches, in general. 

Even though model-based systems are ideally 
based on mathematical equations and may not 
involve any AI reasoning techniques, this is rarely 
the case. So before venturing into the true AI 
methods, we first describe the principle of model-
based approaches.  

 

3. MODEL BASED ALGORITHMS 
Due to a relatively large amount of various 

theories on which prognostics models can be based, 
model-based prognostics methods range, 
accordingly, from rather simple, deterministic, 
physics based models, to more complicated models, 
where the determination of critical model parameters 
may be very involved. Essentially, model-based 
prognostics can be derived from model-based 
techniques for fault detection, isolation and 
diagnosis, which have been used for a relatively long 
time [10-11]. The process illustrated in Fig. 2, 
developed for fault diagnosis, can be extended for 
prognostics by adding prediction estimates for 
respective model parameters. Most of the 
applications of model-based techniques do not 
necessarily use AI methods, unless they are hybrid, 
if analytical models are accurate enough not to 
require additional techniques to reason about data. 
 

 
Fig. 2 – General scheme of model-based detection and 

diagnosis [10] 

 
3.1. REVIEW OF SELECTED MODEL 
BASED TECHNIQUES 

Luo et al. [12] describe such a model-based 
prognostic process, which starts with building a 
system model by using singular perturbation 
techniques of control theory. Based on the system 
model, Monte Carlo simulations are performed 
under different load conditions. Then, a prognostic 
model for component degradation, using Interacting 
Multiple Models (IMM) and parameter estimation 
method, is constructed based on simulated data. The 
degradation measure is tracked using and IMM 
estimator and the remaining life of the system is 
estimated under different future usage scenarios. The 
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process is illustrated in a suspension system of an 
automobile, with a failure mode involving a crack in 
the suspension spring caused by fatigue. 

Thumati and Jagannathan [13] propose a more 
sophisticated scheme addressing both state and 
output faults by considering separate time profiles. 
The faults are modeled using input and output 
signals of the system. The fault detection comprises 
online approximator in discrete time with an 
adaptive term. An output residual, generated by 
comparing the fault estimator with that of measured 
system output, is used as a fault indicator when it 
exceeds a predefined threshold. A parameter update 
law is developed to estimate the time to failure, 
considered as a first step to prognostics. The 
effectiveness of this approach is demonstrated using 
a fourth-order multiple-input multiple-output 
satellite system. 

There have been other multiple papers published 
on model-based prognostics. Hines and Garvey [14] 
developed a nonparametric prognostic model named 
PACE (path classification and estimation), which is 
applied to predict RUL of the steering system of a 
drill used for deep oil exploration. Sankavaram et al. 
[15] describe a hybrid approach that uses both a 
model-based prognosis applied to automotive 
suspension system and data-driven prognosis to Li-
Ion batteries and electronic systems. Application of 
model-based prognostics methods extends beyond 
typical machinery and electronics, and is also used 
in production systems, for example [16]. 

 
3.2. PARTICLE FILTERS 

Particle filters are the most recently used 
technique in prognostics and deserve special 
attention. They are best explained in the context of 
Kalman filters, used to estimate and predict internal 
state (over time) of a system described by a set of 
differential equations of a certain form, given a 
series of measurements corrupted by noise. The 
Kalman filter works best in the special case where 
the system of equations is linear and the system and 
process noise is Gaussian. Then the Kalman filter 
provides an optimal analytic solution. 

There are several generalizations of the Kalman 
filter, such as the extended Kalman filter, that make 
simplifying assumptions about the system’s non-
linearity, so that the techniques of the linear Kalman 
filter may be applied to it. However this may cause 
problems in situations where the system is highly 
nonlinear or the distribution of the noise is 
multimodal or highly skewed. It turns out that 
Particle Filters introduced less than two decades ago 
[17] are suitable to deal with these sorts of problems. 

Particle filters were introduced to solve the 
problem of state estimation in circumstances where 

other methods, such as Kalman filters, are not 
particularly effective [18]. Particle filters use 
simulation to provide a numerical solution and are 
able to handle many more general situations than 
Kalman filter extensions. The only restriction is that 
the system must meet the Markov condition, which 
means that when the system makes an update, the 
new state depends only on the current state and is 
independent of any of the past states. 

Particle filters are numerical methods for 
estimating the internal states of Bayesian models 
that use simulation. The system model describes the 
way the system updates over time and is given by 

xk = fk(xk-1, zk) 
where xk has the distribution p(xk|xk-1) for k > 0 and 
x0 has the distribution p(x0). 

The vector x is called the state vector, z is a 
random vector called the process noise that has a 
known distribution, and f is called the state transition 
function. The value of the state at time k depends 
only on the value of the state at k-1 and is 
independent of the values at all previous times. 

The measurement model is given by the 
following equation: 

yk = hk(xk,vk) 
where the vector y is called the measurement vector, 
v is a random vector called the measurement noise 
with a known distribution, and h is the observation 
function. The value of the measurement at time k 
depends only on the state at time k and is 
independent of previous measurements. 
 

 
Fig. 3 – Basic steps in the particle filter algorithm 

The computational algorithm uses simulation to 
approximate p(xk|y1:k-1), which is unknown. However 
it may not be possible to sample from this 
distribution, so another distribution q(xk|y1:k-1), called 
importance distribution (proposal) function, is 
sampled from instead. Although any distribution 
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with a support (set of values for which the 
distribution is not zero) that is a subset of the 
support of the prior may be used for q, the algorithm 
will perform better for a distribution with a shape 
close to that of p(xk|y1:k-1). 

The algorithm is initialized by taking N samples, 
called particles, from the distribution of the initial 
state, q(x0). Let’s denote the i-th particle as x0

i for 
each i belonging to [1, N]. Each particle is assigned 
a weight of w0

i = p(x0
i)/q(x0

i). The weights are then 
normalized by dividing each weight by the sum of 
all the weights so that the normalized weights ~w0

i 
sum to one. The algorithm then proceeds in three 
steps for each iteration, as described below and 
illustrated in Figure 3. 

The first step, called prediction is to approximate 
the distribution p(xk|y1:k-1). Finding this exact 
distribution requires integrating p(xk|xk-1)p(xk|y1:k-1) 
with respect to xk-1 and this integral is not tractable in 
general, so simulation is used to approximate it. The 
particles from the previous iteration are updated by 
taking a sample zk

i from the process noise for each 
particle xk-1

i and then evaluating the state transition 
function: xk

i = f(xk-1
i, zk

i). 
The second step called updating is to estimate the 

posterior, p(xk|y1:k). Each particle is assigned an 
initial weight, wk

i = p(xk
i|xk-1)/q(xk

i|xk-1). The weights 
are then normalized by dividing each weight by the 
sum of all the weights so that the normalized 
weights ~wk

i sum to one. Then p(xk|y1:k) may be 
approximated by the discrete distribution that is 
equal to ~wk

i at each particle xk
i. An estimate of the 

state at time k, xk*, may now be found by taking the 
weighted sum of all the particles. 

The third step is called resampling. Here a 
sample of size N is taken from this discrete 
distribution to replace the current set of particles and 
each new particle is assigned a weight of 1/N. It is 
necessary because the set of particles may consist of 
many particles from highly improbable regions that 
will result in all but one particle having negligible 
weights after several iterations, a situation called 
“degeneracy”. When resampling is done, particles 
with low weights are unlikely to be selected and 
particles with high weights will likely be selected 
several times. This ensures that more particles are at 
regions where the true value of the state is likely to 
be and helps to avoid degeneracy. 

The prediction step is now taken for time k+1 
and the algorithm continues until there are no more 
observations yk to consider. 

On-going research has shown great promise for 
application of particle filters to prognostics. They 
can be effectively used to track progression of 
system state in order to make estimations of 
remaining useful life (RUL), which is at the core of 
system prognostics and health management [19-25]. 

4. DATA DRIVEN ALGORITHMS 
Data-driven algorithms are the ones which are 

truly based on AI techniques, since they require 
reasoning about data patters. In this paper, we 
discuss briefly one such technique, Support Vector 
Machines, and then pursue toward description of a 
new technique based on rough sets, which to our 
knowledge has not been used in prognostics before.  

 
4.1. SUPPORT VECTOR MACHINES 

One specific method used in prognostics, which 
has been mentioned in some surveys [2] but not 
extensively covered, is Support Vector Machines 
(SVM), also known as maximum margin classifier. 
SVM is a method considered as a nonlinear 
regressive model [26], in which the dependence of a 
scalar d on a vector X is described by the formula 

d = f(X) + v 
where both the function f() and the statistic 
properties of the additive noise v are unknown.  

All the available information is a set of training 
data 

{(xi, di)} 
where i = 1…N; xi is the sample value of the input 
vector X, and di is a corresponding value of the 
output d. The problem is to give an estimate of the 
dependence of d on X. A nonlinear regression is 
performed by mapping the input vector X into a 
high-dimensional feature space, in which then a 
linear regression is performed. 
 

 
Fig. 4 – Architecture of an SVM [26].  

In the architecture of the SVM shown in Fig. 4 
[26], the kernel function K(x, xi) = ΦT(x)Φ(xi), and i 
= 1, 2, …, mi is the dimension of the feature space. It 
is also assumed that Φ(X) is defined a priori for all j. 
Given such a set of nonlinear transformations, one 
may define a formula for y, an estimate of d, as 
follows 
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y = Σ wjΦj(X) + b, for j=1…mj 
where wj for j=1…mj denotes a linear weight 
connecting the feature space to the output, and b is a 
bias. 

Caesarendra et al. [26] use SVM as a part of a 
more sophisticated approach, in a combination with 
a probability based approach, to predict a final time 
of a failure in a bearing. SVM is only a part of the 
entire procedure trained by kurtosis and the target 
vector to build the prediction model, which is then 
utilized to predict the final failure time of individual 
bearing. 

While Caesarendra et al. [26] applied this method 
to the simulated bearing failure data as well as 
experimental bearing run-to-failure data, Kim et al. 
in their paper [27] verified the proposed model on 
bearing failure data of a high pressure LNG pump. 
Although the training error for classification of six 
classes using an SVM classifier was relatively high 
(18.75%), the authors claim that the estimated RUL 
follows closely the real remaining life of the 
machine, thus validates the proposed concept as 
potentially useful for application in industry. 

Most recently, Widodo and Yang [28] used SVM 
in conjunction with survival analysis in machine 
health prognostics. In their work, survival analysis 
utilizes censored and uncensored data collected from 
condition monitoring (CM) and then estimates the 
survival probability of failure time of machine 
components. SVM is trained on data input from CM 
histories that correspond to target vectors of 
estimated survival probability. After validation, the 
SVM is employed to predict failure time of 
individual units of machine components. The 
method has been verified for simulation and 
experimental bearing data. 

Multiple other applications of SVM’s in 
prognostics exist, including specific technical 
systems, such as automotive [29], as well as non-
technical systems, such as human patients in 
medicine [30]. 

 
4.2. USE OF ROUGH SETS FOR 
PROGNOSTICS 

Rough sets, invented by Zdzisław Pawlak in 
1981, are a mathematical method of dealing with 
incomplete information and uncertainty [31-32]. As 
such, they seem ideal to making predictions and 
prognostics. Nevertheless, there have not been any 
applications of rough sets to prognostics, except one 
we’ve found [33]. In this section, we present a 
method of using rough sets to build a system health 
prognostics model, and discuss how it fits into the 
overall taxonomy of AI methods in prognostics. 

The rationale behind using a rough sets approach 
for health degradation estimation and prediction is 

three-fold: 
a) It sets the focus on splitting the data into two 

parts: completely healthy and partly degraded (with 
different levels of degradation), 

b) Offers tools to measure the level of health 
ambiguity and health degradation, and 

c) Facilitates intelligent data mining, by 
considering relationships between unambiguous and 
ambiguous data, known from the psychology of 
human perception as intelligent. 

A. Mathematical Background. The rough sets 
approach incorporates the Universe U of degradation 
signals (called test points) and a set R of equivalence 
relations. Examples of a test points are: (a) trf, the 
set of measurements of turbine fan vibration level 
over time, (b) tit, the set of Turbine Inlet 
Temperatures over time. 

Each test point u � U has its own corresponding 
equivalence relation r � R. Each first level 
equivalence relation r for each test point u describes 
the equivalence class of the measurements “in 
healthy condition” not looked for, because the focus 
is on health degradation. Health degradation of a 
part described by the test point u is represented by 
the complement of u/r in u. 

Diagnostics of a health problem is frequently 
based on a specific non-empty intersection of the 
equivalence relations “in degraded condition”. For 
instance, a disintegration of an engine is likely to 
happen when 

TRF/degraded ∩ TIT/degraded ≠ Ø 
where degraded ≡ “'in degraded condition”.  

Engine disintegration is thus representable by 
non-empty indiscernibility relation [34] over two or 
more specific equivalence relations, e.g. 
disintegration ← IND{trf_degraded; tit_degraded} 

= trf/degraded ∩ tit/degraded 
executed on paired elements that occur at the same 
time. 

Unhealthy situations are detected by rough sets 
variance. Rough sets variance prevents obscuration 
of degradation information by measuring distance to 
healthy interval. Statistical population variance of 
variable X:  

Var(X) = 1/N Σ(x-x*)(x-x*) 
where (x-x*) is a measure of deviation of the values x 
from their mean x* 

The statistical variance obscures degradation 
information, because it collects into the sum also 
healthy measurements. 

There may be no significant difference between: 
(a) a signal of a few unhealthy measurements 
accompanied with a large number of small 
deviations from the mean and (b) a signal of no 
unhealthy measurements accompanied with a large 
number of slightly higher (but still normal) 
deviations from the mean. Therefore, using rough 
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sets variance makes sense to measure degradations, 
because rough sets variance of variable X for N 
measurements is equal [34] 

rsVar(X) = Median|x – L(X)| 
where L(X) is the value of the healthy range of X, 
nearest to x. The value of x must be outside of the 
healthy range, otherwise: x – L(X)=0 and is rejected 
from considering to the median. Only non-zero 
degradations from the healthy range L(X) count. 

Rough sets variance is non-linear. For a large 
number of elements, the rough sets variance may 
also be expressed by [34] 

rsVar(X) = 1/N Σ(x – L(X))(x – L(X)) 
or by 

rsVm(X) = 1/N Σ|x – L(X)| 
Statistical covariance between variables X and Y 

is equal:  
Cov(X, Y) = 1/N Σ(x – x*)(y – y*)) 

Rough sets covariance between variables X and Y for 
N measurements is as follows [34]: 

rsCov(X,Y) = Median(x – L(X))(y – L(Y)) 
Also, rough sets covariance provides very high 

signal-to-noise ratio, as opposed to the statistical 
covariance, which incorporates the mean. For a large 
number of elements the rough sets covariance may 
also be expressed by  

rsCov(X) = 1/N Σ(x – L(X))(y – L(Y)) 
Bringing this to the world of health management, 

the equivalence class of measurements x taken at test 
point X of a part represented by the equivalence 
relation r = in degraded condition equals 

x/r = ∩{x ε X: |x| > rsVar(X)} 
where |x| > rsVar(X) ≡ r ≡ “degraded”. The sign ∩ 
means that r ≡ “degraded” is the indiscernibility 
relation over all historical data of the test point X. 

With the approximate knowledge denoted as 
k=(X,”degraded”), the degraded health at test point 
X can be approximated by two subsets [32] 

LOxr = U { x ε x|r: x  X} 
UPxr = U { x ε x|r: x crossSection X.neq. Ø} 

called, respectively, the lower and upper 
approximation of health degradation represented by 
the test point X. 

B. Applicability of the Theory. The proposed 
rough sets mechanism analyzes data recorded from 
interrelated system components and makes 
predictions using the degradation levels of these 
components and health status measurements from 
historical data. 

Statistical failure time does not predict failure of 
a particular item based on its specific level of 
degradation, but on statistics of a large number of 
items. Repairs can be made on a specific part that is 
less degraded than the statistical one, and an 
enormous risk is with any part that is degraded more 
than that statistical. Intelligence is of value here: if 
one knows, which part is less degraded than 

expected, one can let it work for some time longer. 
But if it is used up too much than expected, then it is 
too dangerous not to make a repair or replacement 
somewhat earlier than expected. 

Conditional maintenance not only costs less, but 
prevents unexpected crushes. Influence of one part 
on degradation of another part is also needed to 
make better predictions, because one cannot have a 
sensor of degradation at any part of the system. 
Influences can be learned and collected into a 
knowledge database. Without the deterministic 
knowledge of the degradation level and influences 
on degradations of other parts, no other health status 
can be determined except the probability of survival 
for the item being measured. This assumption is 
true, e.g., when material fatigue leads to a failure. 

Application of the proposed model needs 
knowledge of events co-existing in time and 
properties of changes of observations over time. All 
this knowledge can be acquired in real time from 
historical databases. The proposed approach makes 
sense of knowledge. 

The proposed data fusion system described in 
[34] consists of terms, which are the products of 
ratios of degradation and the ratios of influences on 
the degradations. The parts degradation data fusion 
system is deterministic for data sequenced by time. 
It exploits available degradation signals and gets 
optimized by removal of insignificant terms, e.g., 
when one part does not influence another. The 
influences are computed by rough sets correlations. 
The model is hierarchical and does not limit the 
object’s complexity. Reasoning is deterministic and 
rule-like chaining is applicable. 

Determinism of time sequences allows using 
simple inequalities with weights learned at the time 
of major events such as failure times, near-failures 
or major repairs. Patterns of degradation are created 
from historical data at times of known failures or 
major repairs. Predictions are made by: (i) matching 
current object conditions with the patterns of 
degradation learned through historical data, and (ii) 
computing and applying the increments of 
degradations and of the influences on the 
degradations learned from the patterns matched, 
minute-by-minute, to see when possible failures 
could happen. 

A method is offered for computing elementary 
increments to extrapolate the actual and predicted 
patterns of degradation to the points of predicted 
failures and repairs. The system avoids obscuration 
of rare degradation measurements by healthy 
measurements by using rough sets: any healthy 
status is immediately considered irrelevant. 
Logistics operations can be optimized by accurately 
preparing to predicted repairs. Influences of 
environmental degradations that start to affect 
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system at the earliest stages can be traced back. 
The existing structural modeling and regression 

models are equalities, not inequalities. The new 
proposed reasoning is based on testing the inequality 
in each modeling record, making a rule that fires an 
alarm if the measurement data implies a significant 
level of degradation. Records of lower-level 
components are listed and executed first, and 
whenever inequality is true, using its right side as an 
operand of one of the inequalities that is listed later 
as a higher-level component. Coefficients are not 
computed as in structural modeling by minimizing 
an error, but by a new machine learning from time-
sequenced events. 

By incorporating rough sets degradation 
covariances, that is, influences of degradations of 
parts on each other, the proposed method directly 
rejects obscuration by all measurements 
indiscernible by healthy status, automatically sets to 
0 all influences of no impact on the system 
degradation, and retains only critical influences 
degrading the system. By this the proposed system 
correctly assesses the critical factors for prediction. 
Relating health status measurement to the 
equivalence class of the healthy ranges and not to 
the mean or to median is the key difference of the 
proposed approach with respect to statistics. Ratios 
directly representing health problem level are 
incorporated, and not the values of the variables as 
commonly used in statistics. 

A numerical example of the application of this 
method to health prognostics of a jet engine can be 
found in [34]. 

 
5. CONCLUSION AND FUTURE WORK 

The objective of this paper was to place rough 
sets in the context of AI techniques used for 
equipment health prognostics and outline the 
applicability of rough set theory for the evaluation of 
health degradation. In this view, it seems that rough 
sets allow for accurate data mining and prediction, 
with such new tools as rough sets variance, rough 
sets covariance, time-sequenced data fusion model, 
and deterministic machine learning. The rough sets 
compound covariance proves successful to mine and 
detect engine disintegration, and new time-
sequenced data fusion model to predict it in real 
time. Determinism of these new tools assures higher 
accuracy of predictions and increased precision 
when mining of historical data. 

The proposed rough sets prognostic model 
considers only data sequenced by time [34]. The 
time makes data mining deterministic in the domain 
of health degradations. Predictions are more accurate 
when data are deterministic, or much less amount of 
data is needed for the same quality of predictions. 

Most data analysis tools are concerned with implicit 
static-like data (i.e., not necessarily sequenced by 
time) and rather probabilistic type of events, where 
time plays no significant role. Instead, randomness is 
important to be statistical. Prediction is inherently 
time-dependent and it is not easy to apply a 
statistical inference to it because statistics is 
basically static. Needles to say, also the basic rough 
sets theory is concerned with implicit static-like 
data. The if-then rules generated from this type of 
data are probabilistic in nature. In contrast to that, 
the new rough sets model involves only data 
sequenced by time. 

The state-of-the-art machine learning methods do 
not adapt to the time of an event but to the event 
itself: such prediction of time of fault or time of 
repair is not direct and therefore incurs inaccuracies. 
A near-deterministic approach proposed allows 
making predictions based on degradation patterns 
gathered automatically for different applications and 
at the time moments of failures. Prediction of 
failures and the health status takes place by 
deterministic application of these increments to the 
actual patterns of degradation matched. Statistical 
(and non-deterministic) predictions would require 
more cases, which are not always available. 

Machine learning is commonly understood as a 
slow adjustment of weights, and not just by setting 
the weights using knowledge. Rough sets variance 
and covariance set values and weights of the new 
deterministic data fusion model, which constitute 
knowledge model for time-sequenced prognostic, 
faster and more accurate compared to statistical or 
stochastic adjustment of weights. 

The advantages of the proposed machine learning 
that computes each weight as unknown from the 
equations are: (i) high precision of classification; (ii) 
high speed of accurate machine learning even from 
one example to classify one class of degradation 
cases; and (iii) simplicity, by adjusting weights 
directly on the level of dichotomization concepts and 
by this easiness to interpret the machine learning 
process. 

This new approach uncovers large areas of 
applications for rough sets, including predictions of 
health problems, diagnostics, mission readiness 
evaluation, equipment maintenance, optimization of 
logistics operations, avoidance of unnecessary 
repairs and high risks of failures with crushes, and 
data fusion for decision making. 
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