
Srilatha Chepure, Guru Rao C.V., Prabhu G. Benakop / Computing, 2012, Vol. 11, Issue 2, 130-136

 130

ON CHIP MEMORY REDUCTION TECHNIQUE FOR DATA DOMINATED
EMBEDDED SYSTEMS

Srilatha Chepure 1), Guru Rao C.V. 2), Prabhu G. Benakop 3)

1) Department of ECE, ASTRA, Hyderabad, India-500008

2) Department of CSE & Principal, KITS, Warangal, India-506015
3) Department of ECE & Principal, ATRI, Hyderabad, India-500039

E-mail:deepuaurora@yahoo.com, guru_cv_rao@hotmail.com, pgbenakop@rediffmail.com

Abstract: This paper proposes an approach for optimization of on-chip memory size in data dominated embedded
systems. Large amount of array processing is being involved in this category. In order to produce a cost effective
system, efficient designing of memory module is quite critical. The memory module configuration being selected by the
designer should be well suitable for the application. In this regard, this paper presents a methodology for effective
optimization of on-chip memory. For sensitive applications involving large array processing, the entire processing has
to be done using embedded modules. While using such modules, care should be taken to meet optimized profile for the
design metrics. With help of loop transformation technique, relatively a good amount of memory size requirement is
reduced for the arrays. This approach results in a very close memory estimate and an effective optimization. This
methodology can be further extended to meet the high level memory optimization applications based on cache
characteristics. Speech processing front end mechanism is implemented and shows that this approach gives up to an
achievement 61.3% reduction of overall system memory requirement over the estimation approach. Results are
provided in terms of comparison of the two approaches of memory estimation and optimization with respect to both of
the program and data segments.

Keywords: Embedded systems, memory, estimation, and optimization.

1. INTRODUCTION
In today’s embedded systems, memory represents

a major bottleneck [1] in terms of cost, performance,
and power. Optimal designing of memory space is
very crucial in embedded system designing. Also, a
large amount of array processing is being involved
in current day embedded applications. Hence, it is
very critical to come out with methodologies for
memory size estimation and optimization. In
embedded applications involving large amounts of
data processing i.e. Data dominated embedded
systems, much power consumption is because of the
global communications and memory hit/miss rates.
Thus it is important to estimate the memory
requirements for the data structures and code
segments for that particular application. Memory
requirement is defined as the number of locations
needed to satisfy the storage requirements of a
system. It is very important to effectively predict the
system’s memory requirements without
synthesizing, in order to obtain a high profile end
product, as it results in a reduced design time. In this
paper, we present an optimization strategy for
efficient on-chip memory requirement. Here

memory optimizing transformations are employed to
reduce the memory size and number of accesses.
This aim at reusing of memory space, thus giving a
fast estimate of memory size. Though addressing
becomes complex, it is preferable to allow sharing
among arrays which aids in optimizing the memory
size.

Consider: int a [xyz];
int b [xyz];

This involves two arrays in sequential order. As
said above, if sharing is allowed between arrays, the
memory size reduces as follows:
 Struct share

{
 int a;
 int b;

}
struct share shared_array[xyz];

After allowing sharing between arrays, it
involves only one structured array. Here the array
sharing removes the conflicts between a and b there
by improving spatial locality.

The paper is organized as follows: Section 2
briefly reviews some previous work done in the area

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Srilatha Chepure, Guru Rao C.V., Prabhu G. Benakop / Computing, 2012, Vol. 11, Issue 2, 130-136

 131

of memory estimation and optimization. The
proposed methodology is described in Section 3.
Section 4 gives a brief description about an
exemplary data dominated embedded system along
with its memory requirements, while its experiment
set up is explained in section 5. Section 6 and 7
shows the results of the task implemented and its
conclusion.

2. RELATED WORK

Embedded applications have a built in hierarchy.
An application is composed of several modules,
where each module consists of one or more code and
data segments. [2,3] employed optimization by
placing of frequently accessed data variables in on-
chip SPRAM and placing less frequently accessed
data variables in off chip RAM. Partitioning data
arrays that are accessed simultaneously in the same
processor cycle into different on-chip memory banks
[4, 5] forms a good optimization for array dominated
systems. [6, 7] showed that swapping critical code
and data segments from off-chip memory to on-chip
memory before the execution of the appropriate code
segment aids in efficient optimization. Except for
the swapping technique, which works on both code
and data, all the other techniques concentrate only
on data. Managing data is very important because
most of the embedded applications are data
dominated [8]. Stochastic search methods using
genetic algorithms [9] were heuristic. Storage
allocation methodology [10] employed compliers for
estimation. Our approach optimizes memory
module, while [11] dealt only with memory
allocation process. For general purpose systems
whose area of application is wide, the dynamic
memory allocation is supported by custom managers
[12]. Also, [13, 14] showed memory optimizations
and techniques to reduce memory footprint along
with power consumption and performance factors on
static data for embedded systems. Array based data
flow preprocessing considers program size as well as
data size [15] is applicable only for partially fixed
execution ordering. In [16], the design metric
constraints were area and number of cycles, while
the proposed methodology also considers power
consumption. Live variable analysis along with
integer point counting method [17] is not applicable
for large multi-dimensional loop nest as it needs
complex computations. [18] Is based on analysis of
memory size behavior taking into account that
signals with non-overlapping lifetimes share same
memory locations. Memory system design for video
processors [19] had constraints on area, cycle time.
[20] proposed data memory size and number of
cycles as design metrics. Memory allocation
problem [21] was solved by meeting optimum cost

but efficient memory access modes were not
exploited. To reduce the power consumption,
number of off-chip accesses as well as size of
storage during memory optimization, loop
transformation reordering is presented in this
methodology which is much more beneficial. This
proposed methodology is validated by performing
experimentation on a data dominated
communication module. Our approach even works
for multimedia applications involving large array
processing.

3. APPROACH

The output of our approach is an optimized
estimate of the memory size. This paper describes a
procedure for memory optimization for low power
embedded systems. Here the system consists of a
register file, a data cache and an instruction cache
on-chip, and a large memory off-chip. The first step
of the procedure is application of memory
optimizing transformations to reduce the memory
size and number of accesses. In involves the
application of loop transformations to reduce power
in data dominated applications.

Loop transformation aims at regularity and
locality of reference. It basically involves the
following:

a) Loop reordering
b) Loop fission
c) Loop interchange
d) Loop fusion
Loop reordering allows arrays to share memory

space, thereby reducing the size of the on chip
memory. Loop interchange helps to reduce the
number of memory reads. The number of memory
accesses and the size of storage significantly reduce.
However, each transformation has its own special
legality test based on the direction vectors and on the
nature of loop bound expressions.

a) Loop reordering
Here the loops which employ arrays that are not

alive in the rest of the code are placed at the top such
that off chip memory size is reduced. Thus saved
memory can be used to accommodate other arrays.

Consider: Loop1: For (i= 0; i<N; i++)
p[i]=q(b[i])

Loop 2: For (i= 0; i<N; i++)
r[i]=f(s[i])

Loop 3: For (i= 0; i<N; i++)
a[i]=f(b[i],c[i],d[i])

Loop 4: For (i= 0; i<N; i++)
t[i]=f(u[i])

After Loop reordering:
Loop 3: For (i= 0; i<N; i++)

a[i]=f(b[i],c[i],d[i])
Loop1: For (i= 0; i<N; i++)

Srilatha Chepure, Guru Rao C.V., Prabhu G. Benakop / Computing, 2012, Vol. 11, Issue 2, 130-136

 132

p[i]=q(b[i])
Loop 2: For (i= 0; i<N; i++)

r[i]=f(s[i])
Loop 4: For (i= 0; i<N; i++)

t[i]=f(u[i])
b) Loop fission
For the loops do not have any data dependencies

or which involves different access patterns, loop
fission is implemented.

Consider: For (i= 0; i<N; i++)
For (j= 0; i<N; j++)
p[i,j]=f(p[i,j-1])
q[i+1,j]=f(q[i-1,j])

After loop fission
For (i= 0; i<N; i++)
For (j= 0; i<N; j++)
p[i,j]=f(p[i,j-1])
For (i= 0; i<N; i++)
For (j= 0; i<N; j++)
q[i+1,j]=f(q[i-1,j])

c) Loop interchange
It aids in reducing the memory accesses. Also, it

increases the variable usage by which they can be
easily stored in registers instead of storing in
memory module. Thus, the amount of on chip
memory reduces.

Consider:
for (n = 0; n < 100; n = n+1)

 for (m = 0; m < 100; m = m+1)
 for (l = 0; l < 2000; l = l+1)
 a[i][j] = 4 * a[i][j];

After loop interchange
for (n = 0; n < 100; n = n+1)

 for (l = 0; l < 2000; l = i+1)
 for (m = 0; m < 100; m = j+1)
 a[i][j] = 4 * a[i][j];

d) Loop fusion
It helps in reducing the number of memory

accesses and also the size of off-chip memory. This
is done is done if there are data dependencies
between the two fusing loops. This is because loop
fusion causes an increase in the size of the loop body
which in turn causes an increase in the minimum
cache size which in turn causes an increase in the
energy consumption.

Consider:
for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];

After Loop fusion

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {

a[i][j] = 1/b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];

}

Fig. 1 – Loop transformation flow

Thus the loop transformation technique reduces

memory requirements, as each iteration involves
fewer references. This in turn improves the cache
performance significantly. But splitting of the
involved references might reduce the number of
dependencies inhabited in the loop.

4. AN EXEMPLARY DATA DOMINATED

EMBEDDED SYSTEM:
SPEECH RECOGNITION MODULE

Speech recognition is one of the most significant
real time embedded application. In this, the entire
signal processing front end mechanism has to be
done using embedded modules. It basically requires

Srilatha Chepure, Guru Rao C.V., Prabhu G. Benakop / Computing, 2012, Vol. 11, Issue 2, 130-136

 133

efficient memory analysis as they are small in size
and are battery powered. As a result, memory
analysis of such a system is very valuable for system
design. Figure shows the speech recognition system
block diagram. The decoder’s computation is
iterative, and each iteration processes a new
observation vector from the speech front end. In
every iteration, each state in the recognition network
executes two steps:

1) Computation of observation probability for the
current observation

2) Examination all the incoming tokens and
selecting the best one.

Fig. 2 – Speech recognition block diagram

Markov method is employed for time variants
having discrete state spaces. Each of the discrete
space state gives out speech perceptions as per its
probable distribution. Thus obtained speech
perceptions can be either discrete or continuous.
They basically represent frames. As the states cannot
be observed directly, it is termed as hidden Markov
model. The following is the speech recognition
algorithm. It consists of two parts. First is the search
algorithm and second is the processing part.

Memory bandwidth, a traditional bottleneck in
parallelizing speech computation, can be easily
overcome by integrating multiple blocks of memory
along with required logic on the same chip. This
reduces the power consumption as well as memory
access latencies.

The system has RAM memory to hold the
following:

• Frame length
• Real part of the intermediate FFT radix-2

stages.
• Imaginary part of the intermediate FFT radix-

2 stages.

• Mel-filter spaced values
• Quantization tables
Along with the above said, ROM is required to

store the following:
• To store Hamming window factors.
• Twiddle factors
• DCT factors

5. EXPERIMENTATION
The methodology employed the Texas

Instruments TMS320C6701 processor for the
experiments and Texas Instrument’s Code Composer
Studio (CCS) environment for obtaining the profile
data. The program memory consists of a 64K-byte
block that is user-configurable as cache or memory-
mapped program space while the data memory
consists of two 32K-byte blocks of RAM. Code
Composer Studio V2.2 [22] is employed to run the
applications. Initially the applications are compiled
with the CCS2.2 compiler with the default memory
placement made by the compiler. The compiled
application is loaded and simulated in the simulator
to obtain the profile information. [23,24,25]. the
main inputs for experiments on the speech
recognition module are the access characteristics of
the data segment. Also TI’s ASIC memory library is
used for the memory allocation step. The kernels of
the applications are developed in hand optimized
assembly code. The profile data is obtained by
running the compiled executable in a cycle accurate
software simulator. For obtaining conflict data we
used a bank of single-access RAM that fits the
application data size. The output profile data contain
frequency of access for all data sections.. In the due
process, the simulation and the estimation based
approaches are analyzed with respect to each of the
results.

6. RESULTS

Memory trace
The following are the memory estimation and

optimization values obtained.
Parameter Memory

Estimation
Optimized
memory

Data segment 14 KB 7.1 KB
Program segment 68 KB 43.2 KB
Total module 82 KB 50.3 KB

Memory trace for the implementation is shown in

fig. 3. It considers program and data segments on the
X axis and required memory size on the
corresponding Y axis. A plot of it results in a
memory trace which is the estimated size that caters
the storage requirements of both program and data
segments in accomplishing the task of signal
processing front end mechanism.

Srilatha Chepure, Guru Rao C.V., Prabhu G. Benakop / Computing, 2012, Vol. 11, Issue 2, 130-136

 134

70

72

74

76

78

80

82

84

0 20 40 60 80 100 120 140

Fig. 3 – Memory estimation for Program and data

segments

Memory optimization

Fig 4 shows an effective trace yielding in
optimized memory requirement. It considers
program and data segments on the X axis and
required memory size on the corresponding Y axis.
With help of loop transformation techniques this
methodology results in a reduction of 31.7 Kbytes.

48

48,5
49

49,5

50
50,5

51

51,5

0 40 80 120

Fig. 4 – Memory optimization for Program and data

segments

0

10

20

30

40

50

60

70

Estimation Optimized

Fig. 5 – Memory estimation and Optimization

depiction for program segment

0

2

4

6

8

10

12

14

Estimation Optimized

Fig. 6 – Memory estimation and Optimization

depiction for data segment

0
10
20
30
40
50
60
70
80
90

KB

estimated optimized

Fig. 7 – Total Memory estimation and Optimization

depiction

Srilatha Chepure, Guru Rao C.V., Prabhu G. Benakop / Computing, 2012, Vol. 11, Issue 2, 130-136

 135

7. CONCLUSIONS
This paper proposes an optimization strategy for

memory module in low power embedded systems.
The approach presented efficiently optimizes the
memory module, in turn optimizing the design time.
Loop transformations are applied to reduce the
number of off chip memory accesses and also the on
chip memory requirement. Also, the methodology is
validated by performing experiments on an
embedded speech Recognition module, showing an
effective reduction in the memory requirement of the
system. In this approach, loop level transformations
are applied for memory optimization, which
considerably reduces the number of memory
accesses. Depending upon the results, even
algorithm based optimization can be done with an
aim of further reducing the memory size.

ACKNOWLEDGEMENT

This work was partially funded by Aurora’s
Scientific Technological & Research Academy,
India.

REFERENCES

[1] Peter Grun, Nikil Dutt, and Alex Nicolau,
Access Pattern Based Memory and
Connectivity Architecture Exploration, ACM
Transactions on Embedded Computing
Systems, (2) 1 (2003), pp. 33-73.

[2] O. Avissar, R. Barua, and D. Stewart,
Heterogeneous memory management for em-
bedded systems, in Proceedings of ACM 2nd
International Conference on Compilers,
Architectures and Synthesis for Embedded
Systems (CASES), November 2001.

[3] P. R. Panda, N. D. Dutt, and A. Nicolau,
Memory issues in Embedded Systems-on-chip:
Optimizations and Exploration, Kluwer
Academic Publishers, Norwell, Mass., 1998.

[4] M. Ko and S. S. Bhattacharyya, Data
partitioning for DSP software synthesis, in
Proceedings of the International Workshop on
Software and Compilers for Embedded
Processors, September 2003.

[5] M. A. R. Saghir, P. Chow, and C. G. Lee,
Exploiting dual data-memory banks in digital
signal processors, In Proceedings of the 7th Intl
Conference Architectural Support for
Programming Languages and Operating
Systems, (October 1996), pp. 234-243.

[6] M. Kandemir, J. Ramanujam, and
A. Choudhary, Improving cache locality by a
combination of loop and data transformations,
IEEE Transactions on Computers, 1999.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vechi,
Optimization by simulated annealing, Science,
1983, 220 p.

[8] F. Catthoor, N. D. Dutt, and C. E. Kozyrakis,
How to solve the current memory access and
data transfer bottlenecks: at the processor
architecture or at the compiler level? In Design,
Automation and Test in Europe Conference and
Exhibition, (2000), pp. 426-433.

[9] J. C. Spall, Introduction to Stochastic Search
and Optimization: Estimation, Simulation, and
Control, Wiley, 2003.

[10] J. Sjodin and C. Platen, Storage allocation for
embedded processors, in Proceedings of ACM
2nd International Conference on Compilers,
Architectures and Synthesis for Embedded
Systems (CASES), November 2001.

[11] J. Seo, T. Kim, and P. Panda, Memory
allocation and mapping in high-level synthesis:
an integrated approach, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
(11) 5 (2003).

[12] RTEMS Research, O.-L. A. RTEMS, Open-
source real-time operating system for
multiprocessor systems, 2002.

[13] Panda P.R., Catthoor F., Dutt N.D.,
Danckaert K., Brockmeyer E, Kulkarni C.,
Data and memory optimizations for embedded
systems, ACM Trans. Des. Automat. Elect.
Syst. (6) 2 (2001), pp. 142-206.

[14] Benini L., De Micheli G., System level power
optimization techniques and tools, in ACM
Trans. Des. Automat. Embed. Syst. 2000.

[15] P. G. Kjeldsberg, F. Catthoor, E. J. Aas,
Storage requirement estimation for data
intensive applications with partially fixed
execution ordering, Proceedings of 8th
International Workshop on Hardware/Software
Codesign, San Diego, (May 3-5, 2000), pp. 56-
60.

[16] M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
and W. Ye, Influence of Compiler
Optimizations on System Power, 37th
IEEE/ACM Design Automation Conference,
(2000) pp. 304-307.

[17] Y. Zhao, S. Malik, Exact memory size
estimation for array computations without loop
unrolling, Proceedings of 36th ACM/IEEE
Design Automation Conference, New Orleans
LA, (June 1999), pp. 811-816.

[18] P. Grun, F. Balasa, N. Dutt, Memory size
estimation for multimedia applications,
Proceedings of the 6th International Workshop
on Hardware/Software Codesign, Seattle WA,
(March 1998), pp. 145-149.

[19] S. Dutta, W. Wolf, and A. Wolfe, A
methodology on evaluate memory architecture

Srilatha Chepure, Guru Rao C.V., Prabhu G. Benakop / Computing, 2012, Vol. 11, Issue 2, 130-136

 136

design tradeoffs for video signal processors,
IEEE Transactions on Circuits and Systems for
Video Technology, (8) 1 (1998).

[20] P. R. Panda, N. D. Dutt, and A. Nicolau, Data
Cache Sizing for Embedded Processor
Applications, Technical Report ICS-TR-97-31,
University of California, Irvine, June 1997.

[21] H. Schmit and D. E. Thomas, Array mapping
behavioral synthesis, ISSS, 1995.

[22] Texas Instruments,
http://focus.ti.com/dsp/docs/. Code Composer
Studio (CCS) IDE.

[23] TMS 320C6201/6701 Evaluation Module,
Technical Reference, Texas Instruments.

[24] TMS320C6000 Code Generation Tools Online
Documentation (SPRH014E) 1998-2000 Texas
Instruments Incorporated.

[25] The TMS 320C6X Optimizing C Compilers
User’s Guide (SPRU 187), Texas Instruments.

Ms. Srilatha Chepure
received her Bachelor’s
Degree in Instrumentation
Engineering from Osmania
University, Hyderabad, India.
She is a Master degree
holder in Embedded Systems
from Jawaharlal Nehru
Technological University,
Hyderabad, India. Currently,

she is an Assistant Professor at Aurora’s Scientific
Technological & Research Academy. She has six
years of teaching experience at college level. Her
area of interest includes embedded systems, Real
time systems. She is carrying out her research work
in the field of embedded systems under the
guidance of Dr. C V Guru Rao, Principal, KITS
College, Warangal, India. She has four International
paper publication to her credit. She is a life member
of Computer Society of India and Instrumentation
Society of India.

Dr. Guru Rao C.V. received
his Bachelor’s Degree in
Electronics & Communi-
cations Engineering from VR
Siddhartha Engineering
College, Vijayawada, India.
He is a double post graduate,
with specializations in
Electronic Instrumentation
and Information Science &
Engineering. He received his

M.Tech in Electronic Instrumentation from Regional
Engineering College, Warangal, India and M.E in
Information Science & Engineering from Motilal
Nehru Regional Engineering College, Allahabad,
India. He is a Doctorate holder in Computer Science
& Engineering from Indian Institute of Technology,
Kharagpur, India. With 24 years of teaching
experience, currently he is the Professor and Head,
department of CSE, SR Engineering college,
Warangal, Andhra Pradesh, India. He has more than
35 National and International publications to his
credit. He is the Chairman, Board of Studies for
Computer Science & Engineering and Information
Technology, Kakatiya University, Warangal. Also, he
is the Editorial Board member for International
Journal of Computational Intelligence Research and
Application journal. He is a life member of Indian
Society for Technical Education, Instrumentation
Society of India, and member of Institution of
Engineers, Institution of Electronics &
Telecommunications Engineers and Institution of
Electrical & Electronics Engineers (USA).

Dr. Prabhu G. Benakop, Professor in ECE and the

Director of ATRI. He has 24
years of teaching experience.
His research interest is in the
areas of Microprocessors,
Computer Networks and VLSI.
He has 32 publications in
various national and
international conferences and
journals. Presently 8 research
scholars are working under

him for their Ph.Ds. He is a Senior member of IEEE
and life member of ISTE,ISOI.

