
Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 180

EARCT- ENVIRONMENT FOR AUTOMATED RANK BASED
CONTINUOUS AGENT TESTING

Ashok Kumar 1), Vinay Goyal 2)

1) Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, India

2) Panipat Institute of Engineering & Technology, Samalkha, Panipat, India
vinaykuk@gmail.com

Abstract: Testing MAS (Multi-agent System) is a challenging task because these systems are distributed, complex and
autonomous in nature. Agents exist in an open environment having their own locus of control and they require context
awareness. So due to these agent’s characteristics, testing MAS system using existing testing techniques becomes a very
tedious job. Agents also pose problems regarding message communication and semantic interoperability, as well as
synchronization with other agents existing in the environment. All these features are known to be hard not only to
design and to code, but also to test. In this paper we will propose a unique environment EARCT to test MAS keeping in
mind the essential software engineering paradigms such as effort consumed, errors revealed etc.

Keywords: Agents Testing Autonomous Ranking.

1. INTRODUCTION
Current research and development on agent

oriented technology mainly put emphasis on
designing architecture, formalizing protocols,
designing frameworks etc.Very limited research
work has been carried out on testing multi agent
system [1,2,3]. The agent-oriented paradigm is
considered a natural extension to the object-oriented
(OO) paradigm, but agents are different from objects
in many ways [4,5]. Although there are well-defined
OO testing techniques, agent-oriented development
has neither a standard development process nor a
standard testing technique. Since, in MAS (Multi
agent system) there are several agents existing in an
environment [6,7] as distributed components, which
are proactive and autonomous, so it is possible that
same inputs can provide different outputs on
different execution. The problems posed by the
agents and Multi agent system testing are well
recognized [8], and some of the more significant
ones are discussed in next section.

2. BACKGROUND

As noted above, this section identifies and
describes some of the major problems posed by
Multi-Agent Systems.

Autonomous and social nature: Agents are
autonomous in nature and due to their social
capabilities- they cooperate with other agents present

in the environment. MAS testing tools must have a
comprehensive view over all distributed agents in
addition to local knowledge about individual agents,
in order to check whether the whole system operate
accordingly to the specifications or not. Moreover, it
may be possible that a single agent ran successfully
and correctly as a stand-alone entity but incorrectly
in a community or vice versa.

Complexity: As agents are autonomous and are
run concurrently in a distributed environment, it
becomes very difficult to determine the exact
boundary of a test case. Distributed and concurrent
environments often pose a challenge before testing
team.

Agent Communications: Agents communicate
with each other via message passing and not by
method invocation as in object oriented technology,
so existing object oriented technology testing
techniques are not applicable for agent based testing.

Non-Deterministic nature: Agent’s nature is
non-deterministic in nature because it is not possible
to determine in prior all possible interactions of an
agent during its execution.

Irreproducibility effect: Due to an agent’s pro-
active and autonomous nature, we cannot guarantee
that two executions of the systems will lead to the
same output state, even if the same inputs are used
because agents can modify their knowledge between
any two executions. As a result, looking for a
specific error can be difficult if it cannot be
replicated [9].

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 181

Amount of data: MAS can constitute numerous
agents, as each agent processes its own data. To test
such a huge amount of data is itself a very
challenging task for the testing team. Also agents
operate asynchronously and in a parallel manner
which is also challenging for a testing team.

Agent Ranking: There is no way a testing team
can assess out the importance or rank of a particular
agent. It might be possible that a particular agent is
acting as a core element of the system, and another
as an outside scaled agent with less knowledge about
its internal state and behavior. Agents with top
ranking (most important agents) must be given extra
attention and resources during testing and third party
agents or agents with lower ranking may be tested
with limited resources. This will result in more
effective resource utilization during testing phase
and will improve proper operation of the core
functionalities for the whole system.

Agent Inter-Dependency: As agents are social
in nature and are autonomous also, they can interact
with other agents present in the environment to
fulfill their goal. Because of this, there exist many
execution paths which can be followed by an agent.
It is difficult to test each and every path for
correctness, completeness and consistency.

Black Box MAS: MAS can also be considered as
«black-box»; that is, they may provide very little or
some time no observational primitives to the outside
world, resulting in limited access to the internal
agents’ state, their expected behavior and
knowledge. This kind of MAS could be quite
difficult to test, in that the test result (PASS or
FAIL) may be hard to assess.

3. RELATED WORK

There is a very brief literature available on the
testing of Agent. In fact, in recent times, few
automated techniques are proposed to test agents and
test strategies soon. Also work agent testing was
done at various levels of testing such as unit-level
(agent level), the level of integration (MAS) and
system level. In fact, there is very little that AOSE
explicitly define the test phase and test mechanisms.
Zhang [10] introduced a framework for Model
Based Testing using design patterns of the
Prometheus agent development methodology. This
framework focuses on testing agent plans (units) and
mechanisms to generate test cases and appropriate to
determine the order in which units are to be tested.
Ekinci [11] stated that the goals of agents are the
smallest testable units and MAS proposed to test
these units through the test objectives. Each test
objective is conceptually divided into three sub-
goals: Installation (System Preparation), the
objective of the test (perform actions on the
objective), and purpose statement (check the

satisfaction of goals). The first and last objective is
preparing pre-conditions and post-conditions
checked by testing the objective under test,
respectively. In addition, they introduce a testing
tool, called as SEAUnit that provides the
infrastructure to support the proposed approach.
Agile PASSI [12] proposes a framework to support
trials of single agents. They develop a test suite
specifically for the verification agent. Test plans are
prepared before the coding phase according to the
specifications and the tool is also capable of
generating agents AgentFactory can also generate
driver and stub to accelerate the testing of a specific
agent. Lam and Barber [13] proposed a semi-
automated process for understanding the behavior of
software agents. The approach mimics what a
human user (can be a tester) in the understanding of
the software: building and refining knowledge base
of agent behavior, and use it to verify and explain
the behavior of agents at runtime. Nunez [14]
introduced a formal framework for specifying the
behavior of autonomous e-commerce agents.
Desired behaviors of the agents being tested are
presented using a new formalism, called state
machine utility that embodies the users preferences
in their states. Two test methods have been proposed
to check if an implementation of a specified agent
behaves as expected (i.e. compliance testing). In
their approach to asset tests, they used for each test
agent test (special agent) who makes the formal
specification of the agent to facilitate reaching a
specific state. The trace of the operational agent is
then compared to the specification in order to detect
defects. Moreover, the authors also proposed using
the passive test in which the agents being tested,
were only observed, not stimulated as in the active
test. Invalid traces, if any, are then identified through
formal specifications of agents. Coelho [15]
proposed a framework for unit testing of MAS based
on the use of simulated agents, which simulate real
agents to communicate with the test agents were
implemented manually, each corresponding to an
agent role. Sharing the inspiration of JUnit [16] with
Coelho [15], Tiryaki [17] proposed a test-driven
development approach that supported MAS iterative
and incremental construction MAS. A testing
framework called SUnit, which was built above and
JUnit Seagent [18], was developed to support the
process. The framework allows writing tests for the
agents’ behavior and interactions between agents.
Gomez-Sanz [19] introduces advance in testing and
debugging methodology. In fact INGENIAS [5], the
meta-model INGENIAS was extended with concepts
for defining tests to integrate the reporting of the
test, i.e. testing and test packets. Work has also
provided facilities for access to mental states of
individual agents to check them at runtime.
Houhamdi [20] introduced an approach to derive test

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 182

suite for testing agent that is goal-oriented
requirements analysis artifact that the basic elements
for developing test cases. The proposed process has
been illustrated with respect to the Tropos
development process. It provides systematic
guidance for generating test suites, the detailed
design agent. These test suites, on the one hand, can
be used to refine the analysis of objectives and to
detect problems early in the development process.
On the other hand, they are subsequently executed to
test the objectives from which they were established.
Agile [21] defines a test phase based testing
framework JUnit [22]. To use this tool, designed for
testing OO, MAS test in context, they need to
implement a platform agent sequential, strictly used
for testing, which simulates asynchronous message
passing. The ACLAnalyser [23] tool runs on the
JADE [24] platform, it intercepts all the messages
exchanged between agents and stores them in a
relational database. This approach exploits the
clustering techniques to construct graphs of
interaction of agents that support the detection of
failed communication between agents that are
expected to interact, configurations execution
asymmetric and the data exchanged between agents.
Padgham [25] uses design artifacts (e.g., interaction
protocols and agent design specification) to provide
automatic identification of the source of errors
detected during execution. A debug agent is added to
the central MAS to monitor the conversations of
agents. It receives a carbon copy of every
communication between agents, in a specific
conversation. The interaction protocol specifications
to the call are taken and analyzed to detect erroneous
conditions automatically. Rodrigues [26] proposed
to exploit the social conventions, norms, rules, that
prescribe the authorizations, obligations, and / or ban
agents in MAS open to an integration test.
Information available in the specifications of these
agreements give rise to a number of types of
assertions, such as time to live the role, cardinality,
and so on. During the test run of a special agent,
called agent will report to observe a events and
messages to generate analysis results thereafter.
Nguyen [27] propose to use the ontology (s)
extracted from MAS under test and a set of OCL
constraints, which act as a test oracle. Having as an
input a representation of the ontology (s) used, the
idea is to build an agent capable of delivering
messages whose content is inspired by these
ontologies. The resulting behavior is believed to be
correct by using the input set of OCL constraints: if
the message satisfy the constraints, the message is
correct, this procedure is supported by ECAT, a
software tool. Houhamdi and Athamena [20] has
introduced a new approach to goal-oriented software
testing integration. They propose an approach to
derive a test suite for integration testing, that takes

goal-oriented artifact needs analysis to derive test
cases. They discussed how to derive test suites for
testing the integration of architectural design and
detailed system objectives. These test suites can be
used to observe the emergent properties, resulting
from potential agents and make sure that a group of
agents and contextual resources function properly
together. This approach defines a structured test and
overall integration and junction sequence of
processes for engineering software agents by
providing a systematic way to derive test cases from
the analysis objective. Houhamdi and Athamena
[28] introduced an approach to derive a test suite to
test the system that is goal-oriented. Requirement
analysis artifact that are the basic elements for
developing test cases. The proposed process has
been illustrated with respect to the Tropos
development process, provides a systematic
guidance for generating test suites for modeling
artifacts, produced with the development process.
They discussed how to derive test suites to test the
system and delay the requirement to architectural
design. These test suites, on the one hand, can be
used to refine the analysis of objectives and to detect
problems early in the development process. On the
other hand, they are subsequently executed to test
the objectives from which they were established.

4. AUTOMATED CONTINOUS TESTING

As observed from the issues highlighted above in
the section 2, manual testing of MAS is a
troublesome job. Testing MAS can be effectively
done by automating the testing job and the process
should be done in a continuous fashion. The
continuous streaming of testing process is required
due to uncertain and complex nature of MAS along
with huge data to be tested. The proposed automated
continuous testing framework will extensively test
the system covering maximum units. The proposed
framework complements the manual test case with
each other rather than replacing the manual test
cases. Due to continuous automated testing, various
conditions which are responsible for errors can be
reveled which are otherwise hard to reproduce
manually. The other issue is to figure out the
importance/rank of the module under consideration.
The higher rank modules must be tested
exhaustively while on the other hand, modules with
lower rank of importance do not need exhaustive
testing. This differentiation is done to make optimal
use of available resources along with making the
objective to produce an error free system. We will
introduce two different strategies of testing, named
as Rank Oriented Random Testing and Rank
Oriented Exhaustive Testing. Depending upon the
rank of a particular module, the appropriate testing
strategies can be applied. The idea of introducing

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 183

rank based testing is to save time, cost and other
resources incurred in testing process especially
during testing of a multi agent system. The basic
necessity of the testing process is to figure out the
maximum number of errors in the system. The other
consideration is of the agent interdependency. As
agents are interacting with other agents in a loosely
coupled environment, so establishing a valid inter-
dependency relationship between the chains of
interacting agents to fulfill the goal is really
required. This can be achieved naturally because
agents interact with each other by message passing.
The valid states of the caller and cal lee agents in
MAS can be checked during testing process in order
to test the agent dependency. As the nature of MAS
can change over time, may be between two
successive executions, due to their learning
capabilities, a single test case execution is not useful
to reveal all the errors. The test time and number of
test suites can be increased by using autonomous
property of the agents. Automated continuous agents
can continuously test the MAS units without the
need of any human intervention and can proceed on
their own without human attention. Continuous
testing of MAS requires that the tester agent has the
capability to develop existing test suites and to
generate new test suites, with an aim of exercising
and stressing the application as much as possible.
The final goal is to reveal yet unknown faults.

5. EARCT (ENVIRONMENT FOR

AUTOMATED RANK BASED
CONTINOUS TESTING)

We propose a framework for automated rank
based continuous testing named EARCT
(Environment for Automated Rank based
Continuous Testing). We propose three main
components: The Autonomous tester agent, the
observer agent, the ranking agents and two testing
strategies: the rank based random test case
generation and rank based progressive mutant test
case generation.

The Autonomous Tester Agent: The dedicated
autonomous tester agent will continuously test the
MAS by means of message passing. It will
continuously interact with the agents under test
(AUT) by sending message to other agents,
simulating the behavior of the caller or cal lee agents
analogous to writing stubs and drivers in top down
and bottom up testing respectively. The process will
be autonomous and will execute in background,
without any human intervention and continuous
fashion in order to achieve the basic goal of
revealing maximum faults in the system. The test
suites of tester agents will contain the dummy
messages to be sent to AUT. These messages can be
extracted from the goal diagram using TROPOS.

The Observer Agent: The observer agent works
like a watch dog over the autonomous tester agent
and AUT. It observes the communication pattern
between both of them. The observer agent will have
knowledge about the pre and post state conditions of
the AUT, error conditions, crash situations and even
deadlock conditions. In case of any of the above
mentioned case occurred the responsibility lies with
the observer agent to inform about the problem(s) to
the testing team. The testing team can then figure
out the faults in the system. In figure 1 shown, the
observer agent will be working as a master for the
local observer agents. This is very much required
because MAS works in heterogeneous environment.
It is always the case that an agent in one
environment will interact with the other agents in
some other environment, and it is not necessary that
the two environments has to be the same. To avoid
side effects, the role of these local observer agents
becomes very crucial. These local bodies report to
the central observer agent who provides a global
view about the agent inter-relationship and the
environment. This global view in turn helps the
ranking agent to evaluate the AUTs behavior after
the inclusion of mutants into them. Thus the role of
observing agent is to keep track of the interactions
between AUTs and their pre and post conditions
along with providing the execution scenario to the
ranking agent. This covers the ‘black box’ problem
discussed in the previous section.

The Ranking Agent: One of the issues related
with the continuous automated testing is that how
many test suites must be executed on AUT in order
to get a satisfactory condition about functionality of
the components or units. Applying an exhaustive
testing technique on those functional units which are
having low importance or we can say low ranking is
not a good idea. In the same way, the AUT having
high rankings must be tested fully using exhaustive
testing technique discussed in the subsequent
sections. For low rank AUT, random testing
technique can be applied, which will save time and
other efforts of the testing phase. The other issue is
related with the agent inter-dependency. As agents
interact with each other seamlessly with other agents
in the environment, the chain of agent
interdependency sometimes grows profusely. It gets
difficult to test the long and complex chains of the
communicating agents. The role of ranking agent is
to provide pathway to the tester and observer agent
to limit the number of test cases of AUT based upon
their rankings and to limit the length of the chain of
interacting agents. Higher the ranking, more
rigorous testing will be followed on AUT and
maximum inter-dependent chain of agents will be
tested and vice-versa.

The main aim of EARCT is to enhance the
efficiency and quality of one of the most important

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 184

phase of software engineering- The testing phase.
Agents are very complex in nature and can pose
extreme problems before the testing team. Testing
based on ranks can help in figuring out maximum
errors by using optimal resources in any MAS.

Fig. 1 – EARCT (Environment for Automated Rank

based Continuous Testing)

6. TESTING STRAEGIES

As discussed earlier, the exhaustive testing is not
possible for all the agents in the environment. The
selective or random testing is done for low rank
agents and exhaustive testing is done for the high
rank agents. The two techniques are discussed in the
following section:-

Rank Oriented Random Testing: The tester
agent is capable of sending random generated data
through random test data generation mechanisms
[30, 31] to the AUT, using some communication
protocol. The tester agent has to select one of the
communication protocols available from the domain
specification, to include meaningful and domain
specific data into the communication messages. A
model of the domain data, coming from the business
domain of the MAS under test, must be also
supplied. Various types of communication protocols
are described and practiced such as UML based
sequence diagram, complex cooperation protocol,
activity diagrams, collaboration diagrams and the
most widely accepted, the FIPA Interaction Protocol
[29] in JADE [24]. In addition to the protocol, the
format for the message passing between the tester
agent and the AUT must also be supplied. One such
type is FIPA ACLMessage [29]. Various ACLs
(Agent Communication Language) are proposed by

many researchers but the two most discussed and
practiced ACLs are KQML (Knowledge Query and
Manipulation language) and FIPA-ACL (Foundation
for intelligent physical agent ACL). Both of them
rely on speech act theory developed by Searle in
1960 and enhanced by Winograd and Flores in the
1970s. Speech act theory is derived from the
linguistic analysis of human communication, based
on the idea that with language the speaker not only
makes statements, but also performs actions. But out
of these two ACLs, FIPA-ACL is a standardization
consortium. The JADE platform (Java Agent
Development Environment) provides basis for
FIPA-ACL. We will be using FIPA Interaction
Protocol for agent communication and FIPA-ACL as
the communication language. Due to their wide
acceptability, the random test data generation
technique then has to be selected by the tester agent.
The random testing technique will be initiated by the
rank agent based upon the ranking of the AUT. The
testing team can decide the minimum (Min-R) and
maximum rank (Max-R) number to initiate the
testing strategy. Moreover, as discussed above, the
number of AUTs collaborating together in a chain
can form a huge series. The ranking of agents will be
used to limit the chain for testing purpose. Higher
the rank, more AUTs in the chain will be tested. The
testing team can decide the minimum and maximum
rank numbers and these values can be encoded in
ACL message as parameters. The communication
protocol can be extended to accommodate the ranks
of the AUTs. In order to define the rigor of testing
effort and to limit testing effort in the chain of
interacting agents, the overall model of the rank
based agent random testing will serve the following
purpose:

• The model will prescribe the range and the
structure of the data that are produced
randomly, either in terms of generation rules
or in the (simpler) form of sets of admissible
data that are sampled randomly.

• Long and meaningful data and interaction
sequence using random sampling is very hard
to generate. The ranking mechanism of agents
will limit the data and number of interactions
between AUTs, making rank based random
testing a cheap and efficient testing technique
to reveal faults in the agent based system.
Experimental details will be presented in the
subsequent sections.

Randomly generated messages generated by the
tester agent are then sent to AUT and response is
observed by the observer agent. The response can be
a successful state transition, an exception, a
deadlock condition or a crash etc. Whenever the
observer agent observes a divergence from the
agent’s expected behavior, the exception(s) is
reported back to the testing team. It is the

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 185

responsibility of the observer agent to keep track of
the actions and reactions occurring between the
tester agent and the AUTs. The idea is not to fully
automate the testing process but to support the
manual testing in order to improve overall testing
experience by reducing testing effort.

Rank Oriented Exhaustive Testing: Ranking
Agent help the autonomous tester agent to decide on
which AUT, random testing technique has to be
applied. In the case where it has been decided by the
Ranking and tester agent on the basis of ranking that
random testing is not sufficient for the AUT, another
testing strategy has to be applied. For those AUTs,
having higher order of ranking, exhaustive testing is
useful. It is evident that longer the sequence
generated for the series of interacting agents, the
likelihood of revealing faults is maximized, required
for higher degree ranking holder AUTs.
Sophisticated techniques as compared to random
testing are required. One such proposed technique is
rank oriented exhaustive testing. We are proposing
the combination of progressive testing and mutation
testing with the name- agent oriented rank based
exhaustive testing. Simple exhaustive testing for a
chain of agents is not possible due to amount of data
to be tested. So for higher ranking agents, a
combination of progressive and mutation testing [32,
33] can be done. Mutation testing is a kind of
software testing, which involves modifying agent’s
source code in small ways. Mutation operators will
be applied to original source code to inject the
artificial and known defects. A mutant can be a
modified branch condition, a wrong variable name
or a modified method invocation process etc. A test
suite will be considered as defective which does not
detect and reject the mutated code. On the contrary,
if the test case is able to detect the artificially seeded
defect in the program, the mutant is considered to be
‘killed’. The adequacy of the test case is measured
as the ratio of total killed mutants over total number
of mutants generated. The purpose is to help the
tester develop effective tests or locate weaknesses in
the test data used for the program or in sections of
the code that are seldom or never accessed during
execution. This is required for higher ranking AUTs
or chain of AUTs to make them more reliable and
robust. The next step is to combine the mutation
testing with the concept of progressive testing and
ranks of the AUTs. For moderate or higher ranking
AUTs, this kind of exhaustive may be applied. The
decision it again left with the testing team depending
upon the project management and software
engineering requirements. In exhaustive testing, we
assume that if we want to have a best test suit, it can
be developed gradually in a progressive way [34,
35]. The idea is to evolve test suites by applying
mutation operators to the test cases themselves by
the tester agent. The ranking agent will provide a

pathway to the tester agent in the form of a heuristic
value, which is the defined as the shortfall of the test
case to achieve the testing goal. Lower the value (i.e.
test case is an effective one), it is more likely to
happen that ranking agent will choose the particular
test case for progression into another stringent
version. It is assumed that test suites, which can kill
maximum mutants will have higher probability to
reveal faults. We have designed a simulator for the
same as shown in figure 2.

Fig. 2 – Simulator design for Rank Oriented
Exhaustive Testing

7. EXPERIMENTAL DETAILS

We have simulated the EARCT environment
using a hypothetical case study derived from a
hospitality sector. We have also used TAOM4E
(Tool for Agent Oriented Visual Modeling for the
Eclipse platform) for goal oriented modeling, code
generation and testing for goal-directed system. As
TAOM4E follows TROPOS methodology as its
basis, we will also use the same methodology to
implement our case study. TAOM4E supports
TROPOS’s early and late requirement modeling
requirements, architectural design and also provides
support for automated agent oriented
implementation and testing. TAOM4E is developed
by the Software Engineering unit at Fondazione
Bruno Kessler (FBK), Trento. The current version

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 186

0.6.3 is downloadable under GPL license from the
tool homepage http://selab.fbk.eu/taom. The t2x
code generation tool provided by TAOM4E can
transform problem domain to solution domain by
mapping goal models to a goal-directed
implementation on the Jadex BDI agent platform.
Explicitly preserving goal models at run-time and
providing the proper middleware for navigating this
model and acting according to it. Agent code can be
generated from the graphical interface, and the
implemented prototypes are executable directly from
the Eclipse user interface. The recent addition in
TAOM4E framework is Goal Oriented Testing tool
to support testing and validation along the process
phases. The EARCT framework will directly derive
test cases from the goal models of TROPOS and
uses them to implement agents.

8. RESULT AND CONCUSION

We have done manual testing as well as testing
using EARCT framework on the case study. In
manual testing, we applied two manual testing
techniques viz. random testing which includes
branch coverage and mutation testing. The choice is
obvious, we will perform the same type of testing
using EARCT framework by rank oriented random
testing and rank oriented exhaustive testing
strategies. The results will be compared then. The
results are compared on the basis of three
parameters: 1) Number of errors revealed and error
type, where error type could be classified as fatal,
Moderate or Low based upon the severity impact of
these errors on the software, if these errors would
have remained hidden during testing. 2) Effort
utilized; this is measured as the time taken in
minutes to figure out the errors(s) in a particular
module/agent. 3) As discussed, the agents can form
a complex chain reaction to fulfill the social goal.
We are considering one more parameter i.e. number
of linked branches/modules/AUTs tested to test the
unit in question. Longer the tested chain, more the
team will have confidence in the testing process.

The desirable software engineering scenario is to
have maximum number of errors revealed by testing
maximum units in the chain and utilizing minimum
effort in terms of time spent on testing.

Further, as already discussed, using agent based
testing we are also implementing the concept of
ranks for the agents. The ranking is done in
ascending order i.e. agents having ranking «1» will
be the most important module and module with
ranking «2» is the next unit in the importance list.
The ranks will be fetched directly from the
requirement phase. Again the idea is to put
maximum effort on the important modules and pay
somewhat less emphasis on the less important
module. This is necessary to as to optimize the

quality-effort ratio. As agents based systems are
very complex in nature, it is not feasible to test each
and every agent exhaustively, rather few important
one can be tested fully and rest partially to save
time, resources and efforts.

In the table 1 shown below, we have manually
tested four modules from the case study using
Random Branch Testing. Table 1 shows the time
taken (in minutes) to test the module, number of
errors revealed, error description, error type and
number of linked branches tested. In table 2, the
table is having one more column in the end- the rank
of the module. Again table 3 and 4 shows the
parameters obtained using manual mutation testing
and agent based exhaustive testing respectively.

Table 1. Random Branch Testing (Manual)

Module

Effort
(Time

taken in
Mins)

(Manual
Mode)

No. of
errors

Revealed
(Manual
Mode)

Error
Description Error Type

Branch
level

covered
(Manual
Mode)

1 20 3 Calculation
Error FATAL 3

2 34 2
Boundary-

check related
error

MODERATE 2

3 17 4
Boundary-

check related
error

MODERATE 5

4 23 5

Compatibilit
y and

intersystem
defect

MODERATE 3

Random Branch Testing (Manual)

Table 2. Agent Based Continuous Rank Oriented

Random Testing

Module

Effort
(Time
taken

in
Mins.)
(Agent
Based)

No. of
errors

Revealed
(Agent
Based)

Error
Description

Error
Type

Number
of AUTs
Covered

Rank

1 11 4
Calculation

Error, Control
Flow error

Fatal 9 2

2 6 3 Boundary
check missing Medium 6 3

3 13 7

Unhandled
condition,

Calculation
logic error,

Control Flow
defects

Fatal 13 1

4 10 4 Performance
bug Low 6 4

EARCT-Agent Based Continuous Rank Oriented Random Testing

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 187

Table 3. Mutation Testing (Manual)

Module

Effort
(Time
taken

in
Mins)
(Manu

al
Mode)

No. of
errors

Revealed
(Manual
Mode)

Error
Description Error Type

Modules
Covered
(Manual
Mode)

1 20 2
Keyword
constraint
violation

FATAL 3

2 34 2 Update
Anomaly FATAL 2

3 17 4 Return Empty LOW 5

4 23 5 Un-expected
Result MODERATE 3

Manual Mutation Testing

Table 4. Agent Based Continuous Exhaustive Testing

Module

Effort
(Time

taken in
Mins)
(Agent
Based)

No. of
errors

Revealed
(Agent
Based)

Error
Description Error Type

Number
of AUTs
Covered

Rank

1 11 4
Calculation

Error, Control
Flow error

Fatal 9 2

2 6 3 Boundary
check missing Medium 6 3

3 13 7

Unhandled
condition,

Calculation
logic error,

Control Flow
defects

Fatal 13 1

4 10 4 Performance
bug Low 6 4

EARCT-Agent Based Continuous Exhaustive Testing

As shown in figures 3, 4, 5, 6, 7, 8 the

comparative results are highly noticeable. The time
taken by the automated agent based testing is
substantially low as compared to the manual one for
each of the module. The evaluated error count and
linked units/agents covered are also on the higher
end as compared to the manual one. One noticeable
observation is that in case of module 4, the
performance delivered by the agent based testing
mechanism is not that good in terms of evaluated
error count because of its low ranking. The
exhaustive strategy is not applied on this module due
to its low ranking, resulting in less error discovery
and less linked units covered. This is one
compromise the testing team has to make while
taking decisions about the subsequent testing
strategy and other software engineering paradigms
like correctness, completeness, consistency and of
course time and quality. If the module is having
higher ranking the resources utilized will be on the
higher end and vice-versa.

Effort Comparision

0

5

10

15

20

25

30

35

40

1 2 3 4

Module ->

Ef
fo

rts
 in

 M
in

s

Effort (Time taken in Mins) (Manual Mode) Effort (Time taken in Mins) (Agent Based)

Fig. 3 – Effort Comparison- Manual Random Branch
Testing Vs Agent Based Continuous Rank Oriented

Random Testing

Evaluated Error Count

0

1

2

3

4

5

6

7

8

1 2 3 4

Module ->

Er
ro

r C
ou

nt
s

No. of errors Revealed (Manual Mode) No. of errors Revealed (Agent Based)

Fig. 4 – Evaluated Error Count Comparison- Manual
Random Branch Testing Vs Agent Based Continuous

Rank Oriented Random Testing

In this paper, we have shown that current manual

techniques for testing are not good enough to answer
the issues mentioned in the earlier sections. The
problems like autonomy, social nature, complexity,
agents’ inter-dependency and non-deterministic
nature can be answered using continuous testing
only. Further to optimize various software

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 188

engineering paradigms like number of errors
revealed in unit time and effort spent on the chain of
interacting or inter-dependent agents etc, the agent
ranking method is useful to help the testing team to
take decisions about the subsequent steps.

Branch Coverage

0

2

4

6

8

10

12

14

1 2 3 4

Module ->

N
o.

of
B

ra
nc

he
s

C
ov

er
ed

Branch level covered (Manual Mode) Branch Level covered (Agent Based)

Fig. 5 – Branch/AUTs Coverage Comparison- Manual
Random Branch Testing Vs Agent Based Continuous

Rank Oriented Random Testing

Fig. 6 – Effort Comparison- Manual Mutation Testing
Vs Agent Based Continuous Rank Oriented Random

Testing

Fig. 7 – Evaluated Error Count Comparison- Manual
Mutation Testing Vs Agent Based Continuous Rank

Oriented Random Testing

Fig. 8 – Modules/AUTs Coverage Comparison-

Manual Mutation Testing Vs Agent Based Continuous
Rank Oriented Random Testing

8. REFERENCES

[1] Tiryaki A.M., Oztuna S., Dikenelli O., and
Erdur Sunit R., A unit testing framework for
test driven development of multi-agent
systems, In 7th International Workshop on
Agent Oriented Software Engineering, 2006.

[2] Roberta Coelho A.S., Kulesza U and Lucena

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 189

C., Unit testing in multi-agent systems using
mock agents and aspects, International
Workshop on Software Engineering for Large-
scale Multi-Agent Systems, May 2006.

[3] Blaya J. A. B., Hernansaez J. M., and Gomez
Skarmeta A. F., Towards and approach for
debugging multi-agent systems through the
analysis of agent messages” Comput. Syst. Sci.
Eng., (20) 4 (2005).

[4] Cossentino M., From requirements to code
with PASSI methodology, In Vijayan
Sugumaran (Ed.), Intelligent Information
Technologies: Concepts, Methodologies, Tools,
and Applications, USA, 2008.

[5] Pavon J., Gomez-Sanz J., and Fuentes-
Fernandez R., The INGENIAS methodology and
tools, In Agent Oriented Methodologies (eds.
Henderson-Sellers and Giorgini), Idea group,
(2005), pp. 236-276.

[6] Huget M., and Demazeau Y., Evaluating multi
agent systems: a record/replay approach,
Intelligent Agent Technology, IAT 2004,
Proceedings IEEE/WIC/ACM International
Conference, (2004), pp. 536-539.

[7] Jennings N.R., An agent-based approach for
building complex software systems,
Communications of the ACM, (44) 4 (2001),
pp. 35-41.

[8] Rouff C., A Test Agent for Testing Agents and
Their Communities, IEEE, 2002.

[9] Sommerville I., Software Engineering, 9th
edition, Addison Wesley, 2011.

[10] Zhang Z., Thangarajah J., and Padgham L.,
Automated unit testing for agent systems, 2nd
International Working Conference on
Evaluation of Novel Approaches to Software
Engineering, ENASE’07, Spain, (2007), pp. 10-
18.

[11] Ekinci E., Tiryaki M., Cetin O., and
Dikenelli O., Goal-oriented agent testing
revisited, Proceeding of the 9th International
Workshop on Agent-Oriented Software
Engineering, (2008), pp. 85-96.

[12] Caire G., Cossentino M., Negri A., and
Poggi A., Multi-agent systems implementation
and testing, Proceedings of the 7th European
Meeting on Cybernetics and Systems Research
– EMCSR2004, Vienna, Austrian Society for
Cybernetic Studies, (2004), pp. 14-16.

[13] Lam D., and Barber K., Debugging agent
behavior in an implemented agent system, 2nd
International Workshop, ProMAS, Springer,
Berlin, (2005), pp. 104-125.

[14] Nunez M., Rodriguez I., and Rubio F.,
Specification and testing of autonomous agents
in e-commerce systems, Software Testing,
Verification and Reliability, (15) 4 (2005), pp.

211-233.
[15] Coelho R., Kulesza U., Staa A., and Lucena C.,

Unit testing in multi-agent systems using mock
agents and aspects, Proceedings of the
international workshop on Software
engineering for large-scale multi-agent
systems, ACM Press, New York, (2006), pp.
83-90.

[16] Gamma E., and Beck K., JUnit: a regression
testing framework, http://www.junit.org, 2000.

[17] Tiryaki A.M., Oztuna S., Dikenelli O., and
Erdur Sunit R., A unit testing framework for
test driven development of multi-agent
systems, In 7th International Workshop on
Agent Oriented Software Engineering, 2006.

[18] Dikenelli O., Erdur R., and Gumus O., Seagent:
a platform for developing semantic web based
multi agent systems, AAMAS’05 Proceedings
of the fourth International Joint Conference on
Autonomous agents and multi-agent systems,
ACM Press, New York, (2005), pp. 1271-1272.

[19] Gomez-Sanz J., Botia J., Serrano E., and
Pavon J., Testing and debugging of MAS
interactions with INGENIAS, Agent-Oriented
Software Engineering IX, Springer, Berlin,
(2009), pp. 199-212.

[20] Houhamdi Z., Test suite generation process for
agent testing, Indian Journal of Computer
Science and Engineering, (2) 2 (2011).

[21] Knublauch H., Extreme programming of multi-
agent systems, International Joint Conference
on Autonomous Agent and Multi-Agent
Systems, Bologna. ACM Press, (2002), pp. 704-
711.

[22] Gamma E., and Beck K., JUnit: a regression
testing framework, http://www.junit.org, 2000.

[23] Botia J., Lopez-Acosta A., and Skarmeta G.,
ACLAnalyser: a tool for debugging multi-agent
systems, Proceeding of the 16th European
Conference on Artificial Intelligence, IOS
Press, (2004), pp. 967-968.

[24] TILAB, Java agent development framework,
http://jade.tilab.com/. Accessed on 17th May
2011.

[25] Padgham L., Winikoff M., and Poutakidis D.,
Adding debugging support to the Prometheus
methodology, Engineering Applications of
Artificial Intelligence, (18) 2 (2005), pp. 173-
190.

[26] Rodrigues L., Carvalho G., Barros P., and
Lucena C., Towards an integration test
architecture for open MAS, 1st Workshop on
Software Engineering for Agent-Oriented
Systems/SBES, (2005), pp. 60-66.

[27] Nguyen C., Perini A., and Tonella P., Goal-
oriented testing for MAS, Agent-Oriented
Software Engineering VIII, Lecture Notes in

Ashok Kumar, Vinay Goyal / Computing, 2012, Vol. 11, Issue 3, 180-190

 190

Computer Science, (4951) (2008), pp. 58-72.
[28] Houhamdi Z., and Athamena B., Structured

system test suite generation process for multi-
agent system, International Journal on
Computer Science and Engineering, (3) 4
(2011), pp.1681-1688.

[29] Foundations for Intelligent Physical Agents,
FIPA-specifications. http://www.fipa.org/
specifications. Accessed on 29th Nov, 2011.

[30] Mills H. D., Dyer M. D., and Linger R. C.,
Cleanroom software engineering, IEEE
Software, (4) 5 (1987), pp. 19-25.

[31] Fosse P. Thevenod and Waeselynck H.,
Statemate: applied to statistical software
testing, In Proc. of the Int. Symposium on
Software Testing and Analysis (ISSTA), (June
1993), pp. 78-81.

[32] DeMillo R. A., Lipton R. J., and
Sayward F. G., Hints on test data selection:
help for the practicing programmer, IEEE
Computer, (11) 4 (1978), pp. 34-41.

[33] Hamlet R. G., Testing programs with the aid of
a compiler, IEEE Transactions on Software
Engineering, (3) 4 (1977), pp. 279-290.

[34] Wegener J., Stochastic algorithms: foundations
and applications, In Evolutionary Testing
Techniques, Springer Berlin, Heidelberg,
Chapter 9, 2005, pp. 82-94.

[35] McMinn P., and Holcombe M., The state
problem for evolutionary testing, Proceedings
of the International Conference on Genetic and
Evolutionary Computation, Springer, Berlin,

(2003), pp. 2488-2498.

Dr. Ashok Kumar is working
as Professor and Chairman
at Department of Computer
Science and Applications,
Kurukshetra University,
Kurukshetra (India). He is
PhD in Computer Science
with vast teaching and
research experience of more
than 30 years.

He had supervised more than 35 PhD scholars in
different computing areas including operation
research, software engineering, testing and
designing etc.

Mr. Vinay Goyal is working as
Asst. professor and Head of
Department (MCA) at Panipat
Institute of Engineering and
Technology, Panipat (India).
He had published 6 research
papers in International
Journals of repute on the topic
Agent Oriented Software
Engineering.

Besides this he had conducted an international
conference with the title ICACCT 2008 at APIIT SD
INDIA, Panipat (India) in Nov 2008.

