
Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 7

INTEGRATION OF BACNET OPC UA-DEVICES USING
A JAVA OPC UA SDK SERVER WITH BACNET OPEN

SOURCE LIBRARY IMPLEMENTATION

Naksit Anantalapochai 1), Axel Sikora 1), David Eberlein 2), Dominique-Stephan Kunz 2)

1) Hochschule Offenburg, Badstrasse 24, D77652 Offenburg, Germany
nanantal@stud.hs-offenburg.de, axel.sikora@hs-offenburg.de
2) Fr. Sauter AG, Im Surinam 55, CH4058 Basel, Switzerland

{david.eberlein; dominique.kunz}@ch.sauter-bc.com

Abstract: The variety of technologies used in modern Building Automation Systems (BAS) calls for methods to support
interoperability of the devices from different technologies and vendors. OLE for Process Control Unified Architecture
(=OPC UA) provides the possibility to enable secure interoperability of devices with platform independence and
efficient information model features. However, OPC has not found broad space in the world of building automation,
yet.

In this paper, results and experiences from a project are presented, where BACnet devices are mapped to OPC UA
standard models. The values and controls are presented by the OPC UA server running on an embedded device. In this
paper, we map the BACnet information models into the corresponding OPC UA information models. The actual data
(in OPC UA form) of the BACnet devices can be accessed by connecting an OPC UA Clients to the OPC UA Server.
This objective was be pursued by using as many available open-source projects as possible.

Keywords: BACnet, OPC Unified Architecture, Building Automation Systems, OPC UA Server

1. INTRODUCTION
One of the major challenges for developers and

integrators of modern Building Automation Systems
(BAS) is the integration of different technologies
and devices from numerous vendors. Interoperability
of these devices is required to integrate all devices
and all information into the same interworking
model and into one server for improved
controllability and observability. This allows the
reduction of: cost, installation efforts, system
complexity and increases reliability. OLE (Object
Linked and Embedded) for Process Control Unified
Architecture (=OPC UA) can be used to present a
generic view to the monitoring clients that need
access to the entire BAS. Using a Java based SDK
for the OPC UA Server is an additional promising
stepping stone for the platform independence.

The implementation of an OPC information
model for the BACnet types and objects is generally
the most significant task in this process, and also of
this project. This paper describes one of the basic
approaches of BACnet-to-OPC UA integration and a
sample implementation. Furthermore, as the server
will be running constantly, energy consumption of
the control system must also be taken into account.
Therefore, the presented project uses a

programmable embedded device for the OPC server,
which connects to the BACnet devices and the OPC
UA client for monitoring in the same local area
network.

This paper is structured as follows: After the
description of some parallel activities in ch. 2, a
brief overview on the OPC UA and the BACnet
standard is given in chapters 3 and 4. The following
ch. 5 describes the method to setup and prepare the
devices and the working environment. Ch. 6
elaborates the use of the “BACnet4J” Java library to
access BACnet services, before ch. 7 describes the
setup of Java OPC UA Server and Client, as well as
the monitoring of the BACnet device values.
Finally, ch. 8 reports on the implementation and its
results.

2. STATE OF THE ART

To the best knowledge of the authors, the most
up-to-date procedure to create an OPC information
model for the BACnet data model was presented in
[1] and [2], which covers the most important
BACnet information (object and property) types, i.e.
the mandatory types.

With this initial description it gives an inspiration
to research for an optimized way for industrial

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 8

operation and commissioning. As stated in the
introduction section a programmable embedded
device is used for the operation to fulfill these
requirements. Due to the restrictions in memory and
processing power, this project implements the
integration in a simplified way, using selected
concepts and ideas from [1] and [2].

3. OPC UA

3.1 OVERVIEW

Object Linking and Embedding (OLE) for
Process Control (=OPC) was developed in 1996 by
the OPC Foundation, an association of worldwide
industrial automation suppliers working in
cooperation with Microsoft. Now, OPC is an open
standard specification that describes the
communication of real-time plant data between
control devices from different manufacturers.

The origin of OPC is based on OLE, Component
Object Model (COM) and Distributed Component
Object Model (DCOM) technologies developed by
Microsoft for Windows operating systems. The very
first standard from the OPC Foundation was for
Data Access (OPC DA). Soon after OPC DA was
launched, it was realized that communicating other
types of data could benefit from standardization.
Thus, standards for Alarm and Events (OPC AE),
Historical Data Access (OPC HDA), Data Exchange
(OPC DX) and Batch Data were published later on.

The fact that legacy OPC standards are based on
Microsoft’s COM/DCOM paradigm later turned out
to be a limitation to several operations especially for
interoperability. Besides, the insufficiency of the
object oriented concept it was impractical to model
complex data structures.

Because of these restrictions, a new standard was
needed. Eventually, OPC Unified Architecture (OPC
UA) was released in 2009, it extends the OPC
communication protocol and enables data
acquisition, information modeling, reliable and
secure communication between the plant floor and
the enterprise resource planning level. It was
intended to be a full replacement of the classic OPC
specifications. The key features and benefits of OPC
UA are:
• platform independence to run on any

operating system including embedded devices
• single set of services to expose OPC data

models (DA, AE, HDA, Batch, DX, etc.)
• a reliable, secure and efficient way to

transport higher level structured data
• a broader scope of connectivity
• extensible for future applications and

modifications
• backward compatibility

The overall OPC UA specifications consist of 13
specification parts shown in Figure 1 [3].

It is important to understand how to model the
address spaces and information, which is described
in Part 3 “Address Space Model” and Part 5
“Information Model”.

Part 1 - Concepts

Part 2 - Security Model

Part 3 - Address Space Model

Part 4 - Services

Part 5 - Information Model

Part 6 - Service Mappings

Part 7 - Profiles

Part 8 - Data Access

Part 9 - Alarm & Conditions

Part 10 - Programs

Part 11 – Historical Access

Part 13 - Aggregates

Part 12 - Discovery

Core Specification Parts
Access Type

Specification Parts

Fig. 1 – Parts of the OPC UA Specifications [3]

These two specifications are the key documents
for the design and development of an OPC UA
server to integrate with other standards and
protocols. Before describing the information and
address space modeling in OPC UA, some basic
infrastructures (described in specifications Part 1
“Concept”) should be introduced first.

The specification of common OPC UA Client
and Server consist of two parts, the UA application
and the communication Stack (cf. Fig. 2).

OPC UA Client OPC UA Server

UA
application

Commu-
nication
Stack

Network
Commu-
nication
Stack

UA
application

Fig. 2 – Common OPC UA Client and Server [3]

In the OPC UA Server, the application part
contains the OPC UA address space representing the
UA complex information model as a node. Figure 3
illustrates the complete architecture of an OPC UA
Server.

3.2 INFORMATION AND ADDRESS SPACE
MODELING

OPC UA represents information in the form of
node hierarchies. It is necessary to understand the

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 9

basic concept of the OPC UA nodes to model data
information. To enable interoperability between
devices from different vendors, a uniform
representation of data is required, which is called
information model in OPC UA. The devices from
any vendor can use or even inherit (with regards to
the concept of object orientation) the model for their
own usage. However before having an information
model, first a place must be instantiated to store this
information model.

Fig. 3 – OPC UA Server Architecture [3]

Every information model is represented in the
address space as a set of nodes which are
interconnected with references in a hierarchical form
(branches of a tree), where the highest node is called
the ‘Root’ node. Figure 4 describes the node model
and the details of the address space node model.

4. BACNET

Fig. 4 – OPC UA Address Space Node Model [3]

When a node is instantiated in the address space,
it is defined by a ‘Node Class’. These node classes
are referred to collectively as the metadata of the
address space. The node classes can be classified to
types and instances as stated in Table 1.

Table 1. OPC UA built-in definition node classes [3]

OPC UA built-in type definition node classes

Data Type
Node Class

Describes the structure of the
Value Attribute of Variables and
their Variable Types

Variable Type
Node Class

Provides type definitions for
Variables

Object Type
Node Class

Provides type definition for
Objects

Reference Type
Node Class

Specifies References

OPC UA built-in instance definition node classes
Object
Node Class

Represents systems, system
components, real-world objects
and software objects. Defined
by Object Type

Variable
Node Class

Represent Values which may be
simple or complex. Defined by
Variable Type

Method
Node Class

Defines callable functions.
Invoked using Call Service
defined in Part 4 of OPC UA
Specification

View
Node Class

Defines a subset of the Nodes in
the Address Space in order to
limit the node visibility for some
specific purpose. All Nodes
contained in the View shall be
accessible from the View node
when browsing

The OPC UA built-in ‘DataTypes’ are all

inherited from the highest parent node of
BaseDataType and can be used directly for this work
i.e. Boolean, Integer(Number) and Float(Number).
The same holds true for ‘VariableTypes’ and
‘ObjectTypes’, they are inherited from
BaseVariableType and BaseObjectTypes,
respectively. For the ‘ReferenceTypes’, there are
two highest parent nodes: HierarchicalReferences
and NonHierarchicalReferences.

4. BACNET
4.1 OVERVIEW

In June of 1987, BACnet was introduced as a
communication protocol for building automation and
control networks by the American Society of
Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE, http://www.ashrae.org).
BACnet was designed to allow communication
between building automation and control systems
i.e. heating system control, air control, lighting
control, access control, fire detection and any other
control systems related to building automation. The
BACnet protocol provides services for
programmable/electronic building automation
devices to exchange data.

Node

Attributes

References

Attributes to describe a node

Reference define relationships
to other nodes

Target Node

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 10

The BACnet protocol has been frequently
updated. The last update was made in October 2012.
Therefore, it is recommended to regularly check for
updates from the ASHRAE SSPC 135 BACnet
official website [4].

The BACnet layered architecture is based on a
reduced ISO-OSI Reference Model [6] shown in
Figure 5 [5].

Fig. 5 – BACnet OSI-based Reduced Architecture
[5]

The Application Layer is the most relevant layer

to this project. This layer defines the BACnet
information model and the BACnet services which
will be used to poll the data from the BACnet device
and then to process it into its information model
before integrating it into an application (for instance
OPC UA server).

4.2 BACNET: OBJECTS AND SERVICES
IN APPLICATION LAYER

The application Layer contains information data
consisting of objects and their properties as well as
services used to exchange information through the
layers below.

Each BACnet object has a type to distinguish the
kind of the object. Up to date, there are already 50
object types defined within the standard. Within this
project, five different object types are implemented,
i.e. Analog Input, Analog Output, Binary Input,
Binary Output and Device. An example of the
Analog Input object, is shown in Fig. 6.

Fig. 6 – Example of a BACnet Analog Input Object

This example of a BACnet Analog Input object
shows the object characterized by its mandatory
properties. Different object types will have different
mandatory properties together with the possibility to
add optional properties.

From [7], in order to exchange information,
BACnet services are classified into four different
categories: Alarm&Event, File Access, Object
Access and Remote Device Management. With
regards to the project, only services from Object
Access and Remote Device Management services
are utilized.

Remote Device Management services are used to
discover BACnet devices in the network. Generally,
a “Who-Is” request is broadcasted on the network
and then waited for an “I-Am” reply from the
BACnet devices, if they are present in the network.

Object Access services are used to access the
objects of the device and to read or write the values
of their properties. Examples of Object Access
services are the ‘ReadProperty’, ‘WriteProperty’,
‘ReadPropertyMultiple’ and
‘WritePropertyMultiple’ services.

5. DEVICES AND SYSTEMS

PREPARATION
5.1 OPC UA SERVER

As stated in the introduction section, an
embedded device is used for the OPC server. This
project takes an Overo Air Computer-on-Module
(COM) with Tobi expansion board from Gumstix
into operation. A brief overview of the device and its
expansion can be found in the Table 2. The
specification sheet of the devices can be accessed
from the Gumstix official website in the product
section for more details [8] [9].

a) Gumstix Overo Air COM

b) Gumstix Tobi Expansion Board

Fig. 7 – Devices for running OPC UA Server [8] [9]

Object_Type: ANALOG_INPUT
Object_Name: Temperature_1
Object_Identifier: ANALOG_INPUT1
Present_Value: 23.1
Status_Flags: In_Alarm
Event_State: Normal,
 Out-of-Service
Units: Degrees-Celsius
Out_Of_Service: False

Object

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 11

Table 2. Device Overview

Gumstix Overo Air Computer-on-Module
Architecture ARM Cortex-A8

Processor Texas Instruments OMAP3503
Applications Processor

Address 10, Times New Roman, Regular

CPU Speed 600 MHz

RAM 512 MB

NAND Flash 512 MB

Performance up to 1,200 Dhrystone MIPS

Power Mgmt Texas Instruments TPS65950
Gumstix Tobi Expansion Board
Network Socket 10/100BaseT Ethernet
DVI-D (HDMI) HDMI

USB Slots
USB Host
USB On-the-Go (OTG)
USB Console

Power 3.5V – 5V

The Gumstix Overo Air COM is mounted on the

Gumstix Tobi Expansion Board for the primary
purpose to connect it to the Ethernet network and to
the power supply. The second purpose is to be able
to locally control and monitor the functionalities of
the OPC UA Server (e.g. mouse/keyboard
connection, display on monitor screen).

Ubuntu 10.04 Lucid Desktop-Lite is installed as
operating system due to its capability to have
additional programs and easy configuration in the
future. Nevertheless, other operating systems
supported by Gumstix, like Angstrom, Android,
Debian, or Windows CE would also be feasible.
Since the OPC UA server is Java based, a Java
Runtime Environment (JRE) is required in the
system.

5.2 OPC UA CLIENT
Although the OPC UA Client is not the main

focus of the project, it is indispensable for
monitoring the result of the approach and in the real
operation.

A simple PC or mobile device which can connect
to the OPC Server as a Client in the network is the
only requirement. It is also possible to have an OPC
UA Client in the embedded device which runs the
OPC UA Server itself and to communicate over
local loopback.

Analog InputsBinary Inputs

Binary Outputs

Analog Outputs

Fig. 8 – Basic configuration of the BACnet
Automation Station SAUTER EY-modulo 525 [10]

5.3 BACNET DEVICE
At least one BACnet device is required in the

network in order to provide the OPC UA server with
information via the BACnet protocol. The project
focuses on the ‘Present_Values’ information of
Analog Input/Analog Output/Binary Input/Binary
Output objects, due to common usage in the
industry.

A BACnet automation station demo kit provided
by SAUTER containing multiple Analog
Input/Analog Output/Binary Input/Binary Output
objects is used for the project. Figure 8 shows the
basic configuration of the BACnet automation
station which is taken into operation.

6. BACNET4J LIBRARY

6.1 ABOUT THE LIBRARY
BACnet4J stands for BACnet/IP for Java. It is an

open source BACnet stack. As described by the
project team of this library from the BACnet4J
developer website, it is “a high performance
implementation of the BACnet/IP protocol written in
Java (minimum version 1.5) by Serotonin Software.
It Supports all BACnet Services and full message
segregation and can be used for field devices or for
control platforms” [11].

6.2 FUNCTIONALITIES

The BACnet4J library enables the user to
program an application communicating via the
BACnet protocol using BACnet services. Most of
the BACnet objects and properties (for example
Analog Input, Analog Output, Binary Input, Binary
Output and Device used in this project) can be

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 12

simply defined as Java objects. The BACnet services
can also be created as a Java object, which
represents all services and calls the methods from
the library to execute the services.

With an additional programming on the OPC UA
server side (in Java) the server is able to retrieve
BACnet information from the BACnet devices using
BACnet4J.

7. JAVA BASED OPC UA SERVER SDK

Java is the preferred language for the
development of OPC UA server applications due to
its platform independence. In addition, an open
source library to communicate in BACnet
(BACnet4J) already exists. Of course, other
programming languages could also be used.

Prosys PMS Ltd. [12] is a contributor to the OPC
Foundation UA Java stack and has developed an
OPC UA Java SDK. This comes with both OPC UA
server SDK and OPC UA client SDK. It is now
available as a full release for purchase. Nevertheless,
an evaluation edition is available. This project used
the evaluation version of this OPC UA server SDK.

The Prosys OPC UA server SDK supports the
creation of an OPC UA address space and
information model in the server which is mainly
required for the integration of the BACnet
information (objects and properties) to the OPC UA
nodes and variables.

8. BACNET-TO-OPC UA INTEGRATION

The first step in this integration process is to have
all of the devices and systems in the same network
domain, where all are accessible at least up to the
network layer. For demonstration purposes, a local
private network has been created and the devices are
connected as illustrated in Figure 9.

Fig. 9 – Connections of the devices

The BACnet Module inside the OPC UA server
is the Java program that performs BACnet services
(Remote Device Management and Object Access
services) and stores the BACnet information in Java

objects (BACnet4J functionality).
Based on the work of “Interoperability at the

Management Level of Building Automation Systems:
A Case Study for BACnet and OPC UA” [1] and
“Information Modeling in Heterogeneous Building
Automation Systems” [2], OPC UA node types in the
list below must be prepared for the BACnet
information:
• DataType
• ReferenceType
• ObjectType
• VariableType

In our project, we focused on the
‘Present_Values’ (cf. ch. 5.3) plus the concept of
making the OPC UA information model for BACnet
information as simple as possible. Consequently, the
procedures in this project are the following: Starting
with the ‘DataType’, OPC UA built-in data types
can be used for BACnet ‘Present_Values’ directly
without any issue. The data type definition of
Boolean inherited from BaseDataType can be used
for the BACnet ‘Present_Values’ of Binary Input
and Binary Output and the data type definition of
Float which is inherited from
BaseDataType»Number»Float can be used for the
BACnet ‘Present_Values’ of Analog Input and
Analog Output. For all references of the nodes for
BACnet information which will be stored in the
RefferenceType folder of the OPC UA server, the
reference type definition will be the OPC UA built-
in HasComponent which is derived from
HierarchicalReferences
»Aggregates»HasComponent.

Some nodes of object type definition must be
defined for BACnet objects as illustrated in Figure
10.

BaseObjectType

BACnetDeviceTypeBACnetObjectType

BACnetDeviceObjectType

BACnetBinaryInputObjectType

BACnetBinaryOutputObjectType

BACnetAnalogInputObjectType

BACnetAnalogOutputObjectType

Fig. 10 – OPC UA Object Type Nodes for BACnet
Objects

OPC UA
Client

BACnet Device

OPC UA Server

BACnet Module

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 13

Every node of object type definition for BACnet
objects (in green) inherits from the original OPC UA
built-in ‘BaseObjectType’ (in blue) like other OPC
UA nodes of object type definition.

As well as ObjectType, some nodes of variable
type definition must be defined for the BACnet
properties. Figure 11 shows the node hierarchies for
BACnet properties.

BaseVariableType

BaseDataVariableType

BACnetPropertyVariableType

BACnetPresentValueType

Fig. 11 – OPC UA Property Type Nodes for
BACnet Properties

Every node of property type definition for
BACnet properties (in orange) inherits from the
original OPC UA built-in ”BaseDataVariableType”
and “BaseVariableType” (in blue). Other BACnet
properties like “Present_Value” can be defined
under the ”BACnetPropertyVariableType”, as well.

9. RESULTS

9.1 BACNET BROWSING RESULT
The results of browsing (discovery and reading

properties) the BACnet demo device using the
BACnet4J library, displayed in the console are
shown in Figure 12.

Fig. 12 – Results of Browsing BACnet Device

Figure 13 shows the BACnet packages monitored
between the BACnet4J client and the BACnet
automation station in wireshark.

9.2 BACNET IN OPC UA MODEL
With the result of browsing BACnet information

in subsection 8.1 mapped to the OPC UA
information using the procedure described in ch 7,
the final results are stored in an additional folder
‘BACnetObjects’. This result is displayed in a
freeware OPC UA client ‘UaExpert’ from Unified
Automation by browsing to the OPC UA server [13]
as shown in Figure 14.

The OPC UA ‘ObjectTypes’ and ‘VariableTypes’
created for BACnet information, can also be
displayed in the OPC UA client as displayed in
Figure 15 and Figure 16.

Fig. 13 – Packet Transfer Displayed by Wireshark

Fig. 14 – Result at OPC UA Client displayed by

UaExpert

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 14

Fig. 15 – Result of OPC UA ObjectTypes for BACnet

displayed by UaExpert

Fig. 15 – Result of OPC UA VariableTypes for

BACnet displayed by UaExpert

10. CONCLUSION

Interoperability of the devices between different
protocols allows significant benefits for the building
automation industry. This paper shows an approach
of how to integrate BACnet devices to OPC UA,
which can be adapted to many use cases in the
industry. Even tough, the result of this work might
not cover all of the BACnet mandatory properties it
shows that the integration can be done on embedded
devices with restrictions in memory and processing
power. Since most of the modern embedded devices
are now much more vigorous than the old embedded
systems. The integration task is done much faster,
easier and without any issues.

Not only BACnet information can be integrated
to OPC UA information model since OPC UA built-
in can support more complex data models so it is
also promising and feasible to integrate other
devices from other protocols. Especially the ones
that have a concept of object oriented data model.

11. REFERENCES
[1] A. Fernbach, W. Granzer, W. Kastner,

Interoperability at the Management Level of
Building Automation Systems: A Case Study for
BACnet and OPC UA, IEEE ETFA, 2011.

[2] W. Granzer, W. Kastner, Information Modeling
in Heterogeneous Building Automation
Systems, IEEE International Workshop, 2012.

[3] OPC Unified Architecture Specification 1.01
Part1: Concepts and Overview, Part 3: Address
Space Model and Part 5: Information Model,
OPC Foundation, 2009.

[4] ASHRAE SSPC 135 BACnet Official Website.
http://www.bacnet.org/.

[5] S.T. Bushby, BACnet: a standard
communication infrastructure for intelligent
buildings, in: Automation in Construction 6,
Elsevier, pp. 529-540.

[6] Information Processing Systems – Open
Systems Interconnection – Basic Reference
Model. ISO 7498, 1984.

[7] B. Swan, The Language of BACnet, in:
Engineered Systems, (13) 7 (1996), pp. 24-32.

[8] Gumstix Overo AIR COM specifications Sheet,
Gumstix Offical Website. https://www.
gumstix.com/store/product_info.php?products_
id=226.

[9] Gumstix Tobi specifications Sheet, Gumstix
Offical Website. https://www.gumstix.com/
store/product_info.php?products_id=230.

[10] Sauter EY-modulo 5 Product Data Sheet,
Sauter AG Website. http://www.sauter-
controls.com/pdm/docs/en_ds_en690613.pdf.

[11] BACnet/IP for Java Developer Website,
Serotonin, 2008;
http://bacnet4j.sourceforge.net/

[12] Prosys OPC Official Website
http://www.prosysopc.com/

[13] Unified Automation Official Website
http://www.unified-automation.com/

Naksit Anantalapochai, born
in Brussels Belgium in 1988,
graduated Bachelor of
Computer Engineering from
Faculty of Engineering, Chiang
Mai University, Thailand in
2011. Since then, he is
studying Master degree of
Science “Communication and
Media engineering” from Uni-

versity of Applied Science Offenburg, Germany. He
has a high interest in modern innovations and
technologies especially in the field of embedded
systems, communication networks and computer
science altogether.

Naksit Anantalapochai, Axel Sikora, David Eberlein, Dominique-Stephan Kunz / Computing, 2013, Vol. 12, Issue 1, 7-15

 15

Prof. Dr.-Ing. Axel Sikora
holds a diploma of Electrical
Engineering and a diploma of
Business Administration, both
from Aachen Technical
University. He has done a
Ph.D. in Electrical Engineering
at Fraunhofer Institute of
Microelectronics Circuits and

Systems, Duisburg. After various positions in the
telecommunications and semiconductor industry, he
became a professor at the Baden-Wuerttemberg
Cooperative State University Loerrach in 1999. In
2011, he joined Offenburg University of Applied
Sciences, where he holds the professorship of
Embedded Systems and Communication
Electronics.

His major interest is in the system development
of efficient, energy- aware, autonomous, secure, and
value-added algorithms and protocols for wired and
wireless embedded communication. He is founder
and head of Steinbeis Transfer Center Embedded
Design and Networking (sizedn) since 2002.

Dr. Sikora is author, co-author, editor and co-
editor of several textbooks and numerous papers, as
well as conference committee member to various
international conferences in the field of embedded
design and wireless and wired networking.

David Eberlein graduated as
Bachelor of Engineering in
Information Technology at the
Cooperative State University
Lörrach in 2009, winning the
prize of the city Lörrach for the
best bachelor thesis of the year.
Since then, he has been
working for Fr. Sauter AG as
Software Engineer at the Tech-

nologies department.
His main interests are web based graphical user

interfaces, as well as mobile applications.

Dominique Stephan Kunz
studied electrical engineering
(with a focus on control and
automation engineering) at the
University of Applied Sciences
in Basel. Since 1999, he has
been working for the company
Fr. Sauter AG in Basel. He
has over 10 years of
experience in industrial
product development and pro-

ject management in the heating, ventilation and air
conditioning market with respect to building
automation.

Currently, he heads the Technologies
department, which deals with research projects, and
he is responsible for cooperation with universities.

