
Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 16

REASONING UNDER UNCERTAINTY WITH BAYESIAN BELIEF
NETWORKS ENHANCED WITH ROUGH SETS

Andrew J. Kornecki 1), Slawomir T. Wierzchon 2), Janusz Zalewski 3)

1) Dept. of Electrical, Computer, Software and System Engineering, Embry Riddle Aeronautical University

Daytona Beach, FL 32114, USA
kornecka@erau.edu, http://faculty.erau.edu/korn/

2) Faculty of Mathematics, Physics and Informatics, University of Gdańsk
Wita Stwosza 57, 80-952 Gdańsk-Oliwa, Poland

stw@ipipan.waw.pl, http://www.ipipan.waw.pl/~stw/
3) Dept. of Software Engineering, Florida Gulf Coast University

Fort Myers, FL 33965, USA
zalewski@fgcu.edu, http://www.fgcu.edu/zalewski/

Abstract: The objective of this paper is to present a new approach to reasoning under uncertainty, based on the use of
Bayesian belief networks (BBN’s) enhanced with rough sets. The role of rough sets is to provide additional reasoning to
assist a BBN in the inference process, in cases of missing data or difficulties with assessing the values of related
probabilities. The basic concepts of both theories, BBN’s and rough sets, are briefly introduced, with examples showing
how they have been traditionally used to reason under uncertainty. Two case studies from the authors’ own research
are discussed: one based on the evaluation of software tool quality for use in real-time safety-critical applications, and
another based on assisting the decision maker in taking the right course of action, in real time, in the naval military
exercise. The use of corresponding public domain software packages based on BBN’s and rough sets is outlined, and
their application for real-time reasoning in processes under uncertainty is presented.

Keywords: Bayesian Belief Networks, Rough Sets, Decision Uncertainty, Soft Computing.

1. INTRODUCTION
Bayesian Belief Networks (BBN’s) have been

widely used in Industrial Information Systems for
solving all types of computational problems with
insufficient information and uncertainty [1,2]. This
includes applications such as: water contamination
[3], fault detection in an industrial process [4], fog
forecasting at the airports [5], predicting software
defects [6], inferring certification metrics of
software [7], predicting hospital admissions for
emergency [8], multisensor fusion for landmine
detection [9], evaluation of risk in software
development [10], modeling an air traffic control
[11], cell signaling pathway modeling [12],
reliability estimation [13], safety assessment [14]
and risk evaluation [15] in computer-based systems,
to name only a few from a long list. They have been
also studied theoretically by a number of
researchers, for example [16-17].

Although, in general, BBN’s have been very
effective, because they allow reasoning and making
predictions based on small sets of probabilities with
backwards inference, they are still based on

probability theory. A significant disadvantage of
BBN’s is that, in realistic cases, they require
extensive computations of the conditional
probability values. In most of these studies, it has
been recognized that this is one of the method’s
major limitations. Another disadvantage of BBN’s is
that they become less effective in case of missing
probability values.

With this in mind, one wants to look at a
complementary method of evaluating data in the
input data set, which would not rely strictly on
probability densities and could deal with missing
values. One of the theories that offer such an
approach, with values of data attributes and events
measured by likelihoods rather than probabilities, is
the rough sets theory [18-19].

Rough sets have been used since the early
eighties [19], in a wide range of applications to
reason about uncertainty, including data mining[20],
medical diagnosis [21], robotic systems [22],
decision making in medicine [23], cost estimation
[24], modeling software processes [25-26], safety
analysis [27], controller design [28], quality analysis

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 17

[29], fault diagnosis [30] and many others, for
example prognostics [31].

The objective of this paper is to look at the
combination of using BBN’s and rough sets in
decision making under uncertainty, and suggest the
enhancement of pure Bayesian reasoning by
additional use of rough sets for preliminary
evaluation of data. The paper is structured as
follows. The next two sections describe briefly basic
concepts of Bayesian belief networks and rough sets,
respectively. Then, in a separate section, several
examples and two case studies are presented, giving
an overview of the method developed for combining
BBNs and rough sets for real-time computations.
The final sections present general conclusions and
suggestions for future work.

2. BAYESIAN BELIEF NETWORKS

The following section describes Bayesian Belief
Networks from an application point of view rather
than the underlying mathematics and statistics.
Rev. Thomas Bayes developed this method of
updating probabilities based on new information in
the 1760s. It has been widely applied in probability
and statistics for over 250 years.

“Essay Towards Solving a Problem in the
Doctrine of Chances” was published after Bayes’
death in 1763 [32]. It is the basis for the popular
inversion formula for belief updating from evidence
(E) about a hypothesis (H) using probability
measurements of the prior truth of the statement
updated by posterior evidence

P(H|E) = (P(E|H) * P(H)) / P(E)

where H is the hypothesis, E is the evidence, and
P(x|y) is the conditional probability of x given y.

It is derived by the use of the joint probability
definition

P(x, y) = P(x|y) * P(y) = P(y|x) * P(x)
that is then arranged as

P(x|y) = P(y|x) * P(x) / P(y)
where x = H and y = E.

Suppose we know from historical medical
records that meningitis causes a stiff neck in 1 of 2
patients. We also know that 1 in 50,000 people have
meningitis and that 1 in 20 people have a stiff neck.
If you wake up with a stiff neck what is the
probability that you have meningitis? How do you
estimate it?

The hypothesis is that you have meningitis and
the evidence is your stiff neck. Applying the Bayes
formula yields:

P(E|H) = 1 / 2 = 0.5 or probability of a stiff neck
when you have meningitis

P(H) = 1 / 50,000 = 0.00002 or probability of
meningitis in the population;
P(E) = 1/ 20 = 0.05 or probability of a stiff neck
in the population;

which yields in turn:

P(H|E) = (P(E|H) * P(H)) / P(E) =
(0.5 * 0.00002) / 0.05 = 0.0002

which is the probability of having meningitis when
you have a stiff neck. Much more complex models
with multiple hypotheses and evidence sources can
be constructed usually in a graph form relating cause
to effect.

These belief networks are more recent concepts
credited to Professor Judea Pearl with his
construction and solution algorithms along with the
work of many others [33].

A Bayesian belief network is a form of
probabilistic graphical model. The belief network
represents the joint probability distribution of a set
of random variables with explicit independence
assumptions described by a directed graph. In this
research a Bayesian network is defined by a directed
acyclic graph of nodes representing variables and
arcs representing probabilistic dependency relations
among the variables.

If there is an arc from node A to another node B,
then variable B depends directly on variable A and
A is called a parent of B. If the variable represented
by a node has a known value then the node is said to
be observed as an evidence node. A node can
represent any kind of variable, be it a measured
parameter, a latent variable or a hypothesis. Nodes
are not restricted to representing random variables;
this is what is “Bayesian” about a belief network.

In the following, an example is presented of three
node networks that are structured as linear,
converging, and diverging (Figure 1), with the use of
Netica software program [34]. A different software
package for Bayesian belief networks, named Hugin
[35], is equally effective and simple to use.

The above examples are causal Bayesian
networks where the directed arcs of the graph are
interpreted as representing causal relations in some
real domain with prior information. The directed
arcs do not have to be interpreted as representing
causal relations; however in practice knowledge
about causal relations is very often used as a guide
in drawing Bayesian network graphs, thus resulting
in cause and effect Bayesian belief networks.

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 18

B
True
False

50.0
50.0

A
True
False

50.0
50.0

C
True
False

50.0
50.0

C
True
False

50.0
50.0

B
True
False

50.0
50.0

A
True
False

50.0
50.0

C
True
False

50.0
50.0

B
True
False

50.0
50.0

A
True
False

50.0
50.0

Fig. 1 – Examples of three-node Bayesian networks
(top to bottom): linear, converging and diverging.

In the linear case on the top of Figure 2, A causes
B that causes C, while in the converging model in
the center, A is conditionally independent of B and
both cause C, while in the diverging model at the
bottom, A causes both B and C. In each case an
effect is observed at node C illustrating the update of
the joint probabilities when new information is
incorporated into the network.

In the simplest case, a Bayesian network is
specified by an expert and is then used to perform
inference after some of the nodes are fixed to
observed values. In order to fully specify the
Bayesian network and fully represent the joint
probability distribution, it is necessary to further
specify for each node X the probability distribution
for X conditional upon X's parents. The distribution
of X conditional upon its parents may have many
forms.

The following data (Table 1) are the conditional
probabilities for the previous linear A, B, and C
node network example (the top one) from Figure 2,
where we observe that if C is true then column B is
0.8 true and 0.2 false. Prior to any observation as

shown in Figure 1 the symmetry of the conditional
probabilities makes the probability of true and false
states equal to 0.5 for all nodes.

B
True
False

80.0
20.0

A
True
False

65.0
35.0

C
True
False

 100
 0

C
True
False

 100
 0

B
True
False

65.0
35.0

A
True
False

65.0
35.0

C
True
False

 100
 0

B
True
False

62.5
37.5

A
True
False

75.0
25.0

Fig. 2 – Causal relationships represented in a Bayesian

belief network.

Table 1. Conditional probabilities for Figure 2

Node A
True False

0.5 0.5
Node B

True False A

0.75 0.25 True

0.25 0.75 False

Node C
True False B

0.80 0.20 True

0.20 0.80 False

The goal of inference is typically to find the

distribution of a subset of the variables, conditional
upon some other subset of variables with known
values called the evidence or observations, with any
remaining variables integrated out. This is known as

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 19

the posterior distribution of the subset of the
variables given the evidence. The posterior gives us
a universal sufficient statistic for detection
applications, when one wants to choose values for
the variable subset which minimize some expected
loss function, for instance the probability of decision
error.

An example of inference in the center converging
example from Figure 2 is to specify A as observed
true and estimate the inferred values for B and C,
with C updated by the new information but B un-
changed since it is conditionally independent of A.

A

True
False

 100
 0

B
True
False

50.0
50.0

C
True
False

65.0
35.0

Fig. 3 – Effect of introducing evidence into a
converging node in a Bayesian network.

In the divergence example from bottom of Figure

2, if A is observed then it infers new probability
states for B and C that are dependent on A.

B
True
False

75.0
25.0

C
True
False

75.0
25.0

A
True
False

 100
 0

Fig. 4 – Effect of introducing evidence into a diverging

node in a Bayesian network.

Questions about the dependence among variables

can be answered by studying the graph alone. It can
be shown that the conditional independence is
represented in the graph by the graphical property of
d-separation: nodes A and B are d-separated in the
converging graph, given specified evidence nodes.

For belief reasoning a typical network is
organized into three layers. The top layer is the
causal variables, the middle layer is the reasoning
variables, and the bottom layer is the effects
variables. Four general classes of reasoning are
defined for this three layer architecture. As an
example the following five node network with three
layers using binary random variables is used to
illustrate the four principal reasoning strategies used
in belief networks. The example network prior
distribution has an equal probability for each
variable state and is symmetric to illustrate the
various conditional computations.

Diagnostic reasoning, illustrated in Figure 5,
observes the effects of evidence and updates the
middle reasoning variables and the top layer causal
variables as shown in the example. This reasoning
process diagnoses from an effect E of True to the
cause B or in medical terms it is reasoning from
symptom to disease. It also adjusts the probabilities
for the middle reasoning layer C and the causal
variable A and effect variable D.

A

True
False

57.5
42.5

B
True
False

57.5
42.5

C
True
False

75.0
25.0

D
True
False

62.5
37.5

E
True
False

 100
 0

Fig. 5 – Illustration of diagnostic reasoning.

Predictive reasoning, illustrated in Figure 6,

observes causal evidence and updates the middle
reasoning variables and bottom layer effects
variables as shown in the example. This reasoning
process predicts from cause B to the effects D and E
such as a patient saying that he is a smoker may
focus on a certain set of symptoms. It also adjusts
the probabilities for the middle reasoning layer C but
not the independent causal variable A.

A
True
False

50.0
50.0

B
True
False

 100
 0

C
True
False

65.0
35.0

D
True
False

57.5
42.5

E
True
False

57.5
42.5

Fig. 6 – Illustration of predictive reasoning.

Intercausal or explaining reasoning, illustrated in

Figure 7, observes both causal evidence and the
middle layer reasoning evidence to update other
causal variables as shown in the example. This
reasoning process on C explains the mutual known
cause B with unknown cause A and the common
effects D and E. It is often interpreted as performing
an experiment for explaining away cause A.

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 20

A
True
False

61.5
38.5

B
True
False

 100
 0

C
True
False

 100
 0

D
True
False

75.0
25.0

E
True
False

75.0
25.0

Fig. 7 – Illustration of intercausal (explaining)
reasoning.

Combined reasoning, shown in Figure 8,
observes causal evidence and effects evidence to
update the middle reasoning variables as shown in
the example. This reasoning process combines cause
B and effect E to investigate the network conditional
structure for reasoning variable C and the other
cause A and the other effect D. This is a useful
reasoning test for building and validating complex
belief networks based on limited data and expert
knowledge.

A
True
False

56.5
43.5

B
True
False

 100
 0

C
True
False

84.8
15.2

D
True
False

67.4
32.6

E
True
False

 100
 0

Fig. 8 – Illustration of combined reasoning.

3. ROUGH SETS

Rough Set Theory was invented by Zdzisław
Pawlak to cope with limited perception of the
surrounding world. The theory is especially helpful
in dealing with vagueness and uncertainty in
decision situations. Its main purpose is the
“automated transformation of data into knowledge”
[18]. The data are perceived in terms of objects and
their features, i.e., values of the attributes used to
characterize these objects. The knowledge deduced
from these data is expressed in terms of surely and
possibly statements describing notions of interests.
More formally, such descriptions can be divided into
so-called lower and upper approximations of entire
notions. In the rest of this section, we describe a
qualitative procedure containing all steps needed to
form appropriate description of the concepts under
considerations.

3.1 EXPLANATION OF A NOTION OF A
ROUGH SET

First, let us illustrate intuitively a concept of a
rough set, comparing it to an ordinary set and a
fuzzy set, in a single dimension. Figure 9 shows
such an intuitive illustration. For an ordinary set, the
interval [A,B] in Figure 9, all its elements, that is,
real numbers from this interval (assuming x
represents a real axis), have values of their
membership function equal to 1.0.

For a fuzzy set, elements on the set boundaries,
that is, in the intervals [A,C] and [D,B], have values
of their membership function equal to a fraction, a
number from the interval [0.0, 1.0]. This means that
these elements only partially belong to the set, to the
extent specified by the value of a membership
function.

Fig. 9 – Intuitive illustration of a rough set vs an

ordinary and a fuzzy set.

In contrast to the traditional concepts of a set,

whether ordinary or fuzzy, for a rough set one
cannot determine, even partially, the membership of
the elements on the set boundary. Therefore, the
value of the membership function for boundary
elements of a set is undetermined. A rough set can
only be described by its approximations, as
illustrated in the lower part of Figure 9.

To express these intuitive concepts a bit more
formally, we start from a relational database, i.e., a
table with rows corresponding to objects and
columns corresponding to the attributes. Each entry

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 21

of the table represents attribute value of a
corresponding object (i.e., its feature). In rough set
formalism the database is considered as an
information system, i.e., a quadruple

IS = (U, A, V, f),
where U = {u1, …, un} stands for a (usually finite)
set of objects,

A = {a1, …, am} is a set of attributes,
V = V1 ∪ … ∪ Vm,

where Vi is the domain of i-th attribute, and
f: U × A → V

is a so-called information function providing the
description of objects, i.e., f(ui, aj) assigns a value of
j-th attribute to i-th object. The above mentioned
concepts are illustrated in Table 2, in which

U = {u1, u2, u3, u4, u5, u6, u7, u8},
A = {a1, a2, a3}, and
V = V1 ∪ V2 ∪ V3, = {Low, Med, High}
 ∪ {Min, Under, Over, Max} ∪ {yes, no}.
Usually the set A is decomposed into two disjoint

subsets A = C ∪ D and the attributes from C are
used to characterize objects and form so-called
condition attributes, while the attributes in D are so-
called decision attributes and they are used in
decision-making or classification tasks. An
information system with specified condition and
decision attributes is called decision table. For the
example in Table 2, attributes a1 and a2 could be
interpreted as condition attributes, that is, certain
parameters of an object, with values from the range
{Low, Med, High} and {Min, Under, Over, Max},
respectively, and attribute a3 – as a decision
attribute, with values “yes” and “no.” Hence, Table
2 can be viewed as a decision table.

Table 2. Example of an information system
f: U × A → V Attributes A

Objects U a1 a2 a3
u1 Low Max yes
u2 Low Min no
u3 Med Under no
u4 Med Under yes
u5 High Over no
u6 Low Over yes
u7 High Over no
u8 Low Min no

Because of the limited knowledge, we cannot

fully discern objects, i.e., there are such objects u, v
in U that f(u, c) = f(v, c) for all the condition
attributes c. This fact leads to the notion of
indiscernibility relation E being in fact an
equivalence relation on U. For example, for the
information system in Table 2, objects u2 and u8 are
indiscernible. So are objects u5 and u7.

It appears that in many cases we can identify
proper subsets C' of C such that the indiscernibility

relation EC' induced by the attributes in C' is identical
with the original relation E. Such sets of attributes
are called reducts. Existence of reducts proves that
not all of the attributes are necessary to form the
equivalence classes. In other words identifying
reducts allows more economic description of objects
as we need smaller number of descriptors (features)
to characterize these objects. Unfortunately, from a
computational point of view this is an NP-hard task.
No such reducts exist for the example shown in
Table 2.

3.2 DEFINITION OF A ROUGH SET

Now we are ready to introduce the key concepts
of rough set theory. Let B be a subset of the
condition attributes and let [v]B stand for an
equivalence class, i.e., a set of objects u in U with
identical description (narrowed to the set B) as the
object v. The subset X of U can be characterized
using information in B by means of so-called B-
lower and B-upper approximations defined as:

B(X)* = {u ∈ U | [u]B ⊆ X} (1a)
B(X)* = {u ∈ U | [u]B ∩ X ≠ ∅} (1b)

The lower approximation of X is the collection of

objects which can be viewed surely as members of
the set X, while the upper approximation of X is the
collection of objects that possibly are members of X.
Obviously B(X)* ⊆ B(X)*. If B(X)* = B(X)* we say
that X is B-definable and otherwise it is only
partially definable. The set BNB = B(X)* – B(X)* is
called a B-boundary region; it specifies the objects
that cannot be classified with certainty to be either
inside X, or outside X.

There are many grades of partial definability. We
say that the set X is:
• roughly B-definable

iff B(X)* ≠ ∅ and B(X)* ≠ U,
• internally B-indefinable

iff B(X)* = ∅, B(X)* ≠ U,
• externally B-indefinable

iff B(X)* ≠ ∅, B(X)* = U,
• totally B-indefinable

iff B(X)* = ∅, B(X)* = U.

Obviously, if B = C, i.e., the full set of condition

attributes is used, we omit the prefix B- in all above
definitions. In such a case, a set X is characterized
by the pair (X*, X*) and we say that X is a rough set
(or B-rough set).

To illustrate these newly introduced concepts for
the information system in Table 2, let’s distinguish
between condition attributes a1 and a2, and a
decision attribute a3. Values of a1 and a2, can be

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 22

interpreted as vague measurements (evaluations) of
certain parameters of a technical system, and a3 can
be viewed as a decision (control) based on these
evaluations. Let the set B be the entire set of
condition attributes, C = B = {a1, a2}. If the
equivalence class [v]B is defined as

[v]B = { {u1}, {u2, u8}, {u3, u4}, {u5, u7}, {u6} }

then the set X = { u | a3(x) = yes } has the following
approximations:

B(X)* = {u1, u6}
B(X)* = {u1, u3, u4, u6}

This determination can be also illustrated in the

table representing the information system under
consideration (Table 3).

Table 3. Illustration of lower and upper
approximations for a sample information system

f: U×A→ V Condition attributes C Decision
attribute D

Objects U a1 a2 a3
u1 Low Max yes
u2 Low Min no
u3 Med Under no
u4 Med Under yes
u5 High Under no
u6 Low Over yes
u7 High Over no
u8 Low Min no

The set X for a decision variable’s value equal

“yes” has three corresponding objects, u1, u4 and u6.
Given values of the specific condition attributes B =
{a1, a2}, two of these objects, u1 and u6, lead surely
to this decision value (yes). Thus, u1 and u6, form the
lower approximation of set X. This is illustrated with
heavy shading in Table 3. If, however, we take the
third object, u4, the values of its condition attributes,
{ a1=Med, a2=Under}, can produce two different
values of the decision attribute: “yes” for object u4,
and “no” for object u3. Thus, objects with these
values of the condition attributes belong possibly to
the set X, which is illustrated with light shading in
Table 3. Obviously, objects in the non-shaded lines
do not belong to X.

To get a numerical characterization of the
“roughness” of a set X we introduce so-called
accuracy of approximation

αB(X) = |B(X)*| / |B(X)*| (2)

where the symbol |Y| stands for the cardinality of the
set Y. X is said to be crisp (or precise) with respect to
the set of attributes B if and only if αB(X) = 1, and

otherwise X is said to be rough (or vague) with
respect to B.

Another characterization of the set of objects can
be obtained by introducing so-called rough
membership function µB,X : U → [0,1] defined as
follows

µB,X(u) = |[u]B ∩ X| / |[u]B| (3)

With such a definition a relationship between

rough and fuzzy sets theory is established. More
particularly, µB,X(u) determines the degree in which
object u described by the set B of attributes belongs
to the concept (equivalence class) X. Further, we can
relax the definitions of the lower and upper
approximation, namely

Bβ(X)* = {u ∈ U|µB,X(x) ≥ β} (4a)
Bβ(X)* = {u ∈ U|µB,X(x) > 1-β} (4b)

where 0 ≤ β ≤ 1. If β = 1 we obtain original
definitions (1a) and (1b).

3.3 ROUGH RULES

In practical applications of interest are the sets of
objects with identical set of decision attributes, that
is, we define X as the set of objects satisfying the
equality f(x1, d) = f(x2, d) for all attributes d in D. If
D is, for example, a set of diseases then X is a set of
persons suffering on a particular disease, and the
equivalence classes [x]B contain patients with
identical symptoms (restricted to the set B). Hence,
it is natural to find such condition attributes which
can be used to discriminate between different
diseases. This leads us to the practical aspects of
rough set theory: rough rules.

More formally, given an information system IS =
(U, A, V, f) and a subset B ⊆ A we start from the set
of atomic formulae, called also descriptors, being
expressions of the form a = v, where a ∈ B and v ∈
Va. Next, we define the set of all possible formulae
F(B,V) containing all atomic formulae and being
closed with respect to the logical connectives: ¬
(negation), ∧ (conjunction) and ∨ (disjunction).

If ϕ is an atomic formula of the form a = v, then
its meaning (semantics) is as follows:

||ϕ|| = {u ∈ U | f(u,a) = v}
If ϕ is a compound formula then

||¬ϕ|| = U \ ||ϕ||,
||ϕ∧ϕ′|| = ||ϕ|| ∩ ||ϕ′||, and

||ϕ∨ϕ′|| = ||ϕ|| ∪ ||ϕ′||.
Now a decision rule is any expression of the form

ϕ ⇒ (d = v),
where d is a decision attribute; the formula ϕ is said
to be predecessor (or ancestor) of the rule and the

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 23

formula (d = v) – its successor (or consequent). We
say that the decision rule:

ϕ ⇒ (d = v)
is true in the information system IS, if

||ϕ|| ⊆ ||(d = v)|| and ||ϕ|| ≠ ∅.
Deeper classification of the rules is given in [36].

For instance the rule
r1: (a1 = Low) ∧ (a2 = Max) ⇒ (a3 = yes)

is true in the information system from Table 3, while
the rule

r2: (a1 = Med) ∧ (a2 = Under) ⇒ (a3 = yes)
is only partly true because

||(a1 = Med) ∧ (a2 = Under)|| = {u3, u4}
and ||(a3 = yes)|| = {u1, u4, u6};

thus ||(a1 = Med) ∧ (a2 = Under)|| ⊄ ||(a3 = yes)||.
Detailed remarks on inducing rules from information
systems can be found, for example, in [37].

To characterize the rules numerically, a number
of measures can be introduced; support and
confidence are most popular. The former is defined
as the number of objects satisfying both predecessor
and successor, while the latter as the conditional
probability that the consequent is satisfied provided
the ancestor is satisfied. In case of rule r2 its support,
sup(r2) = 1, and its confidence, conf(r2) = ½.

The already mentioned process of
“transformation of data into knowledge” translates
now into refining the dependencies between sets of
attributes. Intuitively, if C and D are two sets of
attributes, we say that D depends totally on C, if all
values of the attributes from D are uniquely
determined by values of attributes from C. This is
functional dependency known from database theory.

Rough set theory enables relaxing this definition
by introducing a dependency in a degree k ∈ (0, 1].
An interested reader is referred to [19] and [38] for
details. There are at least two successful computer
programs allowing rough data analysis: Rosetta [39]
downloadable from the following website:
http://rosetta.lcb.uu.se/general/ and LERS [40].

Finally if a new object is introduced into the data
set with the attribute value missing, one could
attempt to determine this value by using the
previously generated rules. This is explained in the
next section.

3.4 HANDLING THE MISSING VALUE IN A
ROUGH SET

Grzymala-Busse describes several algorithms of
dealing with missing values in information systems,
based on three types of such values [41]:
• those which are lost and no longer available
• totally irrelevant values, and
• partially relevant values.

They are marked in Table 4, using the following

symbols: a question mark “?” for not available
values, an asterisk “*” for irrelevant values, and a
dash “-“ for partially relevant values.

Table 4. Information system with some missing
values

f: U×A→ V Condition attributes C Decision
attribute D

Objects U a1 a2 a3
u1 ? Max yes
u2 Low Min no
u3 Med Under no
u4 - Under yes
u5 High Over no
u6 Low Over yes
u7 High Over no
u8 Low * no

To calculate the approximations, one has to start

with the meaning of the atomic formulas in a given
information system. For the information system in
Table 2, these meanings, called also blocks in [41]
are as follows:

||a1 = Low|| = { u1, u2, u6, u8 }
||a1 = Med|| = { u3, u4 }
||a1= High|| = { u5, u7 }
||a2 = Min|| = { u2, u8 }
||a2 = Under|| = { u3, u4 }
||a2 = Over|| = { u5, u6, u7 }
||a2 = Max|| = { u1 }

These sets have to be modified for an information

system with missing values in Table 4, as follows.
For the missing value of the attribute a1, which is not
available for object u1 and marked “?”, object u1 has
to be removed from all blocks created for this
attribute, that is, block ||a1 = Low|| will change to:

||a1 = Low|| = { u2, u6,, u8 }

with two other blocks for a1 remaining unchanged,
because they do not include objects with lost value
of a1.

For the missing value of the attribute a2, which is
irrelevant and marked “*”, its corresponding object,
u8, has to be included in blocks for all values of this
attribute, which will lead to the following
modifications:

||a2 = Min|| = { u2, u8 }
||a2 = Under|| = { u3, u4, u8 }
||a2 = Over|| = { u5, u6, u7, u8 }
||a2 = Max|| = { u1, u8 }

Finally, for the missing value of the attribute a1,

which is marked “-”, as partially relevant, respective
object u4 has to be added to the blocks containing

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 24

objects corresponding to the decision attribute’s
value the same as the value of this decision attribute
for the partially relevant value. In case of Table 4,
the partially relevant value of attribute a1 for object
u4 corresponds to the decision attribute’s value
“yes”. Thus, this attribute’s value is relevant to this
particular decision attribute, and this is the meaning
of the term “partially relevant”. Two other objects
exist, which have “yes” as their decision attribute’s
value: u1, whose value of attribute a1 is unavailable,
so we drop it from consideration, and u6, whose
value of a1 equals Low; therefore u4 has to be added
to the block, which contains a1 = Low, because it is
partially relevant to corresponding decision attribute.

So the final list of blocks looks as follows:
||a1 = Low|| = { u2, u4,, u6,, u8 }
||a1 = Med|| = { u3, u4 }
||a1= High|| = { u5, u7 }
||a2 = Min|| = { u2, u8 }
||a2 = Under|| = { u3, u4, u8 }
||a2 = Over|| = { u5, u6, u7, u8 }
||a2 = Max|| = { u1, u8 }

Because of the limited length of this paper, we

can only mention here that for further computations
the so called characteristic sets have to be
calculated, for each object, which is done as follows:

1) The characteristic set K of an object is defined
as an intersection of blocks for specific values
of the attributes for this object.

2) If the value of an attribute is irrelevant “*” or
unavailable “?”, then the entire universe U is
taken as a corresponding block for this
attribute.

3) If the value of an attribute is partially relevant
“-“, then for this specific block it is substituted
by a union of blocks representing particular
values of the attributes for the corresponding
decision attribute’s value.

A more formal presentation of these concepts,
with respective algorithms, is given in [41]. Below
we present the computation of characteristic sets for
the list of blocks corresponding to Table 4.

Ku1 = U ∩ { u1, u8 } = { u1, u8 }
Ku2 = { u2, u4, u6, u8 } ∩ { u2, u8 } = { u2, u8 }
Ku3 = { u3, u4 } ∩ { u3, u4, u8 } = { u3, u4 }
Ku4 = { u2, u4, u6, u8 } ∩ { u3, u4, u8 } = { u4, u8 }
Ku5 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 }
Ku6 = { u2, u4, u6, u8 } ∩ { u5, u6, u7, u8 } = { u6, u8 }
Ku7 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 }
Ku8 = { u2, u4, u6, u8 } ∩ U = { u2, u4, u6, u8 }

As explained in [41], computation of lower and
upper approximations, depends on their definitions.
The author presents three such definitions and for

one of them:

B(X)* = { u1, u4, u6, u8 }
B(X)* = { u1, u2, u4, u6, u8 }

The interpretation of this result is such that the

missing values cause broadening of the potential
span for the lower approximation, because they have
to be inferred from the rest of the set. The upper
approximation can change either way, because the
missing values change the entire structure of a set.

4. COMBINATION OF BBN’S WITH

ROUGH SETS
This section describes several examples and two

case studies related to Bayesian networks and rough
sets. First, we give a background on applying
Bayesian networks to software quality evaluation.
Next, we discuss a case study on the assessment and
qualification of software tools for real-time safety-
critical systems. Finally, we present a method for
combining Bayesian networks and rough sets in
decision making under uncertainty, and discuss the
operation of two public domain tools, assisting in
real-time decision making.

4.1 USE OF BBN’S FOR SOFTWARE
QUALITY EVALUATION

In recent years, these authors have dealt with
various aspects of assessing software quality in real-
time safety-critical applications [42-44]. The basic
idea to apply Bayesian networks in such problems
comes from multiple previous attempts to assess
various software properties in critical applications,
which are briefly outlined below.

A. Application of BBN’s to Assess Software
Quality. In one of the first studies reported [45], the
authors addressed the eternal question: “Can we
predict the quality of our software before we can use
it?”, by applying BBN’s to assess the defect density
as a measure of software quality. A simplified
diagram from their study is presented in Figure 10.
The nodes were built based on the understanding of
life-cycle processes, from requirements specification
through testing.

The probabilities of respective states were based
on the analysis of literature and common-sense
assumptions about the relations between variables.
The node variables are shown on histograms of the
predictions obtained by execution of the network
after the evidence entered (the evidence is
represented by nodes with probabilities equal to 1.0).
As the authors say, the advantage of their model is
that it “provides a way of simulating different events
and identifying optimum courses of action based on

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 25

uncertain knowledge.”

Fig. 10 – Simplified BBN for assessing software fault
density [45].

B. Use of BBN’s in Assessment of Software

Safety. Gran et al. [46] applied BBN’s to address
safety assessment of software for acceptance
purposes, in a more comprehensive way, using
multiple information sources, such as complexity,
testing, user experience, system quality, etc.

Their BBN network for system quality, which is
only a part of the entire model, is shown in Figure
11. It involves two root nodes: UserExperience and
VendorQuality, and a number of leaf nodes,
corresponding to observable variables, of which
QualityMeasures is of particular importance. This
node shows evidence about the system quality,
grouping quality attributes, such as readability,
structuredness, etc., and can be expanded further.

Fig. 11 – BBN for the system quality in safety

assessment [46]

Other observable variables include

FailuresInOtherProducts, those related to the user
experience (NoOfProducts and TotalUseTime), as
well as those related to quality assurance policy.
When evidence becomes available, entering
respective observation data into these nodes and
executing the network provides assessment of the
variable in question, which in this case is
SystemQuality.

The authors note, however, that their example is
intended more as an illustration of the method rather
than as a real attempt to compute the quality of the
system. Their probability assignments to the node
variables were chosen somewhat ad hoc, and not
based on any deeper analysis of the problem.
However, as the authors say in conclusion, the
results of the study were positive and showed “that
the method reflects the way of an assessor’s thinking
during the assessment process.”

C. BBN’s in Dependability and Reliability
Assessment. [47] used BBNs to formalize reasoning
about software dependability to facilitate the
software assessment process. They constructed a
network for evaluating dependability of a software-
based safety system. It used the data associated with
two primary assumptions: the excellence in
development (called a process argument) and
failure-free statistical testing (called a product
argument). The network topology includes taking
into consideration variables such as: Test Failures,
Operational Failures, Initial Faults, Faults Found,
Faults Delivered, and System PFD (Probability of
Failure per Demand). The probability distributions
have been derived from a sample of programs from
an academic experiment.

The authors were interested in estimating the
probabilities of failure during acceptance testing and
during the operational life of the product
(represented by two variables mentioned in previous
paragraph), given the prior probabilities and
observed events. In particular, positive results of an
acceptance test allowed deriving numerical estimates
about the PFD and operational performance of the
product.

Helminen [13] used BBN’s to attack the problem
of software reliability estimation. His primary
motivation to apply BBN’s was that they allow all
possible evidence (large number of variables,
different potential sources, etc.) to be used in the
analysis of the reliability of a programmable safety-
critical system. The essential characteristic of such
systems is that they involve a significant number of
variables related to reliability, with very limited
evidence.

The reliability of such systems is modeled as a
probability of failure, that is, the probability that the
programmable system fails when it is required to
operate correctly. To develop an estimate of

SystemQuality
Low
Medium
High

43.8
28.4
27.8

DevelopmentQuality
Bad
Acceptable
Excellent

34.8
37.0
28.2

Documentation
Bad
Acceptable
Excellent

41.3
30.8
27.9

QualityMeasure
LTzeroPTone
Between
GTzeroPTeight

40.7
29.9
29.4

QApolicy
Bad
Acceptable
Excellent

34.8
37.0
28.2

VendorQuality
Low
Medium
High

25.0
50.0
25.0

VendorPedigree
Lousy
Average
Reasonable

34.8
37.0
28.2

QAstandards
None
Generic
Detailed

31.3
34.6
34.1

UserExperience
Low
Medium
High

30.0
40.0
30.0

QualityControl
Strict
Lousy

44.5
55.5

QualityCtrlDocs
None
Partial
Complete

27.7
36.6
35.6

NoOfProducts
LT10
Between
GT100

31.0
38.0
31.0

TotalUseTime
LT100hrs
Between
GT10000hrs

31.0
38.0
31.0

FailuresInOtherProducts
Low
Medium
High

29.9
28.7
41.5

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 26

probability of failure, the authors built a series of
BBN models, using evidence from such sources, as
the system development process, system design
features, and pre-testing, before the system is
deployed. This is later enhanced by data from testing
and operational experience.

The essential part of this work was building BBN
models for various operational profiles for multiple
test cycles, involving continuous probability
distributions. As a result, using BUGS software that
combines Bayesian inference with Gibbs sampling,
via Markov chain Monte Carlo (MCMC) simulation,
it was possible to estimate, how many tests had to be
run for a single system in a particular operational
environment to achieve certain level of reliability.
To decrease the huge number of necessary tests,
multiple operational profiles for the same system
were used, which required building replicated BBN
models to include other profiles’ evidence. In
essence, by expanding the BBN models further, this
approach also allows reliability estimation over the
entire lifespan of the software product, but
respective experiments have not been conducted in
this study.

4.2 CASE STUDY IN SOFTWARE TOOL
EVALUATION

To test the applicability of BBNs in software
assessment, we applied this technique to evaluate the
software development tools used in real-time safety
critical applications in avionics. The data for the
project were taken from experiments described in
detail elsewhere [43,48]. The experiments involved
applying a number of specific criteria, including:
efficiency of the generated code, to conduct forward
evaluation regarding the quality of code, and
traceability, to allow backward evaluation regarding
the tool capability of maintaining the right
requirements. To evaluate the tool during its
operation from perspective of the functions it
provides and the ease of use, two additional criteria
seemed to be appropriate: functionality and usability.
The exact process of choosing the criteria is
described in [48]. For criteria selected that way, a
series of experiments were conducted, with six
industry-strength tools applied to embedded
software development. The above mentioned criteria
were quantified using the following measures:

• Efficiency measured as code size (in LOC)
• Usability measured as development effort (in

hours)
• Functionality measured via the questionnaire

(on a 0-5 points scale)
• Traceability measured by manual tracking (in

number of defects).

Data for some measures were collected in
multiple aspects, for example, data involving the
development effort were divided into four
categories: preparation, modeling and code
generation, measurements, and postmortem
(including report writing). Details of the software
requirements and actual experimental results are
discussed in [43].

Fig. 12 – High-level BBN model for software tool

evaluation.

Based on the adopted model of the tool

evaluation process, and the results of experiments
with the selected evaluation criteria outlined above,
our high-level model of a BBN for tool assessment
is illustrated in Figure 12. Its primary assumptions
are that the tool assessment process should involve
the following mutually interrelated factors:

a) development of the tool itself (including the
process, vendor quality and reputation, their quality
assessment procedures, etc.),

b) the tool use (including experimental
evaluation based on predefined criteria, but also
previous user experiences with this tool, etc.)

c) quality of the products developed with this
tool, based on product execution, static code
analysis, etc.

Based on the results of this analysis and other
acceptance procedures (such as, legal aspects,
independent experts opinions, etc.), the tool
qualification process can be completed, as reflected
in a BBN in Figure 13. Because of the limited data
obtainable from experiments, we only deal with
ToolUse part of the diagram in Figure 12. The logic
of the BBN is similar to the ones reported in [14],
where they had no real probability data, and [46],
where the conditional probability values “were
estimated based on judgments in a brainstorming
activity among the project participants.”

For the experimentally collected data for six
tools, nicknamed L, M, N, O, P and Q, a sample tool

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 27

assessment BBN is shown in Figure 13 for a tool,
which is likely to pass the qualification process with
80% confidence at the level MediumToHigh or
High.

Fig. 13 – BBN to assess numerically quality of tool L.

4.3 REAL-TIME APPLICATION: THE
AUSTRALIAN NAVY EXERCISE

As visible from previous examples, the principle
of using a BBN for reasoning under uncertainty is
that when the evidence about the state of one of the
nodes (variables) becomes available, the rest of the
network is also updated according to the conditional
probability tables and dependency relations among
the nodes. However, an updating process becomes a
problem, if the new evidence is distorted or missing.
This situation does not look that difficult in off-line
computations, such as those discussed in subsections
above, because one can do additional experiments
and wait for the data when they will become
complete. But if one wants to use BBN’s for
situation assessment in real time, when missing or
distorted data come into play, as in circumstances
such as sensor noise or sensor failure, especially
over extended period of time, then the value of
Bayesian reasoning may become problematic.

In general, this issue comes into play when there
is no information on certain behavior or some
information previously available becomes scarce or
unavailable. Then using a rough set theory can help
filling the gap caused by such circumstances. To
illustrate this concept, we present a case study of the
Australian Naval Exercise [49].

In this case study, there are two naval military
forces called Blue and Orange that are hostile
towards each other, and a country that the Orange
forces obtain fuel supplies from and the Blue forces
treat as neutral. The Blue forces have
communications and surveillance facilities that the
Orange forces want to destroy. Blue have set up a
restricted area that contains the communication
facilities and will consider any military activity or
transportation of supplies hostile. Orange have a
supply route that passes through the restricted area
that it wants to defend.

Blue monitor the restricted area via sensors and
reconnaissance. Orange vessels that are likely to be
detected are Guided Missile Frigates (FFG in Figure
14), Free Mantle Class Patrol Boards (FCPB), and
Communication vessels. Oil Tankers from the
neutral country can also be detected. The position,
mobility, and communications activity of the vessel
are also recorded to try to determine the intent of the
Orange forces.

The Bayesian network in Figure 14 is used to try
to determine what the intentions of the Orange
forces are and how to respond to it by entering the
findings from the sensors and reconnaissance into
the appropriate nodes. In essence, based on this
information entered into the bottom nodes, the
Bayesian network recalculates the variables in all
other nodes, and the value of a variable in node
BlueCOA makes a suggestion to the decision maker,
what would be the most appropriate Course of
Action (COA) at any given time.

The situation is more complicated when some of
the sensor or reconnaissance data are missing, for
example, due to a sensor failure or temporary or
permanent unavailability of the reconnaissance. The
BBN, which does the calculations, still expects
receiving new data, because the command unit has
to assess the situation and make respective decisions
in real time. Even though the BBN can still operate,
the missing data make its assessments less and less
accurate when the time progresses.

In such case, we try to employ a rough set theory,
particularly in its part dealing with the missing
values. The essential idea is as follows. If we treat
specific variables from the BBN network as
attributes of the information system (rough set), with
one of them being the decision attribute and all
remaining ones – condition attributes, then we can
determine (with some level of accuracy) the missing
values of the attributes, using the reasoning
presented briefly in the section on rough sets and
described in more detail in [41]. In plain language,
this would be equivalent to deriving the approximate
value of a certain variable based on the context
information. A sample of a respective information
system is illustrated in Figure 15, for the Australian

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 28

Naval Exercise, using a rough set tool Rosetta [39].

Fig. 14 – Sample BBN for an Australian Naval Exercise

Fig. 15 – Sample information system in Rosetta for an Australian Naval Exercise

All fourteen nodes from the Bayesian network

are mapped onto attributes of an information system.
In each time instant, depending on the frequency of
measurements in the decision making process, a new
case (an object with fourteen attributes) is created.
The values of respective attributes may be obtained
directly by the measurement process, or from a BBN
if necessary. For example, the first attribute in
Figure 15, SensorMobilityInt, corresponds to the
node of the same name in the BBN in Figure 14, and
has a value of RapidParallel. If some measurements
are missing, this is illustrated by an asterisk in
Figure 15.

The operation of software tools to conduct this
process in real time is illustrated in Figure 16, with
evidence meaning the new sensor measurements or

reconnaissance data. Such process can be easily
automated with existing tools, since a Netica version
exists that has a Java API and can read cases from a
text file. In turn, Rosetta, which also has a command
language interface, can export its tables as text files
to be grabbed by Netica. With a converter software
reading Rosetta files, making respective adjustments
if some data are missing, and transforming them to
the Netica format, the whole system shown in Figure
16 can operate smoothly and enhance the decision
making process in real time.

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 29

Fig. 16 – Real-Time operation of a BBN tool with a

rough set tool.

5. SUMMARY AND CONCLUSION

This paper discussed basic concepts of Bayesian
belief networks and rough sets, and showed how
they can be combined to enhance the process of
reasoning under uncertainty in case of missing
values of certain attributes of objects. Bayesian
networks and rough sets are individually very
adequate tools to solve computational problems with
insufficient information and reason about
uncertainty. The use of rough sets helps making
BBN’s more valuable in case of the occasional lack
of evidence. It becomes particularly important, when
BBN’s are used in applications such as real-time
decision making or active safety diagnostics, with
information being supplied to the nodes during
operation. In such cases, losing the source of
information for one of the BBN nodes impairs the
inference process in the next steps. Using rough set
reasoning helps in keeping the BBN in good
standing, disregarding the lost source of information.

This logic of this process is very similar to the
use of a Kalman filter [50], when the information
about the system is updated based on its previous
behavior. However, in case of rough sets the
information does not have a statistical nature, as in
the case of Kalman filtering. Comparing the
concepts outlined in this article with the operation of
a Kalman filter would be a good topic for further
study.

There are several important questions still to be
addressed. For example, to apply this method in
practice, one would need to know how
computationally intensive are the rough set
calculations? It seems that for typical applications of
Bayesian belief networks, which are used in decision
support systems, the deadlines for completing the
computations are most likely in the order of minutes
or hours, so this issue should not cause problems.

6. ACKNOWLEDGEMENT

The authors gratefully acknowledge contribution
to this paper of the late Dr. Henry Pfister.

Part of this work has been funded by a grant
SBAHQ-10-I-0250 from the U.S. Small Business
Administration (SBA). SBA’s funding should not be

construed as an endorsement of any products,
opinions, or services. All SBA-funded projects are
extended to the public on a nondiscriminatory basis.

7. REFERENCES

[1] N.E. Fenton, M. Neil, The use of Bayes and
causal modelling in decision making,
uncertainty and risk, Agena Risk White Paper,
June 2011. Available at:
http://www.agenarisk.com/resour
ces/white_papers/fenton_neil_white_paper2011
.pdf.

[2] F.V. Jensen, T.D. Nielsen, Bayesian Networks
and Decision Graphs. Second Edition,
Springer-Verlag, 2007.

[3] W.J. Dawsey, Bayesian belief networks to
integrate monitoring evidence of water
distribution system contamination, Master
Thesis, University of Illinois at Urbana-
Champaign, February 2012.

[4] M. Azhdari, N. Mehranbod, Application of
Bayesian belief networks to fault detection and
diagnosis of industrial processes, Proc. ICCCE
2010, Intern. Conf. on Chemistry and Chemical
Engineering, Kyoto, Japan, August 1-3, 2010,
pp. 92-96.

[5] P. Newham et al., Fog forecasting at
Melbourne airport using Bayesian networks,
Proc. Fourth Intern. Conf. on Fog, Fog
Collection and Dew, Santiago, Chile, July 22-
27, 2007, pp. 291-294.

[6] N. Fenton et al., Predicting software defects in
varying development lifecycles using Bayesian
nets, Information and Software Technology,
(49) 1 (2007), pp. 32-43.

[7] C. Lee et al., Inferring certification metrics of
package software using Bayesian belief
networks, Proc. ICIC 2006 – Intern. Conf. on
Intelligent Computing, Kunming, China,
August 16-19, 2006, pp. 915-920.

[8] A. Leger et al., Predicting hospital admission
for Emergency Department patients using a
Bayesian network, Proc. AMIA Annual
Symposium. Washington, DC, October 22-26,
2005, p. 1022.

[9] S. Ferrari, A. Vaghi, Multisensor fusion for
landmine detection by a Bayesian network
approach, Proc. ECSC – 3rd European Conf.
on Structural Control, Vienna, Austria, July
12-15, 2004.

[10] A.K.T. Hui et al., A Bayesian belief network
model and tool to evaluate risk and impact in
software development projects, Proc. RAMS
2004 – Annual IEEE Reliability and
Maintainability Symposium, Los Angeles,
Calif., January 26-29, 2004, pp. 297-301.

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 30

[11] M. Neil, B. Mancom, R. Shaw, Modelling an
air traffic control environment using Bayesian
belief networks, Proc. ISSC’03 – 21st Intern.
System Safety Conf., Ottawa, Ontario, August
4-8, 2003.

[12] K. Sachs et al., Bayesian network approach to
cell signaling pathway modeling, Science
STKE, 148, PE38, 2002.

[13] A. Helminen, Reliability Estimation of Safety-
Critical Software-Based Systems Using
Bayesian Networks, Report STUK-YTO-TR
178, Radiation and Nuclear Safety Authority,
Helsinki, Finland, 2001.

[14] G. Dahll, B.A. Gran, The use of Bayesian
belief nets in safety assessment of software
based systems, International Journal of
General Systems, (29) 2 (2000), pp. 205-229.

[15] N.E. Fenton, M. Neil, Bayesian belief nets: a
causal model for predicting defect rates and
resource requirements, Software Testing and
Quality Engineering, (2) 1 (2000), pp. 48-53.

[16] P. Smets, Belief functions: the disjunctive rule
of combination and the generalized Bayesian
theorem, International Journal on Approximate
Reasoning, (9) 1 (1993), pp. 1-35.

[17] J.A. Bernardo, A.F.M. Smith, Bayesian Theory,
John Wiley and Sons, 1994.

[18] Z. Pawlak, Rough Sets, International Journal
of Information and Computer Sciences, (11) 5
(1982), pp. 341-356, Available at:
http://chc60.fgcu.edu/Images/articles/PawlakOr
iginal.pdf

[19] Z. Pawlak, Rough Sets – Theoretical Aspects of
Reasoning about Data, Kluwer Academic
Publishers, 1991.

[20] Ji Zhang et al., Neighborhood rough sets for
dynamic data mining, Intern. Journal of
Intelligent Systems, (27) 4 (2012), pp. 317-342.

[21] Y. Li et al., A generalized model of covering
rough sets and its application in medical
diagnosis, Proc. ICMLS 2010, Intern. Conf. on
Machine Learning and Cybernetics, Qingdao,
China, July 11-14, 2010, pp. 145-150.

[22] M. Bit, T. Beaubouef, Rough set uncertainty
for robotic systems, Journal of Computing
Sciences in Colleges, (23) 6 (2008), pp. 126-
132.

[23] G. Ilczuk, A. Wakulicz-Deja, Visualization of
rough set decision rules for medical diagnosis
systems, Proc. RSFDGrC 2007 – 11th Intern.
Conf. on Rough Sets, Fuzzy Sets, Data Mining
and Granular Computing, Toronto, Canada,
May 14-16, 2007, pp. 371-378.

[24] J. Stefanowski, An empirical study of using
rule induction and rough sets to software cost
estimation, Fundamenta Informaticae, (71) 1
(2006), pp. 63-82.

[25] P.A. Laplante, C.J. Neill, Modeling uncertainty
in software engineering using rough sets,
Innovations in Systems and Software
Engineering – A NASA Journal, (1) 1 (2005),
pp. 71-78.

[26] Z. Li, G. Ruhe, Uncertainty handling in tabular-
based requirements using rough sets, Proc.
RSFDGrC 2005 – Intern. Conf. on Rough Sets,
Fuzzy Sets, Data Mining, and Granular
Computing, Regina, Canada, 31 August – 3
September, 2005.

[27] R. Wasniowski, A framework for software
safety analysis with rough sets, Proceedings of
the 4th WSEAS Intern. Conf. on Software
Engineering, Parallel & Distributed Systems,
Salzburg, Austria, February 13-15, 2004.

[28] J.F. Peters, H. Feng, S. Ramanna, Adaptive
granular control of an HVDC system: A rough
set approach, Proc. of RSFDGrC 2003 – 7th
Intern. Conf. on Rough Sets, Fuzzy Sets, Data
Mining, and Granular Computing, Chingqing,
China, May 26-29, 2000, pp. 213-220.

[29] N. Meskens, P. Levecq, F. Lebon, Multivariate
analysis and rough sets: two approaches for
software-quality analysis, International
Transactions in Operational Research, (9) 3
(2002), pp. 353-369.

[30] L. Shen et al., Fault diagnosis using rough sets
theory, Computers in Industry, (43) 1 (2000),
pp. 61-72.

[31] J. Zalewski, Z. Wojcik, Use of Artificial
Intelligence Techniques for Prognostics: New
Application of Rough Sets, Intern. Journal of
Computing, (11) 1 (2012), pp. 73-81.

[32] T. Bayes, Essay towards solving a problem in
the doctrine of chances, Philosophical
Transactions of the Royal Society of London,
53, (1763), pp. 370-418.

[33] J. Pearl, Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference,
Morgan-Kaufmann, 1988.

[34] Norsys Software Corporation. Netica. Version
4.08, Vancouver, Canada, URL:
http://www.norsys.com

[35] Hugin Expert A/S. Hugin Developer Software
Package. Aalborg, Denmark. URL:
http://www.hugin.com/

[36] M. Kryszkiewicz, Comparative study of
alternative types of knowledge reduction.
International J. of Intelligent Systems, (16) 1
(2001), pp. 105-120.

[37] W. Ziarko, Rough sets as a methodology for
data mining, In: Rough Sets in Knowledge
Discovery 1: Methodology and Applications.
Physica-Verlag, 1998, pp. 554-576.

[38] J. Komorowski, L. Polkowski, A. Skowron,
Rough sets: a tutorial. In: S.K. Pal and A.

Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31

 31

Skowron (Eds.), Rough-Fuzzy Hybridization: A
New Method for Decision Making, Springer-
Verlag, 1998.

[39] A. Øhrn, J. Komorowski, J. Rosetta, A rough
set toolkit for analysis of data, Proc. RSSC’97 –
Third Intern. Joint Conf. on Information
Sciences, Fifth Inter. Workshop on Rough Sets
and Soft Computing, Durham, NC, (3) (1997),
pp. 403-407.

[40] J. Grzymała-Busse. LERS – A system for
learning from examples based on rough sets.
In: R. Słowiński (Ed.), Intelligent Decision
Support: Handbook of Applications and
Advances of Rough Set Theory (pp. 3-18),
Kluwer Academic Publishers, 1992.

[41] J. Grzymala-Busse, Three approaches to
missing attribute values – a rough set
perspective, Proc. Workshop on Foundation of
Data Mining – 4th IEEE Intern. Conf. on Data
Mining, Brighton, UK, November 1-4, 2004.

[42] I.E. Chen-Jimenez, A. Kornecki, J. Zalewski,
Software safety analysis using rough sets, Proc.
IEEE Southeastcon’98, Orlando, Fla., April
24–26, 1998, pp. 15-19.

[43] A. Kornecki, J. Zalewski, Experimental
evaluation of software development tools for
safety-critical real-time systems, Innovations in
Systems and Software Engineering – A NASA
Journal, (1) 2 (2005), pp. 176-188.

[44] A. Kornecki, J. Zalewski, Software
development tools qualification from the DO-
178B certification perspective, Crosstalk – The
Journal of Defense Software Engineering, (19)
4 (2006), pp. 19-22.

[45] M. Neil, N. Fenton, Predicting software quality
using Bayesian belief networks, Proc. SEW-21
– Annual NASA Goddard Software Engineering
Workshop, Washington, DC, December 4-5,
1996, pp. 217-230.

[46] B.A. Gran et al., Estimating dependability of
programmable systems using BBNs, Proc.
SAFECOMP 2000 – 19th Intern. Conference
on Computer Safety, Reliability and Security,
Rotterdam, The Netherlands, October 24-27,
2000, pp. 309-320.

[47] K.A. Delic, F. Mazzanti, L. Strigini,
Formalising engineering judgement on
software dependability via belief networks,
Proc. DCCA-6 – 6th IFIP Intern. Working
Conf. on Dependable Computing for Critical
Applications, Garmisch-Partenkirchen,
Germany, March 5-7, 1997, pp. 291-305.

[48] A. Kornecki, N. Brixius, J. Zalewski,
Assessment of Software Development Tools for
Safety-Critical, Real-Time Systems, Report
DOT/FAA/AR-06/36, Federal Aviation
Administration, Washington, DC, 2007.

[49] B. Das, Representing Uncertainties Using
Bayesian Networks, Report DSTO-TR-0918,
Defence Science and Technology Organisation,
Electronics and Surveillance Research
Laboratory, Sydney, Australia, 1999.

[50] R.G. Brown, P.Y.C. Hwang, Introduction to
Random Signals and Applied Kalman Filtering,
Third Edition, John Wiley and Sons, 1997.

Andrew J. Kornecki is
a professor at the De-
partment of Electrical,
Computer, Software and
System Engineering at
the Embry Riddle Aero-
nautical University. He
has more than 20 years
of research and teach-
ing experience in areas

of real-time computer systems. He has been
conducting industrial training on real-time, safety-
critical software in medical and aviation industries
and for the FAA Certification Services. Recently, he
has been engaged in work on certification issues
and assessment of development tools for real-time,
safety-critical systems.

Slawomir T. Wierz-
chon is a professor of
computer science at
the Institute of
Informatics of the
University of Gdansk in
Poland, and at the
Institute of Computer
Science of the Polish
Academy of Sciences.

He has been the Program Chair of multiple
international conferences and serves on the Editorial
Board of the International Journal of Biometrics. His
research interests include computational
intelligence, biologically inspired computations,
machine learning, data analysis, and spectral graph
theory.

Janusz Zalewski is a
professor of Computer
Science and Software
Engineering at Florida
Gulf Coast University, in
Ft. Myers, Florida, USA.
He previously worked at
nuclear research labs in
Europe and the U.S.

and consulted for the government and industry. He
also had fellowships at NASA and Air Force
Research Labs. His research interests include real-
time embedded and cyberpysical systems,
prognostics of complex systems, and software
engineering education.

