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Abstract: The objective of this paper is to present a new approach to reasoning under uncertainty, based on the use of 
Bayesian belief networks (BBN’s) enhanced with rough sets. The role of rough sets is to provide additional reasoning to 
assist a BBN in the inference process, in cases of missing data or difficulties with assessing the values of related 
probabilities. The basic concepts of both theories, BBN’s and rough sets, are briefly introduced, with examples showing 
how they have been traditionally used to reason under uncertainty. Two case studies from the authors’ own research 
are discussed: one based on the evaluation of software tool quality for use in real-time safety-critical applications, and 
another based on assisting the decision maker in taking the right course of action, in real time, in the naval military 
exercise. The use of corresponding public domain software packages based on BBN’s and rough sets is outlined, and 
their application for real-time reasoning in processes under uncertainty is presented. 
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1. INTRODUCTION 
Bayesian Belief Networks (BBN’s) have been 

widely used in Industrial Information Systems for 
solving all types of computational problems with 
insufficient information and uncertainty [1,2]. This 
includes applications such as: water contamination 
[3], fault detection in an industrial process [4], fog 
forecasting at the airports [5], predicting software 
defects [6], inferring certification metrics of 
software [7], predicting hospital admissions for 
emergency [8], multisensor fusion for landmine 
detection [9], evaluation of risk in software 
development [10], modeling an air traffic control 
[11], cell signaling pathway modeling [12], 
reliability estimation [13], safety assessment [14] 
and risk evaluation [15] in computer-based systems, 
to name only a few from a long list. They have been 
also studied theoretically by a number of 
researchers, for example [16-17]. 

Although, in general, BBN’s have been very 
effective, because they allow reasoning and making 
predictions based on small sets of probabilities with 
backwards inference, they are still based on 

probability theory. A significant disadvantage of 
BBN’s is that, in realistic cases, they require 
extensive computations of the conditional 
probability values. In most of these studies, it has 
been recognized that this is one of the method’s 
major limitations. Another disadvantage of BBN’s is 
that they become less effective in case of missing 
probability values. 

With this in mind, one wants to look at a 
complementary method of evaluating data in the 
input data set, which would not rely strictly on 
probability densities and could deal with missing 
values. One of the theories that offer such an 
approach, with values of data attributes and events 
measured by likelihoods rather than probabilities, is 
the rough sets theory [18-19]. 

Rough sets have been used since the early 
eighties [19], in a wide range of applications to 
reason about uncertainty, including data mining[20], 
medical diagnosis [21], robotic systems [22], 
decision making in medicine [23], cost estimation 
[24], modeling software processes [25-26], safety 
analysis [27], controller design [28], quality analysis 
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[29], fault diagnosis [30] and many others, for 
example prognostics [31]. 

The objective of this paper is to look at the 
combination of using BBN’s and rough sets in 
decision making under uncertainty, and suggest the 
enhancement of pure Bayesian reasoning by 
additional use of rough sets for preliminary 
evaluation of data. The paper is structured as 
follows. The next two sections describe briefly basic 
concepts of Bayesian belief networks and rough sets, 
respectively. Then, in a separate section, several 
examples and two case studies are presented, giving 
an overview of the method developed for combining 
BBNs and rough sets for real-time computations. 
The final sections present general conclusions and 
suggestions for future work. 

 
2. BAYESIAN BELIEF NETWORKS 

The following section describes Bayesian Belief 
Networks from an application point of view rather 
than the underlying mathematics and statistics. 
Rev. Thomas Bayes developed this method of 
updating probabilities based on new information in 
the 1760s. It has been widely applied in probability 
and statistics for over 250 years. 

“Essay Towards Solving a Problem in the 
Doctrine of Chances” was published after Bayes’ 
death in 1763 [32]. It is the basis for the popular 
inversion formula for belief updating from evidence 
(E) about a hypothesis (H) using probability 
measurements of the prior truth of the statement 
updated by posterior evidence 

 
P(H|E) = ( P(E|H) * P(H) ) / P(E) 

 
where H is the hypothesis, E is the evidence, and 
P(x|y) is the conditional probability of x given y. 

It is derived by the use of the joint probability 
definition 

P(x, y) = P(x|y) * P(y) = P(y|x) * P(x) 
that is then arranged as 

P(x|y) = P(y|x) * P(x) / P(y) 
where x = H and y = E. 

Suppose we know from historical medical 
records that meningitis causes a stiff neck in 1 of 2 
patients. We also know that 1 in 50,000 people have 
meningitis and that 1 in 20 people have a stiff neck. 
If you wake up with a stiff neck what is the 
probability that you have meningitis? How do you 
estimate it? 

The hypothesis is that you have meningitis and 
the evidence is your stiff neck. Applying the Bayes 
formula yields: 

 
P(E|H) = 1 / 2 = 0.5 or probability of a stiff neck  
when you have meningitis 

P(H) = 1 / 50,000 = 0.00002 or probability of  
meningitis in the population; 
P(E) = 1/ 20 = 0.05 or probability of a stiff neck  
in the population; 
 

which yields in turn: 
 
P(H|E) = ( P(E|H) * P(H) ) / P(E) =  
( 0.5 * 0.00002 ) / 0.05 = 0.0002 
 

which is the probability of having meningitis when 
you have a stiff neck. Much more complex models 
with multiple hypotheses and evidence sources can 
be constructed usually in a graph form relating cause 
to effect. 

These belief networks are more recent concepts 
credited to Professor Judea Pearl with his 
construction and solution algorithms along with the 
work of many others [33].  

A Bayesian belief network is a form of 
probabilistic graphical model. The belief network 
represents the joint probability distribution of a set 
of random variables with explicit independence 
assumptions described by a directed graph. In this 
research a Bayesian network is defined by a directed 
acyclic graph of nodes representing variables and 
arcs representing probabilistic dependency relations 
among the variables.  

If there is an arc from node A to another node B, 
then variable B depends directly on variable A and 
A is called a parent of B. If the variable represented 
by a node has a known value then the node is said to 
be observed as an evidence node. A node can 
represent any kind of variable, be it a measured 
parameter, a latent variable or a hypothesis. Nodes 
are not restricted to representing random variables; 
this is what is “Bayesian” about a belief network.  

In the following, an example is presented of three 
node networks that are structured as linear, 
converging, and diverging (Figure 1), with the use of 
Netica software program [34]. A different software 
package for Bayesian belief networks, named Hugin 
[35], is equally effective and simple to use. 

The above examples are causal Bayesian 
networks where the directed arcs of the graph are 
interpreted as representing causal relations in some 
real domain with prior information. The directed 
arcs do not have to be interpreted as representing 
causal relations; however in practice knowledge 
about causal relations is very often used as a guide 
in drawing Bayesian network graphs, thus resulting 
in cause and effect Bayesian belief networks.  
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Fig. 1 – Examples of three-node Bayesian networks 
(top to bottom): linear, converging and diverging.  

In the linear case on the top of Figure 2, A causes 
B that causes C, while in the converging model in 
the center, A is conditionally independent of B and 
both cause C, while in the diverging model at the 
bottom, A causes both B and C. In each case an 
effect is observed at node C illustrating the update of 
the joint probabilities when new information is 
incorporated into the network. 

In the simplest case, a Bayesian network is 
specified by an expert and is then used to perform 
inference after some of the nodes are fixed to 
observed values. In order to fully specify the 
Bayesian network and fully represent the joint 
probability distribution, it is necessary to further 
specify for each node X the probability distribution 
for X conditional upon X's parents. The distribution 
of X conditional upon its parents may have many 
forms.  

The following data (Table 1) are the conditional 
probabilities for the previous linear A, B, and C 
node network example (the top one) from Figure 2, 
where we observe that if C is true then column B is 
0.8 true and 0.2 false. Prior to any observation as 

shown in Figure 1 the symmetry of the conditional 
probabilities makes the probability of true and false 
states equal to 0.5 for all nodes. 
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Fig. 2 – Causal relationships represented in a Bayesian 

belief network.  

Table 1. Conditional probabilities for Figure 2 

Node A 
True False 

0.5 0.5 
Node B 

True False A 

0.75 0.25 True 

0.25 0.75 False 

Node C 
True False B 

0.80 0.20 True 

0.20 0.80 False 

 
The goal of inference is typically to find the 

distribution of a subset of the variables, conditional 
upon some other subset of variables with known 
values called the evidence or observations, with any 
remaining variables integrated out. This is known as 
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the posterior distribution of the subset of the 
variables given the evidence. The posterior gives us 
a universal sufficient statistic for detection 
applications, when one wants to choose values for 
the variable subset which minimize some expected 
loss function, for instance the probability of decision 
error. 

An example of inference in the center converging 
example from Figure 2 is to specify A as observed 
true and estimate the inferred values for B and C, 
with C updated by the new information but B un-
changed since it is conditionally independent of A.  
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Fig. 3 – Effect of introducing evidence into a 
converging node in a Bayesian network. 

 
In the divergence example from bottom of Figure 

2, if A is observed then it infers new probability 
states for B and C that are dependent on A.  
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Fig. 4 – Effect of introducing evidence into a diverging 

node in a Bayesian network. 

 
Questions about the dependence among variables 

can be answered by studying the graph alone. It can 
be shown that the conditional independence is 
represented in the graph by the graphical property of 
d-separation: nodes A and B are d-separated in the 
converging graph, given specified evidence nodes. 

For belief reasoning a typical network is 
organized into three layers. The top layer is the 
causal variables, the middle layer is the reasoning 
variables, and the bottom layer is the effects 
variables. Four general classes of reasoning are 
defined for this three layer architecture. As an 
example the following five node network with three 
layers using binary random variables is used to 
illustrate the four principal reasoning strategies used 
in belief networks. The example network prior 
distribution has an equal probability for each 
variable state and is symmetric to illustrate the 
various conditional computations. 

 

Diagnostic reasoning, illustrated in Figure 5, 
observes the effects of evidence and updates the 
middle reasoning variables and the top layer causal 
variables as shown in the example. This reasoning 
process diagnoses from an effect E of True to the 
cause B or in medical terms it is reasoning from 
symptom to disease. It also adjusts the probabilities 
for the middle reasoning layer C and the causal 
variable A and effect variable D. 
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Fig. 5 – Illustration of diagnostic reasoning. 

 
Predictive reasoning, illustrated in Figure 6, 

observes causal evidence and updates the middle 
reasoning variables and bottom layer effects 
variables as shown in the example. This reasoning 
process predicts from cause B to the effects D and E 
such as a patient saying that he is a smoker may 
focus on a certain set of symptoms. It also adjusts 
the probabilities for the middle reasoning layer C but 
not the independent causal variable A. 
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Fig. 6 – Illustration of predictive reasoning. 

 
Intercausal or explaining reasoning, illustrated in 

Figure 7, observes both causal evidence and the 
middle layer reasoning evidence to update other 
causal variables as shown in the example. This 
reasoning process on C explains the mutual known 
cause B with unknown cause A and the common 
effects D and E. It is often interpreted as performing 
an experiment for explaining away cause A. 
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Fig. 7 – Illustration of intercausal (explaining) 
reasoning. 

Combined reasoning, shown in Figure 8, 
observes causal evidence and effects evidence to 
update the middle reasoning variables as shown in 
the example. This reasoning process combines cause 
B and effect E to investigate the network conditional 
structure for reasoning variable C and the other 
cause A and the other effect D. This is a useful 
reasoning test for building and validating complex 
belief networks based on limited data and expert 
knowledge. 
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Fig. 8 – Illustration of combined reasoning. 

 
3. ROUGH SETS 

Rough Set Theory was invented by Zdzisław 
Pawlak to cope with limited perception of the 
surrounding world. The theory is especially helpful 
in dealing with vagueness and uncertainty in 
decision situations. Its main purpose is the 
“automated transformation of data into knowledge” 
[18]. The data are perceived in terms of objects and 
their features, i.e., values of the attributes used to 
characterize these objects. The knowledge deduced 
from these data is expressed in terms of surely and 
possibly statements describing notions of interests. 
More formally, such descriptions can be divided into 
so-called lower and upper approximations of entire 
notions. In the rest of this section, we describe a 
qualitative procedure containing all steps needed to 
form appropriate description of the concepts under 
considerations.  

  

3.1 EXPLANATION OF A NOTION OF A 
ROUGH SET 

First, let us illustrate intuitively a concept of a 
rough set, comparing it to an ordinary set and a 
fuzzy set, in a single dimension. Figure 9 shows 
such an intuitive illustration. For an ordinary set, the 
interval [A,B] in Figure 9, all its elements, that is, 
real numbers from this interval (assuming x 
represents a real axis), have values of their 
membership function equal to 1.0. 

For a fuzzy set, elements on the set boundaries, 
that is, in the intervals [A,C] and [D,B], have values 
of their membership function equal to a fraction, a 
number from the interval [0.0, 1.0]. This means that 
these elements only partially belong to the set, to the 
extent specified by the value of a membership 
function. 
 

 
Fig. 9 – Intuitive illustration of a rough set vs an 

ordinary and a fuzzy set. 

 
In contrast to the traditional concepts of a set, 

whether ordinary or fuzzy, for a rough set one 
cannot determine, even partially, the membership of 
the elements on the set boundary. Therefore, the 
value of the membership function for boundary 
elements of a set is undetermined. A rough set can 
only be described by its approximations, as 
illustrated in the lower part of Figure 9. 

To express these intuitive concepts a bit more 
formally, we start from a relational database, i.e., a 
table with rows corresponding to objects and 
columns corresponding to the attributes. Each entry 
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of the table represents attribute value of a 
corresponding object (i.e., its feature). In rough set 
formalism the database is considered as an 
information system, i.e., a quadruple 

IS = (U, A, V, f), 
where U = {u1, …, un} stands for a (usually finite) 
set of objects, 

A = {a1, …, am} is a set of attributes, 
V = V1 ∪ … ∪ Vm, 

where Vi is the domain of i-th attribute, and 
f: U × A → V 

is a so-called information function providing the 
description of objects, i.e., f(ui, aj) assigns a value of 
j-th attribute to i-th object. The above mentioned 
concepts are illustrated in Table 2, in which 

U = {u1, u2, u3, u4, u5, u6, u7, u8}, 
A = {a1, a2, a3}, and 
V = V1 ∪ V2 ∪ V3, = {Low, Med, High}  
       ∪ {Min, Under, Over, Max} ∪ {yes, no}. 
Usually the set A is decomposed into two disjoint 

subsets A = C ∪ D and the attributes from C are 
used to characterize objects and form so-called 
condition attributes, while the attributes in D are so-
called decision attributes and they are used in 
decision-making or classification tasks. An 
information system with specified condition and 
decision attributes is called decision table. For the 
example in Table 2, attributes a1 and a2 could be 
interpreted as condition attributes, that is, certain 
parameters of an object, with values from the range 
{Low, Med, High} and {Min, Under, Over, Max}, 
respectively, and attribute a3 – as a decision 
attribute, with values “yes” and “no.” Hence, Table 
2 can be viewed as a decision table. 
 

Table 2. Example of an information system 
f: U × A → V Attributes A 

Objects U a1 a2 a3 
u1 Low Max yes 
u2 Low Min no 
u3 Med Under no 
u4 Med Under yes 
u5 High Over no 
u6 Low Over yes 
u7 High Over no 
u8 Low Min no 

 
Because of the limited knowledge, we cannot 

fully discern objects, i.e., there are such objects u, v 
in U that f(u, c) = f(v, c) for all the condition 
attributes c. This fact leads to the notion of 
indiscernibility relation E being in fact an 
equivalence relation on U. For example, for the 
information system in Table 2, objects u2 and u8 are 
indiscernible. So are objects u5 and u7. 

It appears that in many cases we can identify 
proper subsets C' of C such that the indiscernibility 

relation EC' induced by the attributes in C' is identical 
with the original relation E. Such sets of attributes 
are called reducts. Existence of reducts proves that 
not all of the attributes are necessary to form the 
equivalence classes. In other words identifying 
reducts allows more economic description of objects 
as we need smaller number of descriptors (features) 
to characterize these objects. Unfortunately, from a 
computational point of view this is an NP-hard task. 
No such reducts exist for the example shown in 
Table 2. 

 
3.2 DEFINITION OF A ROUGH SET 

Now we are ready to introduce the key concepts 
of rough set theory. Let B be a subset of the 
condition attributes and let [v]B stand for an 
equivalence class, i.e., a set of objects u in U with 
identical description (narrowed to the set B) as the 
object v. The subset X of U can be characterized 
using information in B by means of so-called B-
lower and B-upper approximations defined as: 
 

B(X)* = {u ∈ U | [u]B ⊆ X}  (1a) 
B(X)* = {u ∈ U | [u]B ∩ X ≠ ∅} (1b) 

 
The lower approximation of X is the collection of 

objects which can be viewed surely as members of 
the set X, while the upper approximation of X is the 
collection of objects that possibly are members of X. 
Obviously B(X)* ⊆ B(X)*. If B(X)* = B(X)* we say 
that X is B-definable and otherwise it is only 
partially definable. The set BNB = B(X)* – B(X)* is 
called a B-boundary region; it specifies the objects 
that cannot be classified with certainty to be either 
inside X, or outside X. 

There are many grades of partial definability. We 
say that the set X is: 
• roughly B-definable 

iff B(X)* ≠ ∅ and B(X)* ≠ U, 
• internally B-indefinable 

iff B(X)* = ∅, B(X)* ≠ U, 
• externally B-indefinable 

iff B(X)* ≠ ∅, B(X)* = U, 
• totally B-indefinable 

iff B(X)* = ∅, B(X)* = U. 
 
Obviously, if B = C, i.e., the full set of condition 

attributes is used, we omit the prefix B- in all above 
definitions. In such a case, a set X is characterized 
by the pair (X*, X*) and we say that X is a rough set 
(or B-rough set). 

To illustrate these newly introduced concepts for 
the information system in Table 2, let’s distinguish 
between condition attributes a1 and a2, and a 
decision attribute a3. Values of a1 and a2, can be 
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interpreted as vague measurements (evaluations) of 
certain parameters of a technical system, and a3 can 
be viewed as a decision (control) based on these 
evaluations. Let the set B be the entire set of 
condition attributes, C = B = {a1, a2}. If the 
equivalence class [v]B is defined as 

 
[v]B = { {u1}, {u2, u8}, {u3, u4}, {u5, u7}, {u6} } 
 

then the set X = { u | a3(x) = yes } has the following 
approximations: 
 

B(X)* = {u1, u6} 
B(X)* = {u1, u3, u4, u6} 

 
This determination can be also illustrated in the 

table representing the information system under 
consideration (Table 3). 
 

Table 3. Illustration of lower and upper 
approximations for a sample information system 

f: U×A→ V Condition attributes C Decision 
attribute D 

Objects U a1 a2 a3 
u1 Low Max yes 
u2 Low Min no 
u3 Med Under no 
u4 Med Under yes 
u5 High Under no 
u6 Low Over yes 
u7 High Over no 
u8 Low Min no 

 
The set X for a decision variable’s value equal 

“yes” has three corresponding objects, u1, u4 and u6. 
Given values of the specific condition attributes B = 
{a1, a2}, two of these objects, u1 and u6, lead surely 
to this decision value (yes). Thus, u1 and u6, form the 
lower approximation of set X. This is illustrated with 
heavy shading in Table 3. If, however, we take the 
third object, u4, the values of its condition attributes, 
{ a1=Med, a2=Under}, can produce two different 
values of the decision attribute: “yes” for object u4, 
and “no” for object u3. Thus, objects with these 
values of the condition attributes belong possibly to 
the set X, which is illustrated with light shading in 
Table 3. Obviously, objects in the non-shaded lines 
do not belong to X. 

To get a numerical characterization of the 
“roughness” of a set X we introduce so-called 
accuracy of approximation 

 
αB(X) = |B(X)*| / |B(X)*|   (2) 

 
where the symbol |Y| stands for the cardinality of the 
set Y. X is said to be crisp (or precise) with respect to 
the set of attributes B if and only if αB(X) = 1, and 

otherwise X is said to be rough (or vague) with 
respect to B. 

Another characterization of the set of objects can 
be obtained by introducing so-called rough 
membership function µB,X : U → [0,1] defined as 
follows 

 
µB,X(u) = |[u]B ∩ X| / |[u]B|  (3) 

 
With such a definition a relationship between 

rough and fuzzy sets theory is established. More 
particularly, µB,X(u) determines the degree in which 
object u described by the set B of attributes belongs 
to the concept (equivalence class) X. Further, we can 
relax the definitions of the lower and upper 
approximation, namely 

 
Bβ(X)* = {u ∈ U|µB,X(x) ≥ β}  (4a) 
Bβ(X)* = {u ∈ U|µB,X(x) > 1-β}  (4b) 

 
where 0 ≤ β ≤ 1. If β = 1 we obtain original 
definitions (1a) and (1b). 

 
3.3 ROUGH RULES 

In practical applications of interest are the sets of 
objects with identical set of decision attributes, that 
is, we define X as the set of objects satisfying the 
equality f(x1, d) = f(x2, d) for all attributes d in D. If 
D is, for example, a set of diseases then X is a set of 
persons suffering on a particular disease, and the 
equivalence classes [x]B contain patients with 
identical symptoms (restricted to the set B). Hence, 
it is natural to find such condition attributes which 
can be used to discriminate between different 
diseases. This leads us to the practical aspects of 
rough set theory: rough rules. 

More formally, given an information system IS = 
(U, A, V, f) and a subset B ⊆ A we start from the set 
of atomic formulae, called also descriptors, being 
expressions of the form a = v, where a ∈ B and v ∈ 
Va. Next, we define the set of all possible formulae 
F(B,V) containing all atomic formulae and being 
closed with respect to the logical connectives: ¬ 
(negation), ∧ (conjunction) and ∨ (disjunction). 

If ϕ is an atomic formula of the form a = v, then 
its meaning (semantics) is as follows: 

||ϕ|| = {u ∈ U | f(u,a) = v} 
If ϕ is a compound formula then 

||¬ϕ|| = U \ ||ϕ||, 
||ϕ∧ϕ′|| = ||ϕ|| ∩ ||ϕ′||, and 

||ϕ∨ϕ′|| = ||ϕ|| ∪ ||ϕ′||. 
Now a decision rule is any expression of the form 

ϕ ⇒ (d = v), 
where d is a decision attribute; the formula ϕ is said 
to be predecessor (or ancestor) of the rule and the 
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formula (d = v) – its successor (or consequent). We 
say that the decision rule: 

ϕ ⇒ (d = v) 
is true in the information system IS, if  

||ϕ|| ⊆ ||(d = v)|| and ||ϕ|| ≠ ∅. 
Deeper classification of the rules is given in [36]. 

For instance the rule 
r1: (a1 = Low) ∧ (a2 = Max) ⇒ (a3 = yes) 

is true in the information system from Table 3, while 
the rule  

r2: (a1 = Med) ∧ (a2 = Under) ⇒ (a3 = yes) 
is only partly true because 

||(a1 = Med) ∧ (a2 = Under)|| = {u3, u4} 
and ||(a3 = yes)|| = {u1, u4, u6}; 

thus ||(a1 = Med) ∧ (a2 = Under)|| ⊄ ||(a3 = yes)||. 
Detailed remarks on inducing rules from information 
systems can be found, for example, in [37]. 

To characterize the rules numerically, a number 
of measures can be introduced; support and 
confidence are most popular. The former is defined 
as the number of objects satisfying both predecessor 
and successor, while the latter as the conditional 
probability that the consequent is satisfied provided 
the ancestor is satisfied. In case of rule r2 its support, 
sup(r2) = 1, and its confidence, conf(r2) = ½. 

The already mentioned process of 
“transformation of data into knowledge” translates 
now into refining the dependencies between sets of 
attributes. Intuitively, if C and D are two sets of 
attributes, we say that D depends totally on C, if all 
values of the attributes from D are uniquely 
determined by values of attributes from C. This is 
functional dependency known from database theory. 

Rough set theory enables relaxing this definition 
by introducing a dependency in a degree k ∈ (0, 1]. 
An interested reader is referred to [19] and [38] for 
details. There are at least two successful computer 
programs allowing rough data analysis: Rosetta [39] 
downloadable from the following website: 
http://rosetta.lcb.uu.se/general/ and LERS [40]. 

Finally if a new object is introduced into the data 
set with the attribute value missing, one could 
attempt to determine this value by using the 
previously generated rules. This is explained in the 
next section. 

 
3.4 HANDLING THE MISSING VALUE IN A 
ROUGH SET 

Grzymala-Busse describes several algorithms of 
dealing with missing values in information systems, 
based on three types of such values [41]: 
• those which are lost and no longer available 
• totally irrelevant values, and 
• partially relevant values. 

They are marked in Table 4, using the following 

symbols: a question mark “?” for not available 
values, an asterisk “*” for irrelevant values, and a 
dash “-“ for partially relevant values. 
 

Table 4. Information system with some missing 
values 

f: U×A→ V Condition attributes C Decision 
attribute D 

Objects U a1 a2 a3 
u1 ? Max yes 
u2 Low Min no 
u3 Med Under no 
u4 - Under yes 
u5 High Over no 
u6 Low Over yes 
u7 High Over no 
u8 Low * no 

 
To calculate the approximations, one has to start 

with the meaning of the atomic formulas in a given 
information system. For the information system in 
Table 2, these meanings, called also blocks in [41] 
are as follows: 

||a1 = Low|| = { u1, u2, u6, u8 } 
||a1 = Med|| = { u3, u4 } 
||a1= High|| = { u5, u7 }  
||a2 = Min|| = { u2, u8 }  
||a2 = Under|| = { u3, u4 }  
||a2 = Over|| = { u5, u6, u7 }  
||a2 = Max|| = { u1 }  

 
These sets have to be modified for an information 

system with missing values in Table 4, as follows. 
For the missing value of the attribute a1, which is not 
available for object u1 and marked “?”, object u1 has 
to be removed from all blocks created for this 
attribute, that is, block ||a1 = Low|| will change to: 
 

||a1 = Low|| = { u2, u6,, u8 } 
 
with two other blocks for a1 remaining unchanged, 
because they do not include objects with lost value 
of a1. 

For the missing value of the attribute a2, which is 
irrelevant and marked “*”, its corresponding object, 
u8, has to be included in blocks for all values of this 
attribute, which will lead to the following 
modifications: 
 

||a2 = Min|| = { u2, u8 }  
||a2 = Under|| = { u3, u4, u8 }  
||a2 = Over|| = { u5, u6, u7, u8 } 
||a2 = Max|| = { u1, u8 }  

 
Finally, for the missing value of the attribute a1, 

which is marked “-”, as partially relevant, respective 
object u4 has to be added to the blocks containing 
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objects corresponding to the decision attribute’s 
value the same as the value of this decision attribute 
for the partially relevant value. In case of Table 4, 
the partially relevant value of attribute a1 for object 
u4 corresponds to the decision attribute’s value 
“yes”. Thus, this attribute’s value is relevant to this 
particular decision attribute, and this is the meaning 
of the term “partially relevant”. Two other objects 
exist, which have “yes” as their decision attribute’s 
value: u1, whose value of attribute a1 is unavailable, 
so we drop it from consideration, and u6, whose 
value of a1 equals Low; therefore u4 has to be added 
to the block, which contains a1 = Low, because it is 
partially relevant to corresponding decision attribute. 

So the final list of blocks looks as follows: 
||a1 = Low|| = { u2, u4,, u6,, u8 } 
||a1 = Med|| = { u3, u4 } 
||a1= High|| = { u5, u7 }  
||a2 = Min|| = { u2, u8 }  
||a2 = Under|| = { u3, u4, u8 }  
||a2 = Over|| = { u5, u6, u7, u8 }  
||a2 = Max|| = { u1, u8 }  

 
Because of the limited length of this paper, we 

can only mention here that for further computations 
the so called characteristic sets have to be 
calculated, for each object, which is done as follows: 

1) The characteristic set K of an object is defined 
as an intersection of blocks for specific values 
of the attributes for this object. 

2) If the value of an attribute is irrelevant “*” or 
unavailable “?”, then the entire universe U is 
taken as a corresponding block for this 
attribute. 

3) If the value of an attribute is partially relevant 
“-“, then for this specific block it is substituted 
by a union of blocks representing particular 
values of the attributes for the corresponding 
decision attribute’s value. 

A more formal presentation of these concepts, 
with respective algorithms, is given in [41]. Below 
we present the computation of characteristic sets for 
the list of blocks corresponding to Table 4. 

 
Ku1 = U ∩ { u1, u8 }    = { u1, u8 } 
Ku2 = { u2, u4, u6, u8 } ∩ { u2, u8 } = { u2, u8 } 
Ku3 = { u3, u4 } ∩ { u3, u4, u8 }  = { u3, u4 } 
Ku4 = { u2, u4, u6, u8 } ∩ { u3, u4, u8 } = { u4, u8 } 
Ku5 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 } 
Ku6 = { u2, u4, u6, u8 } ∩ { u5, u6, u7, u8 } = { u6, u8 } 
Ku7 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 } 
Ku8 = { u2, u4, u6, u8 } ∩ U  = { u2, u4, u6, u8 } 
 

As explained in [41], computation of lower and 
upper approximations, depends on their definitions. 
The author presents three such definitions and for 

one of them: 
 

B(X)* = { u1, u4, u6, u8 } 
B(X)* = { u1, u2, u4, u6, u8 } 

 
The interpretation of this result is such that the 

missing values cause broadening of the potential 
span for the lower approximation, because they have 
to be inferred from the rest of the set. The upper 
approximation can change either way, because the 
missing values change the entire structure of a set. 

 
4. COMBINATION OF BBN’S WITH 

ROUGH SETS 
This section describes several examples and two 

case studies related to Bayesian networks and rough 
sets. First, we give a background on applying 
Bayesian networks to software quality evaluation. 
Next, we discuss a case study on the assessment and 
qualification of software tools for real-time safety-
critical systems. Finally, we present a method for 
combining Bayesian networks and rough sets in 
decision making under uncertainty, and discuss the 
operation of two public domain tools, assisting in 
real-time decision making.  

 
4.1 USE OF BBN’S FOR SOFTWARE 
QUALITY EVALUATION 

In recent years, these authors have dealt with 
various aspects of assessing software quality in real-
time safety-critical applications [42-44]. The basic 
idea to apply Bayesian networks in such problems 
comes from multiple previous attempts to assess 
various software properties in critical applications, 
which are briefly outlined below. 

A. Application of BBN’s to Assess Software 
Quality. In one of the first studies reported [45], the 
authors addressed the eternal question: “Can we 
predict the quality of our software before we can use 
it?”, by applying BBN’s to assess the defect density 
as a measure of software quality. A simplified 
diagram from their study is presented in Figure 10. 
The nodes were built based on the understanding of 
life-cycle processes, from requirements specification 
through testing. 

The probabilities of respective states were based 
on the analysis of literature and common-sense 
assumptions about the relations between variables. 
The node variables are shown on histograms of the 
predictions obtained by execution of the network 
after the evidence entered (the evidence is 
represented by nodes with probabilities equal to 1.0). 
As the authors say, the advantage of their model is 
that it “provides a way of simulating different events 
and identifying optimum courses of action based on 
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uncertain knowledge.” 
 

Fig. 10 – Simplified BBN for assessing software fault 
density [45]. 

 
B. Use of BBN’s in Assessment of Software 

Safety. Gran et al. [46] applied BBN’s to address 
safety assessment of software for acceptance 
purposes, in a more comprehensive way, using 
multiple information sources, such as complexity, 
testing, user experience, system quality, etc. 

Their BBN network for system quality, which is 
only a part of the entire model, is shown in Figure 
11. It involves two root nodes: UserExperience and 
VendorQuality, and a number of leaf nodes, 
corresponding to observable variables, of which 
QualityMeasures is of particular importance. This 
node shows evidence about the system quality, 
grouping quality attributes, such as readability, 
structuredness, etc., and can be expanded further. 

 

 
Fig. 11 – BBN for the system quality in safety 

assessment [46] 

 
Other observable variables include 

FailuresInOtherProducts, those related to the user 
experience (NoOfProducts and TotalUseTime), as 
well as those related to quality assurance policy. 
When evidence becomes available, entering 
respective observation data into these nodes and 
executing the network provides assessment of the 
variable in question, which in this case is 
SystemQuality. 

The authors note, however, that their example is 
intended more as an illustration of the method rather 
than as a real attempt to compute the quality of the 
system. Their probability assignments to the node 
variables were chosen somewhat ad hoc, and not 
based on any deeper analysis of the problem. 
However, as the authors say in conclusion, the 
results of the study were positive and showed “that 
the method reflects the way of an assessor’s thinking 
during the assessment process.” 

C. BBN’s in Dependability and Reliability 
Assessment. [47] used BBNs to formalize reasoning 
about software dependability to facilitate the 
software assessment process. They constructed a 
network for evaluating dependability of a software-
based safety system. It used the data associated with 
two primary assumptions: the excellence in 
development (called a process argument) and 
failure-free statistical testing (called a product 
argument). The network topology includes taking 
into consideration variables such as: Test Failures, 
Operational Failures, Initial Faults, Faults Found, 
Faults Delivered, and System PFD (Probability of 
Failure per Demand). The probability distributions 
have been derived from a sample of programs from 
an academic experiment. 

The authors were interested in estimating the 
probabilities of failure during acceptance testing and 
during the operational life of the product 
(represented by two variables mentioned in previous 
paragraph), given the prior probabilities and 
observed events. In particular, positive results of an 
acceptance test allowed deriving numerical estimates 
about the PFD and operational performance of the 
product. 

Helminen [13] used BBN’s to attack the problem 
of software reliability estimation. His primary 
motivation to apply BBN’s was that they allow all 
possible evidence (large number of variables, 
different potential sources, etc.) to be used in the 
analysis of the reliability of a programmable safety-
critical system. The essential characteristic of such 
systems is that they involve a significant number of 
variables related to reliability, with very limited 
evidence. 

The reliability of such systems is modeled as a 
probability of failure, that is, the probability that the 
programmable system fails when it is required to 
operate correctly. To develop an estimate of 
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probability of failure, the authors built a series of 
BBN models, using evidence from such sources, as 
the system development process, system design 
features, and pre-testing, before the system is 
deployed. This is later enhanced by data from testing 
and operational experience. 

The essential part of this work was building BBN 
models for various operational profiles for multiple 
test cycles, involving continuous probability 
distributions. As a result, using BUGS software that 
combines Bayesian inference with Gibbs sampling, 
via Markov chain Monte Carlo (MCMC) simulation, 
it was possible to estimate, how many tests had to be 
run for a single system in a particular operational 
environment to achieve certain level of reliability. 
To decrease the huge number of necessary tests, 
multiple operational profiles for the same system 
were used, which required building replicated BBN 
models to include other profiles’ evidence. In 
essence, by expanding the BBN models further, this 
approach also allows reliability estimation over the 
entire lifespan of the software product, but 
respective experiments have not been conducted in 
this study. 

 
4.2 CASE STUDY IN SOFTWARE TOOL 
EVALUATION 

To test the applicability of BBNs in software 
assessment, we applied this technique to evaluate the 
software development tools used in real-time safety 
critical applications in avionics. The data for the 
project were taken from experiments described in 
detail elsewhere [43,48]. The experiments involved 
applying a number of specific criteria, including: 
efficiency of the generated code, to conduct forward 
evaluation regarding the quality of code, and 
traceability, to allow backward evaluation regarding 
the tool capability of maintaining the right 
requirements. To evaluate the tool during its 
operation from perspective of the functions it 
provides and the ease of use, two additional criteria 
seemed to be appropriate: functionality and usability. 
The exact process of choosing the criteria is 
described in [48]. For criteria selected that way, a 
series of experiments were conducted, with six 
industry-strength tools applied to embedded 
software development. The above mentioned criteria 
were quantified using the following measures: 

 
• Efficiency measured as code size (in LOC) 
• Usability measured as development effort (in 

hours) 
• Functionality measured via the questionnaire 

(on a 0-5 points scale) 
• Traceability measured by manual tracking (in 

number of defects). 

Data for some measures were collected in 
multiple aspects, for example, data involving the 
development effort were divided into four 
categories: preparation, modeling and code 
generation, measurements, and postmortem 
(including report writing). Details of the software 
requirements and actual experimental results are 
discussed in [43]. 

 
Fig. 12 – High-level BBN model for software tool 

evaluation. 

 
Based on the adopted model of the tool 

evaluation process, and the results of experiments 
with the selected evaluation criteria outlined above, 
our high-level model of a BBN for tool assessment 
is illustrated in Figure 12. Its primary assumptions 
are that the tool assessment process should involve 
the following mutually interrelated factors: 

a) development of the tool itself (including the 
process, vendor quality and reputation, their quality 
assessment procedures, etc.), 

b) the tool use (including experimental 
evaluation based on predefined criteria, but also 
previous user experiences with this tool, etc.) 

c) quality of the products developed with this 
tool, based on product execution, static code 
analysis, etc. 

Based on the results of this analysis and other 
acceptance procedures (such as, legal aspects, 
independent experts opinions, etc.), the tool 
qualification process can be completed, as reflected 
in a BBN in Figure 13. Because of the limited data 
obtainable from experiments, we only deal with 
ToolUse part of the diagram in Figure 12. The logic 
of the BBN is similar to the ones reported in [14], 
where they had no real probability data, and [46], 
where the conditional probability values “were 
estimated based on judgments in a brainstorming 
activity among the project participants.” 

For the experimentally collected data for six 
tools, nicknamed L, M, N, O, P and Q, a sample tool 
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assessment BBN is shown in Figure 13 for a tool, 
which is likely to pass the qualification process with 
80% confidence at the level MediumToHigh or 
High. 

Fig. 13 – BBN to assess numerically quality of tool L. 

 
4.3 REAL-TIME APPLICATION: THE 
AUSTRALIAN NAVY EXERCISE 

As visible from previous examples, the principle 
of using a BBN for reasoning under uncertainty is 
that when the evidence about the state of one of the 
nodes (variables) becomes available, the rest of the 
network is also updated according to the conditional 
probability tables and dependency relations among 
the nodes. However, an updating process becomes a 
problem, if the new evidence is distorted or missing. 
This situation does not look that difficult in off-line 
computations, such as those discussed in subsections 
above, because one can do additional experiments 
and wait for the data when they will become 
complete. But if one wants to use BBN’s for 
situation assessment in real time, when missing or 
distorted data come into play, as in circumstances 
such as sensor noise or sensor failure, especially 
over extended period of time, then the value of 
Bayesian reasoning may become problematic. 

In general, this issue comes into play when there 
is no information on certain behavior or some 
information previously available becomes scarce or 
unavailable. Then using a rough set theory can help 
filling the gap caused by such circumstances. To 
illustrate this concept, we present a case study of the 
Australian Naval Exercise [49]. 

In this case study, there are two naval military 
forces called Blue and Orange that are hostile 
towards each other, and a country that the Orange 
forces obtain fuel supplies from and the Blue forces 
treat as neutral. The Blue forces have 
communications and surveillance facilities that the 
Orange forces want to destroy. Blue have set up a 
restricted area that contains the communication 
facilities and will consider any military activity or 
transportation of supplies hostile. Orange have a 
supply route that passes through the restricted area 
that it wants to defend. 

Blue monitor the restricted area via sensors and 
reconnaissance. Orange vessels that are likely to be 
detected are Guided Missile Frigates (FFG in Figure 
14), Free Mantle Class Patrol Boards (FCPB), and 
Communication vessels. Oil Tankers from the 
neutral country can also be detected. The position, 
mobility, and communications activity of the vessel 
are also recorded to try to determine the intent of the 
Orange forces. 

The Bayesian network in Figure 14 is used to try 
to determine what the intentions of the Orange 
forces are and how to respond to it by entering the 
findings from the sensors and reconnaissance into 
the appropriate nodes. In essence, based on this 
information entered into the bottom nodes, the 
Bayesian network recalculates the variables in all 
other nodes, and the value of a variable in node 
BlueCOA makes a suggestion to the decision maker, 
what would be the most appropriate Course of 
Action (COA) at any given time. 

The situation is more complicated when some of 
the sensor or reconnaissance data are missing, for 
example, due to a sensor failure or temporary or 
permanent unavailability of the reconnaissance. The 
BBN, which does the calculations, still expects 
receiving new data, because the command unit has 
to assess the situation and make respective decisions 
in real time. Even though the BBN can still operate, 
the missing data make its assessments less and less 
accurate when the time progresses. 

In such case, we try to employ a rough set theory, 
particularly in its part dealing with the missing 
values. The essential idea is as follows. If we treat 
specific variables from the BBN network as 
attributes of the information system (rough set), with 
one of them being the decision attribute and all 
remaining ones – condition attributes, then we can 
determine (with some level of accuracy) the missing 
values of the attributes, using the reasoning 
presented briefly in the section on rough sets and 
described in more detail in [41]. In plain language, 
this would be equivalent to deriving the approximate 
value of a certain variable based on the context 
information. A sample of a respective information 
system is illustrated in Figure 15, for the Australian 
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Naval Exercise, using a rough set tool Rosetta [39]. 
 

 
Fig. 14 – Sample BBN for an Australian Naval Exercise 

 

 
Fig. 15 – Sample information system in Rosetta for an Australian Naval Exercise 

 
All fourteen nodes from the Bayesian network 

are mapped onto attributes of an information system. 
In each time instant, depending on the frequency of 
measurements in the decision making process, a new 
case (an object with fourteen attributes) is created. 
The values of respective attributes may be obtained 
directly by the measurement process, or from a BBN 
if necessary. For example, the first attribute in 
Figure 15, SensorMobilityInt, corresponds to the 
node of the same name in the BBN in Figure 14, and 
has a value of RapidParallel. If some measurements 
are missing, this is illustrated by an asterisk in 
Figure 15. 

The operation of software tools to conduct this 
process in real time is illustrated in Figure 16, with 
evidence meaning the new sensor measurements or 

reconnaissance data. Such process can be easily 
automated with existing tools, since a Netica version 
exists that has a Java API and can read cases from a 
text file. In turn, Rosetta, which also has a command 
language interface, can export its tables as text files 
to be grabbed by Netica. With a converter software 
reading Rosetta files, making respective adjustments 
if some data are missing, and transforming them to 
the Netica format, the whole system shown in Figure 
16 can operate smoothly and enhance the decision 
making process in real time. 
 



Andrew J. Kornecki, Slawomit T. Wierzchon, Janusz Zalewski / Computing, 2013, Vol. 12, Issue 1, 16-31 
 

 29

 
Fig. 16 – Real-Time operation of a BBN tool with a 

rough set tool. 

 
5. SUMMARY AND CONCLUSION 

This paper discussed basic concepts of Bayesian 
belief networks and rough sets, and showed how 
they can be combined to enhance the process of 
reasoning under uncertainty in case of missing 
values of certain attributes of objects. Bayesian 
networks and rough sets are individually very 
adequate tools to solve computational problems with 
insufficient information and reason about 
uncertainty. The use of rough sets helps making 
BBN’s more valuable in case of the occasional lack 
of evidence. It becomes particularly important, when 
BBN’s are used in applications such as real-time 
decision making or active safety diagnostics, with 
information being supplied to the nodes during 
operation. In such cases, losing the source of 
information for one of the BBN nodes impairs the 
inference process in the next steps. Using rough set 
reasoning helps in keeping the BBN in good 
standing, disregarding the lost source of information. 

This logic of this process is very similar to the 
use of a Kalman filter [50], when the information 
about the system is updated based on its previous 
behavior. However, in case of rough sets the 
information does not have a statistical nature, as in 
the case of Kalman filtering. Comparing the 
concepts outlined in this article with the operation of 
a Kalman filter would be a good topic for further 
study. 

There are several important questions still to be 
addressed. For example, to apply this method in 
practice, one would need to know how 
computationally intensive are the rough set 
calculations? It seems that for typical applications of 
Bayesian belief networks, which are used in decision 
support systems, the deadlines for completing the 
computations are most likely in the order of minutes 
or hours, so this issue should not cause problems. 
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