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Abstract: The accuracy of AD conversion can be improved using the post-correction of digitizer non-linearity. In 
principle two methods could be applied – look-up table or an analytical inverse function of integral non-linearity curve 
(INL(n)). Look-up table can be easily implemented but it demands huge memory space particularly for high resolution 
ADCs. Inverse function offers flexible solution for parameterization (e.g. frequency dependence) but it also requires fast 
DSP for real-time correction. The data or coefficients for both methods are frequently determined from a histogram of 
acquired pure sinusoidal signal. Non-linearity curve can also be gained by another procedure demanding significantly 
less samples – approximation from a frequency spectrum. The correction of ADC nonlinearity by means of inverse 
function of INL(n) curve is analyzed in this paper and the results are presented. 
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1. INTRODUCTION 

The ADC non-linearity is inherently described by 
the Integral Non-linearity curve INL(n) which is 
defined as the difference of ADC output and input as 
the function of the input level. INL(n) can be directly 
determined using histogram method [1], but this 
method demands a huge number of samples in a 
record, thus it is time consuming. However, non-
linearity causes also a distortion in the digitized 
signal and the frequency spectrum can provide 
similar information as the INL(n) in the code 
domain. 

The INL(n) curve can be split into its low code 

frequency component (LCF) and the high code 
frequency component (HCF). The LCF (the rough 
curve of the INL(n)) – see Fig. 1, dotted curve) is 
responsible for harmonic distortion at lower 
harmonic components [2, 3, 4], usually the strongest 
are 2nd and the 3rd ones. If an approximation of the 
INL(n) curve using polynomials is applied, the third 
order polynomial is mostly sufficient for the 
following integral non-linearity correction.  

 
2. APPROXIMATION OF INL(N) CURVE 

Using polynomials the INL(n) is approximated by 
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Fig. 1 – An example of INL(n) curve and its low code frequency component (dotted curve) 
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where ah are the nonlinearity coefficients up to the 
maximum order Hmax, which is the highest harmonic 
component considered, n is the normalized ADC 
code with a bipolar range, and x the ADC input. 
Having the coefficients ah and consequently the 
approximation of INL(n) curve, the non-linearity of 
digitizer can be corrected. The approximated transfer 
function TF has to be calculated by adding a straight 
line to the INL(n), such that  
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where n is the ADC code and after the substitution it 
can be expressed as 
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If the transfer function TF is monotonical, its 

inverse exists. For this case, let’s propose that the 
approximation of the inverted transfer function TF-1 
will also be a polynomial of the same 
order (Kmax = Hmax) defined as 
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where y is the ADC output. Substituting y = TF(n) 
from (3) into (4)  
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The distortion of the 2nd and the 3rd harmonic 

component is usually the most important for 
majority of digitizers and the higher components are 
usually negligible. Therefore the Kmax = Hmax = 3 will 
be taken into account for the following solution. In 
this case the general expression (5) changes to 
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Considering  
 

nnTFTF =− ))((1  (7) 
 
and comparing the coefficients of the same powers 
of n an over determined equation system arises 
(3 unknowns variables b1, b2, b3, 9 equations).  

Two methods for the determination of coefficient 
bk are presented in this paper. In the first method the 
coefficients b1, b2, b3 are determined from 3 low-
order equations, the equations with polynomials 
nl, l > 3 are neglected. The coefficients are given by  
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The second method is more sophisticated. Since 

equation (7) can hardly be fulfilled completely the 
error function  
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is minimized (least square). 

Let’s integrate the error function over the full-
scale of the ADC to obtain the area below the error 
function. The full-scale range of the ADC spans over 
〈–1;+1〉 interval because of normalization. 
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and after the substitution from (6) 
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Integration (11) eliminates the variable n and only 
variables bk remain. Let’s take the partial derivatives 
of the I(b1,b2,b3) function with respect to three 
variables and equal them to zero.  
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The system with three equations of three variables is 
obtained  
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where ci and dj are collected terms resulting from the 
partial derivations (12), e.g. 
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The equations (13) can be rewritten into a matrix 
form 
 

C b = d (16) 
 
and the coefficients b1, b2, b3 can be calculated by 
applying the Cramer’s rule based on determinants  
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The solution is 
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3. SIMULATION OF NON-LINEARITY 

CORRECTION 
The correction of the simulated ADC 

nonlinearity was performed in the second step. The 
coefficients of the polynomials of the approximated 
non-linearity INL(n) curve (1) were computed from 
the histogram method [1] measured by the digitizer 
NI PXI 5122. Spectrally pure (filtered) testing signal 
(THD < -130 dB) was used for this purpose [5]. The 
approximation of the inverted transfer function was 

found applying the polynomials. Only the most 
dominant coefficients ai (the 2nd and the 3rd order) 
were considered.  

The levels of harmonic components of the 
simulated output signal and of the same signal after 
the correction are presented in Table 1. The 
performance of both methods mentioned above is 
shown.  

Table 1. Results of Correction 

Harmonic 
component 

Digital 
output 
before 

correction 

Digital output after 
correction 

Direct 
inversion 

LSE 
minimization 

2 –77dB –131dB –142dB 
3 –80dB –136dB –155dB 

 
The modeled input and corresponding output 

signal were in a very good agreement with the real 
signals. The correction applied on this signal showed 
to be very effective. However, the correction on real 
output data did not improve the signal as expected. 
The reason seemed to be in other ADC 
imperfections (additive noise, jitter in sampling, 
non-zero sampled signal phase and hysteretic 
behavior) which were not taken into account in the 
simulation. To find the source of the worse 
correction results in the case of real data further 
simulations were executed. The influence of the 
incoherently sampled signal (with non-zero α) was 
suppressed by applying the Blackman-Harris 
window of the 7th order to the recorded data. The 
simulated distorted ADC output was generated as 
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where a = [adc_full_scale, –18, –13] 
(adc_full_scale = 223 for the simulated 23-bit ADC 
and the numbers –18 and –13 are the coefficients of 
the 2nd and the 3rd non-linearity order). No rounding 
(quantization in amplitude) of the ADC output was 
used in order to better observe the performance of 
the correction. The following ADC imperfections 
were added to the modeled output signal: 

a) additive white noise,  
b) sampling jitter,  
c) influence of non-zero sampled signal phase, 
d) hysteresis. 

The result corresponding to harmonic distortion 
only was used as the reference one (Fig. 2). The 
influence of the additive noise is presented in Fig. 3.
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This simulation proved that the presence of an 

additive white noise does not cause noticeably 
influence the results of correction – higher harmonic 
components were suppressed to negligible level 
below noise. The same result was found for 
sampling jitter. The simulation with variable non-
zero sampled signal phase showed also no influence. 

The last imperfection of a real ADC, which was 
investigated, was the hysteresis. For better 
observation the resulting frequency spectrum as well 
as the integral non-linearity curve (the deviation 
from the ideal transfer function – residual amplitude) 
were calculated (see Fig. 4). 

The residual amplitude for falling and rising 
slopes was plotted individually. The dashed and dot-
dash lines were reconstructed from the falling and 
rising slopes of the signal. INLd is so called 

"differential-mode" component which corresponds 
to ADC hysteresis behavior. The full line represents 
the “common-mode” non-linearity component INLc 
[6]. The hysteresis was modeled using equation 
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where yhyst(x) is the additive contribution of the ADC 
hysteresis to its output, β is a the proportion factor, 
X1 is the amplitude of the input signal, and the 
sign(x´) is a binary function with +1 and –1 output 
values depending on the slope of the input signal x. 
Fig. 4c shows “typical” curves of residual amplitude, 
which is significantly different for failing and rising 
slopes.  

SINAD = 91 dB 
THD = -96 dB 
SNHR = 93 dB 

SINAD = 93 dB 
THD = -111 dB 
SNHR = 93 dB 

                    a) Frequency spectrum before correction                            b) Frequency spectrum after correction 

Fig. 3 – Non-linearity correction of simulated signal – sine-wave signal with white noise (σ2 = 60 LSB) 
and harmonic distortion  

SINAD = 96 dB 
THD = -96 dB 
SNHR = 165 dB 

SINAD = 163 dB 
THD = -169 dB 
SNHR = 165 dB 

                    a) Frequency spectrum before correction                            b) Frequency spectrum after correction 
Fig. 2 – Non-linearity correction of simulated signal – sine-wave signal with harmonic distortion  
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The result of the correction is presented in 
Fig. 4d. The “common mode“ non-linearity was 
correctly estimated as ∆f(x) = – (18.0x)2 – (13x)3 
LSB and removed. Only the hysteresis remained 
after the correction. It corresponds to the premise 
that the proposed method can correct only “pure” 
non-linearity, but not the hysteresis. 

 
4. EXPERIMENTAL VERIFICATION 

To verify the simulation results experimental 
measurements using two high quality digitizers (23-
bit Digitizer VXI HP E1430A and 24-bit Digitizer 
NI PXI-5922) were performed. High-quality ADC 
testing system at the CTU in Prague [5] was applied 
for this purpose. The input signal was generated by 
ultra-low distortion Stanford Research DS360 
generator and it was subsequently filtered by band-
pass filter to achieve high spectral purity of the 
signal. The record of 2 MSa was divided into four 
segments. One of them was selected as the reference 
for calculating coefficients of the inverted 

polynomial. The other three data segments were then 
corrected. In the case of VXI HP E1430A digitizer 
input signal frequency of 20.19 kHz was used. An 
example of the frequency spectra of the output 
signal before and after the correction is shown in 
Fig. 5. The THD was improved by about 15 dB by 
means of the correction. 

Secondly, the 24-bit Digitizer NI PXI-5922 was 
tested. In this case two frequencies of input signal 
were used: 20.19 kHz and 1.053 MHz. The other 
conditions remained the same. The residuals before 
and after the correction show more details than the 
frequency spectra in this case (see Fig. 6 and 7). 

In case of 20 kHz input signal the hysteresis 
slightly influences the result. The “common mode“ 
non-linearity is well suppressed by the correction but 
the residual non-linearity of about 15 LSB caused by 
hysteresis (different for falling and rising slopes) 
remains. The resulting “common-mode” non-
linearity decreased about 20 times. 

SINAD = 96 dB 
THD = -96 dB 
SNHR = 155 dB 

SINAD = 115 dB 
THD = -115 dB 
SNHR = 155 dB 

                    a) Frequency spectrum before correction                            b) Frequency spectrum after correction 

 c) Transfer function before correction d) Transfer function after correction 

Fig. 4 – Non-linearity correction of simulated signal – sine-wave signal with hysteresis α = 40 LSB 
and harmonic distortion 
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a) Before correction                 b) After correction 

Fig. 6 – Integral non-linearity (NI PXI-5922, finp = 20.19 kHz) 

 a) Before correction b) After correction 

Fig. 5 – Frequency spectra of digitized output signal (VXI HP E1430A) 
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Fig. 7 – Integral non-linearity (NI PXI-5922, finp = 1.053 MHz) 
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However, for 1 MHz input signal the hysteresis is 
about two hundreds times higher then for 20 kHz 
and the “differential-mode” non-linearity caused by 
the hysteresis is dominant. Common-mode integral 
non-linearity is suppressed well by the correction 
indeed but the residual “differential-mode” non-
linearity remains and the remaining non-linearity 
after the correction is practically the same as before. 

 
5. CONCLUSION 

Two methods for calculation of coefficients of 
the inverted polynomial used for ADC non-linearity 
correction were introduced, derived and compared. 
The first one uses more straightforward derivation of 
the coefficients; the second one minimizes the least 
square error.  

The first simulation did not take ADC 
imperfections (additive noise, jitter in sampling, 
non-zero sampled signal phase and hysteretic 
behavior) into account. They showed that the both 
methods used for calculation coefficients are 
applicable. Simulations verified that the correction is 
useable also in the cases when other ADC 
imperfections are not negligible. This statement was 
also confirmed experimentally. 

The proposed method of ADC non-linearity 
correction using polynomial approximation of the 
integral non-linearity INL(n) and its inverse function 
gives mostly good results but not always. It concerns 
e.g. digitizers with noticeable hysteresis which is 
particularly common for signals with frequency near 
the maximum input frequency of digitizers. 
Generally, inverse function used for post-correction 
of INL is frequency dependent. For this reason it 
cannot be directly used for wide-band signals. 
However, this issue also concerns other post-
correction methods, e.g. look-up table. 
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