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3.2. DATA MANAGEMENT 
In [7], three factors for the development of 

learning analytics are listed: online learning, big 
data, and political concerns. This list is reflected by 
the design principles of LeMo. 

Data analyzed by the LeMo tool are basically 
user activities obtained from platforms for online 
learning. LeMo connects to various platforms, 
including the learning management systems (LMS) 
Moodle1 and Clix2, as well as the online 
encyclopedia Chemgapedia3. The LeMo connectors 
for Moodle and Clix are implemented to access the 
underlying databases directly. In case of 
Chemgapedia, which is a web application, data stem 
from the server log file. 

During the ETL (Extraction – Translation – 
Load) phase, data are imported into a database with 
a unified data model. While LMS provide detailed 
information on content and on users, server log files 
just contain page visits. Here, session information is 
needed to identify anonymous users (students). The 
LeMo data model contains entities for learning 
objects, e.g. courses, resources, wikis, or tests, and 
associations between learning objects, e.g. resource 
X belongs to course A. There exist students and 
teachers related to courses. Degree programs can 
group courses, a department is responsible for 
different degree programs, and an institution consists 
of several departments. The data model also includes 
“user activities”, which basically are represented as 
tuples [u,l,t,a] (user, learning object, time stamp, 
action). An “action” may be one of “view”, 
“download”, “modification”, “creation”, “attempt”, 
or “submit”. And finally, platforms are represented 
in the data model. Given an element e, which was 
imported from platform x, a unique primary key for 
this element can be constructed from the pair [e,x]. 
Thus, it is possible to aggregate user data from 
different platforms into a single data model. 

In the case of Chemgapedia, some data are not 
available, examples being department/faculty, or a 
student's enrollment in courses. This leads to sparse 
data, and eventually to a reduced number of 
available analyses.  

Big data denote huge sets of, generally 
unstructured, data, which typically originate from 
social networks, and which are processed using 
analytic methods (“social media analytics”). 
Recording activity data on platforms for online 
learning, over a long period of time, a huge amount 
of data is produced. For interactive analytics 
applications, it is critical to handle big data 

                                                 
1 https://moodle.org/  
2 http://www.im-c.de/  
3 www.chemgapedia.de/  

efficiently, which can be achieved via data 
compression, efficient data retrieval and efficient 
mining algorithms. 

Reviewing usage statistics on the Chemgapedia 
web server, it became apparent that log data have to 
be preprocessed in order to exclude activities not 
corresponding to learners (e.g. traffic generated by 
web crawlers). To solve this problem, an optional 
functionality was added which excludes all log 
entries with one of the following characteristics: 
multiple accesses per second, frequent repetition of 
time intervals between accesses, and many accesses 
to the same page. The use of this filter reduced the 
number of log entries by about 47 %, while 
excluding just 5 % of all users [8]. 

With the actual LeMo prototype, data are stored 
in a relational data base. First studies show that this 
is sufficiently efficient for institutions with about 
10,000 students. Non-standard ways of storing data, 
e.g. in a NoSQL data base, will be investigated in 
the future. 

 
3.3. DATA PRIVACY 

One political concern of learning analytics is data 
privacy. Traditionally, personalized interactions and 
user modeling have significant implications on data 
privacy. Personal information about a user is 
collected and analyzed, which might not be in the 
interest of the user. Recently, collection of user data 
in social networks, and possible violation of data-
privacy legislation, have been published frequently. 
As a result, even more strict data-privacy regulations 
at universities are established, which in turn limits 
the use of learning analytics. 

The LeMo approach towards data privacy aims at 
achieving a high level of anonymity. The activity 
sequence, i.e. the “learning path” of a particular 
student may be analyzed, but personal data, which 
could serve to identify the student, must not be 
exposed. This is done by omitting all personal data 
in the ETL process, the only exception being gender 
information which is valuable for learning analytics. 
Furthermore, small data samples must not be used 
for a specific analysis, if this leads to the 
identification of a particular student (k-anonymity 
[9]). An example is a course with just one female 
(male) participant; this student could be identified 
easily using a gender filter. 

For most of the analyses, courses must be 
identified by their name. Also, the title of learning 
objects like learning material (e.g. powerpoint 
presentations), the name of threads in a course-
related forum, or results of a test provided in the 
course, are essential for efficient analysis, but must 
not allow for identification of learners (students). 
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To implement a role “teacher”, courses taught by 
a given teacher must be identified. This cannot be 
done using some unique attribute, like name, 
personal ID or login name (user ID). All these 
attributes are omitted during the ETL process. 
Instead, a mapping from teachers to courses can be 
realized by a pseudonym (hash value) derived from 
a unique attribute during ETL. If the LeMo 
application uses the same authentication scheme as 
the connected platform (e.g. authentication via 
LDAP, the light way directory access protocol), the 
pseudonym is derived from the login name. When a 
teacher logs in, she or he sees the list of “his” or 
“her” courses. 

 
4. USER PATH ANALYSIS 

Computing frequent paths in LeMo is based on 
two algorithms, namely BIDE [10] and Fournier-
Viger [11]. Implementations for both algorithms are 
provided by the SPMF (sequential pattern mining 
framework) library4. 

Given a course with a set of learning objects L, 
and a set of users (students) U, we define a path as a 
sequence of learning objects, allowing multiple 
occurrences of the same learning object, and L* as 
the set of all possible paths (in terms of formal 
languages, each path is a word over the alphabet L). 
By P(u) we denote the sequence of all learning 
objects accessed by user u, in the correct  
order implied by the time stamp of the 
corresponding activity. 
 

ଵ ൌ ଵݍଵݏଵݍଵݏ ଵ݂ݏଶݍଵ (1)
 

As an example consider a course containing the 
following learning objects: two sets of slides s1 and 
s2, two quizzes q1 and q2, and one forum f1. Let p1 be 
a path and u be a User with  
P(u) = p1. This corresponds to the following 
behavior: The user u first accesses the slides s1, then 
quiz q1, then again s1 and the same quiz q1. Then she 
visits the forum f1, accesses slides s2 and finally 
again quiz q1 (1). 

A path p = l1 … lm is contained in another path 
p' = l'1 … l'n, if it can be embedded into p', 
preserving the order of the learning objects: 
 

 َ ᇱ ֞ 1  ݅ଵ ൏. . . ൏ ݅  ݊: ݈ ൌ ݈ೕ
ᇱ 1  ݆  ݉ (2)

 
A path p = l1 … lm is a subsequence of another 

path p' = l'1 … l'n, if it can be embedded into p' 
directly, preserving the original sequence of p: 
 

 ك ᇱ ֞ 0  ݇  ݊ െ݉: ݈ ൌ ݈
ᇱ  1݇  ݆  ݉ (3)

                                                 
4 http://www.philippe-fournier-viger.com/spmf/  

Let's look at two paths 
 

ଶ ൌ ଵ (4)ݍଶݏଵݏ
 

ଷ ൌ ଵݍଵݏ ଵ݂ݏଶݍଵ (5)
 

The path p2 could reflect the teacher's intended 
“learning path”, i.e. first accessing slides s1, then s2, 
and then trying to pass quiz q1. p2 is contained in p1 
(at positions 1, 6, 7 or 3, 6, 7), but p2 is not a 
subsequence of p1. The path p3 could reflect the 
following learning activities: read slides s1, go to 
quiz q1 (and fail), go to the forum f1 and ask for help, 
read slides s2 and pass the quiz q1. p3 is a 
subsequence of path p1, starting at position 3. 

For both relations “is contained” and “is a 
subsequence”, we can define the set of frequent  
user paths: 
 

َܲܨ ሺݏሻ ֞ ሼ א :כܮ |ሼݑ א ܷ:  َ ܲሺݑሻሽ| ൊ |ܷ|  ሽݏ (6)
 

ܨ ሻݏሺكܲ ֞ ሼ א :כܮ |ሼݑ א ܷ:  ك ܲሺݑሻሽ| ൊ |ܷ|  ሽݏ (7)
 

With a support value of 0.5, the set of frequent 
paths consists of all learning object sequences, 
which are followed by at least 50 % of all users. 

Given four users with learning paths 
 

ܲሺݑଵሻ ൌ ଵ (8)ݍଶݍଶݏଵݏ
 

ܲሺݑଶሻ ൌ ଶݍଵݍ ଵ݂ݏଵݏଶ (9)
 

ܲሺݑଷሻ ൌ ଵ݂ (10)
 

ܲሺݑସሻ ൌ ଵݍଵݏଵݍଵݏ ଵ݂ݏଶݍଵ (11)
 
we get the following frequent paths: 
 

ܨ ሺ0.7ሻكܲ ൌ ሼݏଵ, ,ଶݏ ,ଵݍ ଵ݂ሽ (12)
 

َܲܨ ሺ0.7ሻ ൌ ሼݏଵ, ,ଶݏ ,ଵݍ ଵ݂, ଶሽ (13)ݏଵݏ
 

In this example, all paths are followed by at least 
3 users. 

The BIDE algorithm computes frequent paths 
with respect to the relation “is contained in” (6). 
Given a constant support value, the complexity of 
BIDE is O(n1n2n3), where n1n2n3 is the product of the 
number of users |U|, the average and the maximal 
length of user paths P(u). Since BIDE uses an 
apriori approach to determine reoccurring sub-paths, 
the processing time increases dramatically when the 
number of candidate sequences is large [10]. 

The Fournier-Viger algorithm computes frequent 
paths with respect to the relation “is a subsequence 
of” (7). It was developed for a specific application 
domain, namely learning with tutorial systems for 
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