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Abstract: Performance comparison of conventional and spread spectrum signals in Time of Flight estimation is given. 
Ultrasonic measurement under multiple reflections condition is analyzed. It was indicated that if two reflections are in 
close proximity the neighboring signal induces energy leak into its opponent signal. Due to such situation ToF estimate 
is obtained with bias error. Narrow signals like single rectangular pulse, should suffer less from the aforementioned 
phenomena. But use of spread spectrum signals is preferred thanks to their compressibility. It was hypothesized that 
such long signals will have worse bias error due to neighbor reflection. Goal of the investigation was to compare the 
performance in multiple reflections environment in Time of Flight estimation for classical signals and spread spectrum 
signals. Investigation revealed that spread spectrum signals have better performance in a sense of bias error caused by 
neighboring reflection. Copyright © Research Institute for Intelligent Computer Systems, 2013. All rights reserved. 
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1. INTRODUCTION 
Ultrasonic imaging and measurement offers 

direct interaction of the probing signal with the 
mechanical properties of the test object. Many 
measurement systems explore the ultrasound delay 
time: temperature [7], load measurement [9], food 
product quality monitoring [3]; thickness [4], non-
destructive imaging [6] or biomedical applications 
[8]; flow rate measurement [5]. Essential procedure 
carried out in such measurements is the estimation 
of signal delay or time-of-flight (ToF) [1, 2].  

Usually, pulse signals are used because easy to 
generate [10]. Yet these signals are not able to 
deliver sufficient energy if measurement precision is 
needed. Toneburst signals are used when high signal 
energy is needed [4]. But if pulse signals have good 
temporal resolution, tonebursts do not have this 
property. Spread spectrum (SS) signals [11-14] offer 
both: high energy and high resolution. Most widely 
used signals are chirp, linear frequency modulation 
and coded sequences [12]. New class of SS signals 
was suggested recently [15]: trains of pulses of 
arbitrary pulse width and position (APWP). For 
single reflection the SS signals have clear advantage: 
both sharp main correlation lobe and high energy 
increase the estimation accuracy. Estimation of 
signal arrival time gets complicated when multiple 

reflections are in close proximity: in [26] it was 
shown that additional error occurs.  

Investigation presented was aimed to compare 
the ToF estimation performance of conventional and 
SS signals in multiple reflections case. 

 
2. MULTIPLE REFLECTIONS PROBLEM 

Thin plate thickness measurement creates a 
challenge: front face and back wall reflections are 
close in time. If short pulse signals are used, close 
reflections can be resolved (Fig. 1).  
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Fig. 1 – Multilayer reflections example when short 

pulse is used for probing. 
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But the shorter is the pulse the less energy it has 
and the lower is the attainable accuracy. In such case 
SS signals can be considered (Fig. 2).  
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Fig. 2 – Multilayer reflections example when spread 

spectrum (chirp) signal is used for probing. 

 
Application of SS signals is offering high energy 

yet it seems that resolution could be worse since 
operation in closer proximity (Fig. 2 dashed curves) 
could be complicated. Yet application of correlation 
processing compresses the signal and temporal 
resolution should not be jeopardized (Fig. 3).  
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Fig. 3 – Signal compression result for chirp. 

 
But in case of SS signal correlation sidelobes are 

higher (Fig. 3) than for pulse signal (Fig. 4). 
Research presented in [26] was aimed to 

investigate the neighboring reflection influence on 
ToF estimation bias errors. Real signals were 
recorded using wideband transducer TF5C6N-E with 
delay line attached. Signals were averaged to 
produce noise-free reference signal refk. Here 
k=1…K represents the sample number. This 
reference signal later was used to construct a signal 
representing two reflections: front face, ffk, with 
unity amplitude and backwall, bwk with 0.7 
amplitude. One signal was placed at original 

position which was not altered. Another signal was 
artificially shifted by introducing the ∆tn (n=1..N) 
delay via the phase alteration in frequency domain:  
 

( ) ( )( )nk tj
knk erefFFTIFFTttbw ∆⋅=∆− ..1

..1..1
ω (1)
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Fig. 4 – Signal compression result for pulse. 

 
Then received signal is the sum of ffk and bwk:  

 
kkk bwffsig ..1..1..1 +=  (2)

 
Several TOF estimation techniques exist 

[18, 27, 28]. If cross-correlation function x of 
reference and received signal is: 
 

( ) ( ) ( )dttbwtrefx ττ −⋅= ∫
∞

∞−

 (3)

 
Then the peak position of the cross-correlation 

function is the ToF estimate: 
 

( )[ ])(maxarg τxToFDC =  (4)
 

But it is more practical to produce the cross-
correlation function in digital space. Therefore 
signals analyzed are discrete.  
 

∑
=

− ⋅=
K

k
kmkm bwrefx

1

 (5)

 
If ToF errors below the sampling period are 

expected then interpolation is used to estimate the 
ToF between the samples. In ideal case, sinc 
function should be used for this purpose. But usually 
speed is required, so several truncated interpolation 
techniques exist [21-23]. Cosine interpolation was 
suggested as the best candidate in [26]. If CCF peak 
for a relatively narrowband signal was assumed to 
be harmonic function, then cosine interpolation can 
use samples xm-1, xm and xm+1 around the peak: 
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where 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
= +−

m

mm

x
xx

2
arccos 11α ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= +−

α
β

sin2
arctan 11

m

mm

x
xx  (7)

 
Signals synthesized by (1) and (2) were used to 

obtain two ToF values, ToFff and ToFbw: for ffk and 
bwk correspondingly. Peaks were located by gating 
the area of first and second reflection. Estimates 
were obtained using (4), (5), (6) and (7). Since there 
was N values for spacing ∆tn between the signal, 
every delay value was used to obtain the bias error 
ε(ToFe), by subtracting the introduced delay ∆tn 
(0 ns to 4000 ns for second reflection and 0 ns for 
first reflection): 
 

nnn tToFToF ∆−=)(ε  (8)
 

ToF bias error is clearly seen in Fig. 5. 
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Fig. 5 – ToF bias error induced by neighboring signal. 

 
It can be seen that presence of the neighboring 

reflection creates bias error. The influence is of 
opposite sign and depends on opposing signal 
amplitude: first reflection is larger so has less 
influence from second reflection and second 
reflection is smaller so has stronger influence from 
first reflection. The closer are the signals, the larger 
is the error. Situation can be expected from Fourier 
analysis point: pulse signal can be disassembled into 
several frequency components which exist beyond 
signal peak (Fig. 6).  

But which type of signals will have lower errors? 
It was hypothesized that long SS signals which 
correlation lobes are larger should have worse bias 
error due to neighboring reflection. 

 
Fig. 6 – Pulse signal components exist beyond the 

peak. 

 
3. EXPERIMENTAL RESULTS 

In this investigation we aimed to compare the 
neighbor reflection influence on bias error for short 
single pulse and SS signals. Same transducer 
TF5C6N-E was used for real signals collection. 
Signals were collected from attached delay line, 
averaged to produce reference signal ref. Chirp 
signal with frequency 1-10 MHz and 2 µs duration 
was used as SS signal representative (Fig. 2). 
Conventional signal was represented by 100 ns 
rectangular pulse (Fig. 1).  

Reference signals were artificially shifted as per 
equation (1). ToF values obtained using (4), (5), (6) 
and (7). Bias error due to neighbor reflection was 
obtained using (8).  

At large spacing (Fig. 7, more than 3 µs) all 
signals had same performance bias error due to 
neighboring reflection is below few ps (ToF 
interpolation error).  
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Fig. 7 – Bias error due to neighboring reflection vs. 

signal type at large spacing. 

 
Performance degrades significantly if distance 

between reflections is reduced. Error for pulse signal 
is larger even in case of small spacing (Fig. 8). Such 
behavior of pulse signal is unexpected: being more 
concentrated in time it should be less sensitive to 
neighboring reflections.  
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Fig. 8 – Bias error due to neighboring reflection vs. 

signal type at small spacing. 

 
Obtained ToF error was normalised by the period 

of the transducer center frequency, f0: 
 

( ) ( ) %100
0

⋅=
T
ToFToF est

εδ  (9)

 
Results for relative ToF error obtained for 100 ns 

rectangular pulse (matched for for 5 MHz transducer 
center frequency) are presented in Fig. 9.  
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Fig. 9 – Relative time of flight estimation error  

for pulse signal. 

 
Comparison of Fig. 9 results with errors for 

spread spectrum (2 µs chirp, Fig. 10) signal indicate 
the advantage of the last: errors are in the order of 
magnitude lower for spread spectrum excitation. 

For instance, relative ToF estimation error is 5 % 
at 200 ns for spread spectrum signals and at 280 ns 
for pulse signal. For 0.1 % relative error signal 
spacing should be 1.25 µs for spread spectrum 
signals and 2.5 µs for pulse signal. Relative error is 
virtually zero if spacing is more than 1.3 µs for 
spread spectrum.  
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Fig. 10 – Relative time of flight estimation error  

for spread spectrum signal. 

 
Amplitude reconstruction performance was 

studied. Once the position ToF is found then 
estimation Aest of the reflection amplitude in 
received signal sk can be expressed via the reference 
signal refk: 
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Then, this estimated amplitude can be compared 

to actual amplitude Aact of used in experiment to 
obtain the amplitude estimation error: 
 

%100⋅
−

=
act

actest
est A

AA
ε  (11)

 
Results for larger (first reflection in Fig. 1) pulse 

amplitude reconstruction are presented in Fig. 11. 
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Fig. 11 – Amplitude estimation error due  
to neighboring reflection for pulse signal. 
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It can be seen that estimation error is reduced 
with distance and at 270 ns spacing is below 5 %. 
Amplitude estimation performance is slightly worse 
for spread spectrum (chirp) signal (Fig. 12): 
amplitude estimation error for chirp signal drops 
below 5 % at 300 ns distance.  
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Fig. 12 – Amplitude estimation error due  
to neighboring reflection for chirp signal. 

 
But it can be seen that amplitude estimation error 

for chirp signal is much better at large spacing: it is 
virtually zero at spacing above 1.3 µs. While for 
pulse signal such reduction is achieved only at more 
than twice the distance (3 µs).  
 

5. CONCLUSIONS 
It was demonstrated that presence of the 

neighboring reflection introduces time of flight 
estimation error. For separation larger than the 
duration of the reference signal, only interpolation 
errors prevail. In close proximity, additional time of 
flight estimation bias error is introduced which is of 
opposite sign for counteracting signals and depends 
on the amplitude of opposing signal. Situation can 
be explained from the signal theory: the neighboring 
signal produces the energy leak into its opponent. 
Narrow signals like single rectangular pulse, should 
suffer less from the aforementioned phenomena. But 
use of spread spectrum signals is preferred thanks to 
their energy and compressibility property. It was 
hypothesized that spread spectrum signals, being 
long signals will have worse bias error due to 
neighbor reflection. Comparison time of flight 
estimation error bias caused by neighbor reflection 
of pulse and chirp signal revealed that spread 
spectrum signals have better performance compared 
to short pulse signals. 
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