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Abstract: The problem of visualizing large volumetric datasets is appealing for computation on the GPU. Nevertheless, 
the design of GPU volume rendering solutions must deal with the limited available memory in a graphics card. In this 
work, we present a system for multiresolution volume rendering which preprocesses the dataset dividing it into bricks 
and generating a compressed version by applying different levels of compression based on wavelets. The compressed 
volume is then stored in the GPU memory. For the later visualization process by texture mapping each brick of the 
volume is decompressed and rendered with a different resolution level depending on its distance to the camera.  This 
approach computes most of the tasks in the GPU, thus minimizing the data transfers among CPU and GPU. We obtain 
competitive results for volumes of size in the range between 643 and 2563. Copyright © Research Institute for 
Intelligent Computer Systems, 2013. All rights reserved. 
 
Keywords: compressed volume rendering, texture mapping, multiresolution rendering, wavelet transform, quantization, 
CUDA, OpenGL. 

 
 

1. INTRODUCTION 

The evolution from graphics-specific accelerators 
to programmable vector processors has made of 
GPUs a standard platform for rendering volumetric 
datasets. However, recent years have witnessed 
significant improvements in the data acquisition 
methods, and, as a result, the size of datasets has 
increased. This poses a challenge given the limited 
memory resources available in current graphics 
hardware, and although each new GPU generation 
expands its memory capacity, the current trend 
shows that this problem will continue to exist in the 
future [1]. In this context, compression stands as an 
effective solution for processing increasingly larger 
datasets in the GPU. The compression is usually 
computed on a previously decomposed version of 
the volume.  

As it is usual in the context of volume rendering, 
the volume is initially decomposed into a set of non-
overlapping blocks, usually called bricks, so a single 
brick fits into the memory of the GPU. Bricks are 
compressed with multiple levels of compression. 
When the visualization process begins the bricks are 
loaded and rendered one at a time. In our 
implementation we use a single OpenGL 3D texture 
buffer to store the contents of a brick of data, and 
this buffer is reused every time a new brick is 
processed. The final visualization is achieved 
through texture mapping (also known as texture 

slicing) [9], which, along with ray casting, is one of 
the most popular methods to render volume data. 

In this rendering technique, the 3D texture is 
mapped onto a proxy geometry composed of planar 
polygons that constitute camera-oriented translucent 
slices, i.e., the volumetric object is cut into slices 
that are rendered always parallel to the image plane 
[10, 11]. 

Several techniques of compressed volume 
rendering that can be found in the literature rely on 
storing the compressed volume data in a memory 
space different from the GPU (as the CPU main 
memory or a hard disk) [12, 13]. These out of-core 
techniques require transfer decompressed portions of 
the volume to the GPU memory before they can be 
rendered. Their performance is limited, at least, by 
the transfer rate of the PCI bus (e.g., 8 GB/s for 
PCIe 2.0). 

A wide variety of approaches have been 
developed to build a compact representation of the 
data. In volume rendering, these solutions are 
usually asymmetric, i.e., the original dataset is 
decomposed and compressed in an off-line process 
which is executed only once without execution time 
constraints, while the decompression and 
visualization processes are executed in real time. 
Common methods for data compression may involve 
applying wavelet transforms [2, 3], vector 
quantization [4-6], or a multiscale tensor 
approximation [7]. For a survey on compressed 
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GPU-based volume rendering, we refer the reader 
to [8]. 

In this work, we have used a wavelet transform to 
compress the volume into a compact hierarchical 
form. We have selected the Haar wavelet, as it is 
computationally simple and very effective for fast 
reconstruction. Most of the coefficients of this 
transform are computed as sample-to-sample 
differences of the original volume data. This means 
that these coefficients will be of a small magnitude, 
or even zero, and therefore can be neglected without 
any significant loss of information. Our encoding 
scheme, a generalization of [2], benefits from this 
characteristic to obtain a more compact format of the 
compressed volume. 

In this paper, we present a solution that stores the 
volume in the GPU memory in its compressed form. 
We couple decompression and rendering by dividing 
the volume in bricks which are processed one at a 
time, benefiting from the higher transfer rate of the 
GPU memory bus (192.4 GB/s in an NVIDIA 
GTX 580). Additionally, as our encoding scheme 
uses a wavelet transform, it supports decompressing 
bricks at different levels of resolution. The final 
rendering is executed using the texture mapping 
technique. We have obtained high speedups for the 
CUDA implementation of the steps of the algorithm. 
The complete system performs at an interactive and 
stable frame rate independent of the viewport size, 
while keeping a good compression ratio with a high 
visualization quality. This work is an extension 
of [9] where the rendering system was presented.  

The rest of this paper is organized as follows. 
Section 2 describes the GPU architecture. Section 3 
examines the design of our GPU-based system for 
compressed volume rendering. Section 4 analyzes 
the experimental results and compares our 
implementation to other similar works. Finally, 
Section 5 concludes discussing the main 
contributions and future work. 

 
2. GPU ARCHITECTURE 

GPUs are programmable architectures consisting 
of several many-core processors capable of running 
hundreds of thousands of threads concurrently. In 
this section we present a brief overview on the Fermi 
GPU architecture [15], which we have used  
to test our implementation of a GPU volume-
rendering system.  

NVIDIA’s CUDA architecture [16] consists of a 
huge number of cores (or streaming processors, 
SPs), grouped into a set of streaming 
multiprocessors (SMs), with a very high memory 
bandwidth. As an example of this architecture, the 
GeForce GTX 580 has 16 SMs with 32 SPs each, 
resulting in 512 cores. 

The programming model encourages a fine-
grained level of parallelism within the single 
program multiple data (SPMD) paradigm [17]. A 
CUDA program (called kernel) is run by a grid of 
threads, which are grouped in thread blocks. 
Programmers can configure the size and distribution 
of the grid to their convenience and according to the 
requirements of the tasks to compute. 

The architecture features several memory spaces. 
The global memory and texture memory spaces are 
accessible by the GPU, and also by the CPU through 
the PCI bus. Other memory spaces are located inside 
the chip, and provide a much lower latency: a read-
only constant memory, a shared memory (which is 
private for each SM), a texture cache and, finally, a 
two-level cache that is used to speed up accesses to 
the global memory. 

Coordination between threads within a kernel is 
achieved through synchronization barriers. 
However, as thread blocks run independently from 
all others, their scope is limited to the threads within 
the thread block. 

 
3. THE RENDERING SYSTEM 

Our solution involves two different stages: 
compression and visualization. The compression is 
executed on the CPU to preprocess the data 
generating the compressed volume from the  
original dataset. 

The visualization stage runs on the GPU, and 
shows on the screen the reconstructed volume with 
different resolution levels depending on the distance 
to the camera. The visualization stage consists of 
two steps: a reconstruction of the volume followed 
by the rendering itself. This process is performed 
brick by brick with the required level of 
decompression for each brick.  

Fig. 1 shows the different data structures used in 
this implementation. The original volume data is 
divided into bricks and each brick is divided into 
blocks of 16 × 16 × 16 elements. In the example 
shown in the figure a brick contains 2 × 2 × 2 
blocks. Each block is divided into cells, each cell 
containing 4 × 4 × 4 elements. Finally, a chunk 
contains a group of 2 × 2 × 2 elements. 

 

 

Fig. 1 – Data structures used in the rendering system. 

 
Our compression algorithm requires reorganizing 

the volume data into smaller structures called 
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blocks, cells and chunks. For example, the wavelet 
transform that is applied to blocks processes data in 
a chunk basis. During the visualization stage, the 
volume is considered to be divided in bricks, which 
are processed individually. 

The different steps of the initial compression and 
the later visualization stages will be described in the 
next subsections. 

 

3.1. Compression 

The compression stage is the preprocessing that 
takes place before the visualization process. Fig. 2 
shows the different steps performed during this 
stage, and the data generated at each step. First, a 
wavelet transform is applied to the volumetric data. 
Afterwards, the wavelet coefficients are quantized to 
restrict the values to a limited number of 
possibilities. The quantization step scales down the 
coefficients obtained by the wavelet transform, 
nullifying those with a close-to-zero value, so losing 
information. Finally, the encoding step generates the 
compressed volume data, which is stored later in the 
hard disk. All these steps are executed on the CPU. 

 

 

Fig. 2 – Compression steps over the original volume. 

 
The wavelet transform step applies a wavelet-

transform operator to blocks of 16 × 16 × 16 
elements using a Haar filter. Our CPU 
implementation is similar to other solutions that can 
be found in the literature [2]. The transform is 
recursively applied to each block, generating bands 
of coefficients. 

Fig. 3 shows how the wavelet transform 
generates the coefficients for a 16 × 16 × 16 block, 
which are then grouped in eight bands. These bands 
are labeled from LLL to HHH. 

The LLL band contains the average coefficients, 
and the detail coefficients are stored in the 
remaining bands. The transform is recursively 
applied to the LLL band, generating new levels  
of subbands until we get four levels  
of transform. These levels are the basis of the 
multiresolution system. 

To avoid any data loss during the wavelet 
application the coefficients are preserved without 
modifications. This means that the magnitude of the 
coefficients (specially the low-frequency ones) 

grows each time the transform is applied. This 
approach increases the storage requirements but 
guarantees that the only source of data loss is in the 
later quantization step. 

 

 

Fig. 3 – The result of applying a 4-level wavelet 

transform to a 16 × 16 × 16 block of data. 

 
Quantization is a lossy compression technique 

that reduces the range of the values of the 
compressed dataset [18]. In our implementation we 
have chosen a scalar quantization solution with 
fixed-rate coding that removes the least significant 
bits of the coefficients obtained from the previous 
wavelet transform. This quantization reduces the 
magnitude of the coefficients, and nullifies those 
with a close-to-zero value. The quantization level 
must be decided according to the compression 
quality, where not only the compression ratio, but 
also the signal to noise ratio are considered. 

The encoding step converts the resulting 
volumetric data from the wavelet-transform and 
quantization steps into its final compressed form 
following a compromise between good compression 
ratio and fast random access. 

Fig. 4 shows the main data structures used in this 
step and their meaning. The cell-tag table array 
stores a cell-tag table for each block in the volume. 
A cell-tag table contains two-byte tags labeling each 
cell in a block. The most significant byte stores the 
width in bytes of the coefficients in the cell (or zero 
for a null cell), and the less significant byte stores 
the index of the significance map for the cell. The 
significance map array contains a bitmap for each 
non-null cell in the volume. This bitmap is used to 
flag coefficients in the cells as zero or nonzero. 
Although it has not been represented in Fig. 4, it is 
also necessary to store an offset value for each cell. 
It is stored in 8 bytes (long integer) and contains the 
corresponding non-null coefficient array.  

Finally, four arrays store all the non-null 
coefficients from the transformed volume data. Each 
coefficient is stored in an array depending on its 
width in bytes. This encoding supports coefficients 
of up to four bytes.  

Our encoding solution increases the flexibility of 
the implementation presented in [2], which was 
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limited to 4 × 4 × 4-cell blocks. Two-byte cell tags 
enable using bigger blocks, so more resolution levels 
could be supported, as the maximum number or 
recursive wavelet transforms that can be applied is 
restricted by the size of the block. 

 

 

Fig. 4 – Structure of the encoded data. 

 

3.2. Visualization 

The visualization stage is responsible of 
reconstructing the compressed volume on the GPU 
(decoding and inverse wavelet transform 
computation) and rendering it on the screen. Fig. 5 
shows the different steps that take place in this stage. 
The volume is processed brick by brick. 

First, a brick is selected from the compressed 
volume and reconstructed at a specific level of 
resolution. This reconstruction involves the steps of 
decoding and inverse transform, which have been 
implemented in CUDA kernels, and hence, run on 
the GPU. The restored brick data are stored in an 
OpenGL Pixel Buffer Object (PBO), and then 
copied into a texture buffer to be mapped onto a 
proxy geometry. These operations including the final 
rasterization are implemented using the OpenGL 
API. The process continues with another brick until 
the complete volume has been rendered. 

 

 

Fig. 5 – Visualization system for decompressing and 
rendering the volume data. 

The visualization process is performed brick by 
brick. In each frame, the CPU decides in which 
order bricks should be reconstructed according to the 
position of the camera. A back-to-front order is 
maintained to guarantee a correct composition of  
the bricks. 

For each brick, depending on its distance to the 
camera, the CPU chooses a resolution level. Bricks 
that are close to the camera are rendered at the 
highest level. Bricks that are far from the camera do 
not contribute to the final result as much as the 
closer ones, so in order to speed up the whole 
process they are rendered at a lower level of 
resolution. 

As stated earlier, two CUDA kernels execute the 
steps of decoding and inverse transform required to 
decompress the brick data in order to reconstruct the 
whole volume. The decompressed data are stored in 
a PBO, which can be accessed by the CUDA and 
OpenGL functions. 

To complete the visualization, an OpenGL call 
copies the brick data from the PBO into a texture 
buffer. Then, the CPU orders the construction of the 
proxy geometry using several OpenGL calls. This 
proxy geometry contains the slices where the brick 
texture is mapped onto. 

Depending on the resolution level, the texture 
might not completely fill the available space in the 
texture buffer. That is, the highest resolution level 
uses the complete texture space, but low-resolution 
textures require only a small portion of that space. 
This means that the texture coordinates assigned to 
each vertex of the proxy geometry must be adjusted 
to the real texture size according to the resolution 
level chosen for the current brick. 

Analyzing each step of the visualization stage 
more in detail, first we have to pay attention to the 
decoding step. The process of decoding is performed 
in a kernel on the GPU. This kernel reads the 
compressed data of the brick from the compressed 
volume stored in the GPU global memory and writes 
the decoded data in a previously allocated buffer (to 
be later processed by the inverse wavelet transform). 
Each data block in the brick is assigned to a thread 
block, where each thread processes a cell (whose 
size is 4 × 4 × 4 in our implementation). 

The decoding process is as follows. Each thread 
starts by determining if its cell is non-null or not, as 
indicated by the cell tag associated to the cell. If the 
cell is non-null, the data reconstruction begins. The 
thread loops through the elements of the cell, and 
tries to load them from the arrays of non-null 
coefficients in the compressed volume (see Fig. 4) 
accessing the information stored in the significance-
map of the cell and considering the offset value for 
the cell. If the cell’s significance map identifies a 
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coefficient as non-null, its value is stored as is in the 
buffer in global memory, otherwise a zero is written. 

For each brick, data from the different blocks are 
initially interleaved in global memory attending to 
their absolute position in the brick. In order to 
increase the spatial locality of memory accesses, the 
decoded data are contiguously stored in global 
memory in a blockwise fashion. Our proposal 
arranges the data of each block together to reduce 
the time spent in memory accesses when the inverse 
wavelet transform is computed.  

Once the decoding kernel has finished, another 
kernel performs an inverse wavelet transform on the 
GPU to restore the brick contents. Each data block 
in the brick is assigned to a thread block depending 
on its identifier, and each thread processes a chunk 
of 2 × 2 × 2 voxels although this could be modified 
with minor changes in the implementation. 

The inverse transform is a recursive process, and 
it is applied until the desired level of resolution is 
achieved. The resulting coefficients of processing a 
level of resolution are stored in shared memory, 
where this data will be available to compute the next 
level of resolution. When the desired level is 
reached, these coefficients are copied from shared 
memory into the OpenGL PBO. In the case of 
processing the highest level of resolution, the 
coefficients are directly stored in the PBO, 
bypassing the shared memory and consequently 
reducing its impact on the memory load. 

When storing data in the PBO, the positions 
where data are placed are determined by the 
identifiers of the thread block and the current 
resolution level. For low resolution levels, the data 
generated by each thread block are grouped in order 
to avoid chunks of data scattered in the PBO. 

Fig. 6 shows how a 32 × 32 × 32 restored brick is 
stored in the PBO for different levels of resolution.  

 
 

 

Fig. 6 – Storing data from shared memory into the 
PBO for different resolutions. 

4. RESULTS 

4.1. NUMERICAL RESULTS 

We performed our tests on a machine consisting 
on a CPU multicore and a GPU. The CPU is an Intel 
Core 2 Quad Q9450 with four cores at 2.66 GHz and 
6 GB of RAM. The GPU is a NVIDIA GeForce 
GTX 580 with 16 SMs of 32 SPs each featuring a 
total of 512 processor cores operating at a clock rate 
of 1.544 GHz, and with 1.5 GB of global memory. 
Each SM has 64 kB of RAM with a configurable 
partitioning of shared memory and L1 cache (16 kB 
of shared memory and 48 kB of L1 cache, or vice 
versa). Additionally, a unified L2 cache of 768 kB is 
available for all SMs [16].  

We compiled the code using the NVIDIA nvcc 
compiler provided within the CUDA 4.0 toolkit and 
the gcc version 4.4.3 under Linux. 

Table 1 details the different datasets used in this 
work that can be considered as representative 
instances of volumes obtained from organic tissues 
and synthetic materials The BrainWeb dataset was 
obtained at the BrainWeb Simulated Brain 
Database [19]. ModelHead corresponds to a 
volumetric CT of a synthetic model of the human 
head, whereas RealHead is volumetric dataset of a 
real human head obtained with an MRI technique. 
The last two volumes, A80 and Knee-001, were 
obtained through segmentation using a GPU-
accelerated level-set segmentation algorithm on two 
datasets comprising contrast-enhanced CT images. 
In the case of A80 the dataset corresponds to several 
brain vessel images that presented some observable 
cases of aneurysms. Knee-001 corresponds to a knee 
image. Fig. 7 shows renderings from the datasets 
using our solution. 

 

Table 1. Datasets used in this work considering  
that in all the cases the number of bytes per voxel is 2. 

Name Size File Size 

RealHead 160 × 512 × 512 80 MB 

Brainweb 256 × 256 × 181 23 MB 

ModelHead 512 × 512 × 348 174 MB 

A80 512 × 512 × 512 256 MB 

Knee-001 256 × 256 × 256 32 MB 

 
4.2. QUALITY ANALYSIS AND STORAGE 
REQUIREMENTS 

We have measured the quality of the proposed 
decoding implementation with the volumes 
described in Table 1. Tables 2 and 3 show the values 
obtained for the BrainWeb and ModelHead datasets 
for different levels of quantization. 
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Fig. 7 – Volume rendering of the test datasets. From left to right and from top to bottom: RealHead, BrainWeb, 
ModelHead, A80 and Knee-001. 

 
Quality is measured here in terms of compression 

ratio, mean squared error (MSE) and peak signal-to-
noise ratio (PSNR). A quantization level 
corresponds to removing a specific number of least 
significant bits from the coefficients of the wavelet 
transform (see Section 3.1.2). Eleven different 
quantization levels are considered in the 
experiments, as indicated in the table. 

Generally, a value of PSNR above 60 is 
considered good, so we have chosen a quantization 
level of 8 bits in our tests to measure performance of 
the complete GPU volume rendering system (see 
below). We noticed that changing the number of bits 
removed during quantization did not significantly 
affect the performance measured in terms of 
execution times, however it does severely affect the 
storage requirements as it was explained in 
Section 4.1. 

The compressed volume is stored in different 
data structures that were detailed in section 3.2 and 
shown in Fig. 4. Considering the implementation 
issues it can be concluded that the nine integer 
arrays that will be detailed in the next paragraphs are 
required in order to store the compressed volume.  

The cell tags for the cells in the volume are 
stored in a 2-byte integer array. In addition, for each 
non-null cell a significance map is generated, so the 
indices of the maps, the maps themselves and the 

offsets to access the coefficients are stored in three 
8-byte integer arrays.  

 

Table 2. Compression quality for different levels  
of quantization for the BrainWeb dataset. 

#  
bits 

Compr. 
volume 

size (MB) 

Compress. 
ratio 

MSE PSNR 

0 25.52 1 : 0.89 0.00 ∞ 
1 25.10 1 : 0.90 0.45 99.77 
2 18.92 1 : 1.20 0.72 97.75 
3 16.81 1 : 1.35 2.28 92.76 
4 14.85 1 : 1.52 8.84 86.86 
5 13.25 1 : 1.71 35.34 80.85 
6 11.41 1 : 1.98 137.92 74.93 
7 8.63 1 : 2.62 509.06 69.26 
8 5.57 1 : 4.06 1614.11 64.25 
9 2.89 1 : 7.83 3488.04 60.90 
10 1.81 1 : 12.50 6628.75 58.12 
11 1.15 1 : 19.67 12135.79 55.49 

 
All the non-zero coefficients are stored in four 

byte arrays. These arrays contain as many bytes  
as required by the non-null coefficients of  
different lengths. 

Finally one more 8-byte pointer array per brick is 
required in order to store the indices of the non-null 
blocks in the brick. 



Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307 

 

 304

Table 3. Compression quality for different levels  
of quantization for the ModelHead dataset. 

#  
bits 

Compr. 
volume 

size (MB) 

Compress. 
ratio 

MSE PSNR 

0 111.82  1 : 1.56 0.00 ∞ 

1 89.08 1 : 1.95 0.45 99.79 

2 64.35 1 : 2.70 0.63 98.31 

3 45.87 1 : 3.79 1.34 95.05 

4 33.02 1 : 5.27 3.25 91.21 

5 23.95 1 : 7.27 8.58 87.00 

6 17.74 1 : 9.81 23.81 82.56 

7 13.09 1 : 13.29 66.71 78.09 

8 9.57 1 : 18.18 187.64 73.60 

9 7.08 1 : 25.48 504.59 69.30 

10 5.29 1 : 32.89 1320.25 65.12 

11 3.82 1 : 45.55 3117.75 61.39 

 
For the ModelHead image in Table 1 whose size 

is 512 × 512 × 348 voxels with 2 bytes/voxel, i.e. a 
volume of 174 MB, and considering a brick size of 
128 × 128 × 128, 16 × 16 × 16 blocks and 4 × 4 × 4 
cells, and a quantization level of 8 bits, the size 
required to store the compressed volume is 9.57 MB. 
This size could be reduced, as it can be observed in 
Table 3, if a higher level of quantization is selected, 
thus loosing quality in the visualized image. 

 
4.3. PERFORMANCE ANALYSIS 

In order to evaluate the performance we focus on 
the GPU implementation of the different steps of the 
rendering system. In particular, we have measured 
execution times and speedups of the decoding and 
inverse-transform kernels compared to the CPU 
implementations. Then, we executed the complete 
system on the GPU and took measures of execution 

time for each step and of FPS for the whole system 
varying the volume size and brick size parameters. 

Regarding the speedup measurements, we focus 
on the implementations of the decoding and the 
inverse-transform steps implemented in CUDA. 
Table 4 shows the results we have obtained for 
different volume sizes that were constructed from 
the RealHead dataset and considering average 
values for only one brick. High speedups are 
obtained for both kernels, especially for the inverse 
transform. For both algorithms, the speedup 
increases with the volume size, as the computational 
capabilities of the GPU are better exploited when the 
number of working threads is larger. 

We also evaluate the performance of the whole 
visualization process on GPU showing the execution 
times for each step and the frames per second (FPS) 
obtained. Table 5 shows the performance for two of 
the datasets whose sizes are described in Table 1 
using different brick sizes. As for the other 
experiments the total time per brick is calculated and 
multiplied by the number of non-null bricks (the null 
ones do not require computations) obtaining the total 
time (“Total" in the Tables). The FPS value is 
directly calculated from this value. From Table 1, 
we see that, in general, the larger the brick size, the 
better the performance obtained. Generally, 
incrementing the brick size increases the time 
required to process a brick, but reduces the number 
of bricks, resulting in a lower time to complete  
a frame.  

Table 6 details results for the A80 and Knee-001 
datasets. In these cases there are empty bricks in the 
volumes, i.e. bricks that do not require computation. 
So, the number of non-null bricks are also specified 
in the table and considered in the computation of the 
time per frame (“Total” in the Table). As in Table 5, 
for the same volume bigger bricks sizes require 
smaller number of bricks and, therefore, smaller 
execution times and higher FPS rates. 

 

Table 4. Execution times in seconds and speedups respect to the CPU implementation of the decoding  
and inverse-transform kernels operating on a single brick of the RealHead image for different brick sizes. 

Kernel  64 × 64 × 64 128 × 128 × 128 256 × 256 × 256 

Decoding 

 

GPU 

CPU 

Speedup 

0.000077 

0.003173 

41.2x 

0.000196 

0.024237 

123.7x 

0.001205 

0.207878 

172.5x 

Inverse Transf. GPU 

CPU  

Speedup 

0.000027 

0.009205 

340.0x 

0.000192 

0.069018 

352.6x 

0.001526 

0.557935 

365.6x 
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Table 5. Execution times (seconds) and calculated FPS for the steps of the GPU rendering system varying  
the brick size and considering the RealHead, BrainWeb and ModelHead volumes. All the bricks are non-null. 

Dataset Brick 
Size 

# of 
bricks 

Decode 
per brick 
(CUDA) 

Inv. Transf. 
per brick 
(CUDA) 

Copy  
per brick 
(OpenGL) 

Render 
per brick 
(OpenGL) 

Total 
per brick 

Total FPS 

RealHead 643 

1283 

2563 

192 
32 
4 

0.000077 
0.000196 
0.001205 

0.000027 
0.000192 
0.001526 

0.000016 
0.000023 
0.000038 

0.000382 
0.000699 
0.001546 

0.000502 
0.001110 
0.004315 

0.0963 
0.0355 
0.0172 

10 
28 
57 

BrainWeb 643 

1283 

2563 

48 
8 
1 

0.000081 
0.000226 
0.001571 

0.000027 
0.000191 
0.001534 

0.000016 
0.000023 
0.000038 

0.000726 
0.001188 
0.002282 

0.000850 
0.001628 
0.005425 

0.0408 
0.0132 
0.0054 

24 
75 
184 

ModelHead 643 

1283 

2563 

384 
48 
8 

0.000075 
0.000215 
0.001206 

0.000027 
0.000192 
0.001524 

0.000016 
0.000023 
0.000037 

0.000529 
0.000940 
0.001559 

0.000647 
0.001369 
0.004326 

0.2484 
0.0657  
0.0346 

4 
15 
29 

 

Table 6. Execution times (second)s and calculated FPS for the steps of the GPU rendering system using A80  
and Knee-001 datasets and varying the brick size. The number of non-null bricks is also specified. 

Dataset Brick 
Size 

# of  
bricks/ 

non-null 
bricks 

Decode  
per brick 
(CUDA) 

Inv.  
Transf. 

per brick 
(CUDA) 

Copy  
per brick 
(OpenGL) 

Render 
per brick 
(OpenGL) 

Total 
per brick 

Total FPS 
 

A80 
 

323 

643 

1283 

2563 

5123 

4096/531 
512/129 
64/31 
8/7 
1/1 

0.000062 
0.000055 
0.000060 
0.000139 
0.000819 

0.000011 
0.000009 
0.000023 
0.000088 
0.000564 

0.000013 
0.000016 
0.000023 
0.000037 
0.000061 

0.000246 
0.000451 
0.000819 
0.001565 
0.002624 

0.000332 
0.000531 
0.000925 
0.001829 
0.004068 

0.176 
0.068 
0.029 
0.013 
0.004 

5 
14 
34 
76 
250 

Knee-001 323 

643 

1283 

2563 

512/115 
64/29 
8/8 
1/1 

0.000060 
0.000048 
0.000058 
0.000240 

0.000012 
0.000013 
0.000030 
0.000226 

0.000013 
0.000017 
0.000023 
0.000037 

0.000431 
0.000806 
0.001531 
0.002981 

0.000516 
0.000884 
0.001642 
0.003484 

0.059 
0.026 
0.013 
0.003 

16 
38 
76 
333 

 

4.4. COMPARISON TO OTHER WORKS 
To the best of our knowledge, this is the first 

GPU implementation of a decompression scheme 
based on [2]. 

The authors reported their solution required, at 
best, nearly 10 seconds to reconstruct a volume of 
512 × 512 × 512 elements on CPU. This includes 
both the decoding step and the inverse transform 
step. For a brick of the same size, Table 4 shows a 
performance between 15 and 20 milliseconds for 
both steps on the GPU. 

Our inverse wavelet transform compares 
favorably with other GPU implementations in the 
literature. In a recent work [20], the performance of 
a 3D fast wavelet transform was measured on a GPU 
processing 64 frames of a video at different 
resolutions, requiring 6.8 ms for a 512 × 512 video, 
and 13.4 ms for a 1024 × 1024 video. This 
implementation performed a one-level transform 
using a Daubechies D4 wavelet [21]. To compare 
these results, we have measured the performance of 
our inverse-transform kernel for a single level 
instead of four. Processing a brick of size 
256 × 256 × 256, which is exactly the same size as 
the former video, requires 1 ms in our solution. A 
512 × 512 × 512 brick, which is twice the size of the 
latter video, requires 7 ms. 

The performance of the GPU decompression and 
rendering system is also competitive with similar 
solutions in the literature. A scheme based on the 
Karhunen-Loève transform [22] is presented in [1]. 
Compression is performed on CPU using a vector 
quantization approach that preserves the coefficients 
from blocks containing the most relevant edges. 
Visualization is achieved in a two-pass render, the 
first one devoted to decompress several slices of 
data, and the second one to the actual rendering. A 
512 × 512 × 512 is rendered at a rate between 6 and 
11 FPS, depending on the size of the viewport. For a 
volume with a similar size (ModelHead), our 
solution achieves 29 FPS without the size of the 
viewport affecting significantly. 

Finally, a solution based on the S3 texture 
compression algorithm (also known as DXT) [23] 
was introduced in [24] for time-varying 3D datasets. 
The reconstruction of the compressed volume data is 
embedded into a programmable shader, and up to 
three frames are compressed into the RGB channels 
of a texture. The authors show results for a volume 
of size 400 × 600 × 400 visualized at 35 FPS. 
Although this performance is slightly higher than 
our solution’s, our compression scheme provides 
better results in terms of quality, with a greater 
PSNR for a similar compression ratio. 



Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307 

 

 306

5. CONCLUSIONS 

In this work we have presented a GPU solution 
for decompressing and visualizing 3D datasets using 
a multiresolution rendering scheme. A previous 
compression stage based on wavelets, and performed 
in the CPU, is required. The selection of the 
quantization level applied to the wavelet coefficients 
is the factor that decides the compression rate and 
the SPNR value of the compressed volume. A 
tradeoff value of 8 bits is selected for the 
quantization level.  

The GPU stores the compressed version of the 
original volume. Our GPU solution processes the 
compressed volume in 3D data pieces called bricks. 
For each brick a level of resolution is selected 
depending on its distance to the camera, and the 
brick data are decompressed up to that level. 

The decompression involves decoding and 
computing the inverse wavelet transform of the data. 
Both steps are implemented in CUDA, so they are 
executed within the GPU. Unlike other out-of-core 
techniques, communication between CPU and GPU 
is minimal, avoiding the bottleneck that the PCI bus 
between both is. As we apply four levels of wavelet, 
our approach supports up to four different levels of 
resolution (five including the original one). 

The visualization is carried out using the texture 
mapping technique. The decompressed brick data is 
copied into an OpenGL texture buffer and mapped 
onto a proxy geometry composed of several parallel 
polygonal slices. The GPU rasterizes the geometry 
by blending the slices to produce the final image. 

The solution has been tested with five medical 
datasets obtaining competitive results compared to 
other recent GPU implementations of compressed 
volume rendering. The refresh rates obtained are 
competitive, the PSNR values are greater than 60, 
and a compression ratio between 1:4 and 1:18 for 
volume sizes in the range between 643 and 2563 is 
obtained. A higher quantization level, that could 
give enough quality for some applications, would 
increase the compression rate of the solution at the 
cost of worsening these quality parameters.  

As future work, we plan to extend our solution to 
larger datasets, including datasets that do not fit 
inside the GPU memory. For these cases, empty-
space–skipping techniques are essential to identify 
bricks in the volume that do not add essential 
information to the final rendering in order to keep an 
interactive refresh rate. 
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