
Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 298

MULTIRESOLUTION RENDERING BASED ON GPGPU COMPUTING

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras

CITIUS, University of Santiago de Compostela, Spain
{julian.lamas, francisco.arguello, dora.blanco}@usc.es

Abstract: The problem of visualizing large volumetric datasets is appealing for computation on the GPU. Nevertheless,
the design of GPU volume rendering solutions must deal with the limited available memory in a graphics card. In this
work, we present a system for multiresolution volume rendering which preprocesses the dataset dividing it into bricks
and generating a compressed version by applying different levels of compression based on wavelets. The compressed
volume is then stored in the GPU memory. For the later visualization process by texture mapping each brick of the
volume is decompressed and rendered with a different resolution level depending on its distance to the camera. This
approach computes most of the tasks in the GPU, thus minimizing the data transfers among CPU and GPU. We obtain
competitive results for volumes of size in the range between 643 and 2563. Copyright © Research Institute for
Intelligent Computer Systems, 2013. All rights reserved.

Keywords: compressed volume rendering, texture mapping, multiresolution rendering, wavelet transform, quantization,
CUDA, OpenGL.

1. INTRODUCTION

The evolution from graphics-specific accelerators
to programmable vector processors has made of
GPUs a standard platform for rendering volumetric
datasets. However, recent years have witnessed
significant improvements in the data acquisition
methods, and, as a result, the size of datasets has
increased. This poses a challenge given the limited
memory resources available in current graphics
hardware, and although each new GPU generation
expands its memory capacity, the current trend
shows that this problem will continue to exist in the
future [1]. In this context, compression stands as an
effective solution for processing increasingly larger
datasets in the GPU. The compression is usually
computed on a previously decomposed version of
the volume.

As it is usual in the context of volume rendering,
the volume is initially decomposed into a set of non-
overlapping blocks, usually called bricks, so a single
brick fits into the memory of the GPU. Bricks are
compressed with multiple levels of compression.
When the visualization process begins the bricks are
loaded and rendered one at a time. In our
implementation we use a single OpenGL 3D texture
buffer to store the contents of a brick of data, and
this buffer is reused every time a new brick is
processed. The final visualization is achieved
through texture mapping (also known as texture

slicing) [9], which, along with ray casting, is one of
the most popular methods to render volume data.

In this rendering technique, the 3D texture is
mapped onto a proxy geometry composed of planar
polygons that constitute camera-oriented translucent
slices, i.e., the volumetric object is cut into slices
that are rendered always parallel to the image plane
[10, 11].

Several techniques of compressed volume
rendering that can be found in the literature rely on
storing the compressed volume data in a memory
space different from the GPU (as the CPU main
memory or a hard disk) [12, 13]. These out of-core
techniques require transfer decompressed portions of
the volume to the GPU memory before they can be
rendered. Their performance is limited, at least, by
the transfer rate of the PCI bus (e.g., 8 GB/s for
PCIe 2.0).

A wide variety of approaches have been
developed to build a compact representation of the
data. In volume rendering, these solutions are
usually asymmetric, i.e., the original dataset is
decomposed and compressed in an off-line process
which is executed only once without execution time
constraints, while the decompression and
visualization processes are executed in real time.
Common methods for data compression may involve
applying wavelet transforms [2, 3], vector
quantization [4-6], or a multiscale tensor
approximation [7]. For a survey on compressed

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 299

GPU-based volume rendering, we refer the reader
to [8].

In this work, we have used a wavelet transform to
compress the volume into a compact hierarchical
form. We have selected the Haar wavelet, as it is
computationally simple and very effective for fast
reconstruction. Most of the coefficients of this
transform are computed as sample-to-sample
differences of the original volume data. This means
that these coefficients will be of a small magnitude,
or even zero, and therefore can be neglected without
any significant loss of information. Our encoding
scheme, a generalization of [2], benefits from this
characteristic to obtain a more compact format of the
compressed volume.

In this paper, we present a solution that stores the
volume in the GPU memory in its compressed form.
We couple decompression and rendering by dividing
the volume in bricks which are processed one at a
time, benefiting from the higher transfer rate of the
GPU memory bus (192.4 GB/s in an NVIDIA
GTX 580). Additionally, as our encoding scheme
uses a wavelet transform, it supports decompressing
bricks at different levels of resolution. The final
rendering is executed using the texture mapping
technique. We have obtained high speedups for the
CUDA implementation of the steps of the algorithm.
The complete system performs at an interactive and
stable frame rate independent of the viewport size,
while keeping a good compression ratio with a high
visualization quality. This work is an extension
of [9] where the rendering system was presented.

The rest of this paper is organized as follows.
Section 2 describes the GPU architecture. Section 3
examines the design of our GPU-based system for
compressed volume rendering. Section 4 analyzes
the experimental results and compares our
implementation to other similar works. Finally,
Section 5 concludes discussing the main
contributions and future work.

2. GPU ARCHITECTURE

GPUs are programmable architectures consisting
of several many-core processors capable of running
hundreds of thousands of threads concurrently. In
this section we present a brief overview on the Fermi
GPU architecture [15], which we have used
to test our implementation of a GPU volume-
rendering system.

NVIDIA’s CUDA architecture [16] consists of a
huge number of cores (or streaming processors,
SPs), grouped into a set of streaming
multiprocessors (SMs), with a very high memory
bandwidth. As an example of this architecture, the
GeForce GTX 580 has 16 SMs with 32 SPs each,
resulting in 512 cores.

The programming model encourages a fine-
grained level of parallelism within the single
program multiple data (SPMD) paradigm [17]. A
CUDA program (called kernel) is run by a grid of
threads, which are grouped in thread blocks.
Programmers can configure the size and distribution
of the grid to their convenience and according to the
requirements of the tasks to compute.

The architecture features several memory spaces.
The global memory and texture memory spaces are
accessible by the GPU, and also by the CPU through
the PCI bus. Other memory spaces are located inside
the chip, and provide a much lower latency: a read-
only constant memory, a shared memory (which is
private for each SM), a texture cache and, finally, a
two-level cache that is used to speed up accesses to
the global memory.

Coordination between threads within a kernel is
achieved through synchronization barriers.
However, as thread blocks run independently from
all others, their scope is limited to the threads within
the thread block.

3. THE RENDERING SYSTEM

Our solution involves two different stages:
compression and visualization. The compression is
executed on the CPU to preprocess the data
generating the compressed volume from the
original dataset.

The visualization stage runs on the GPU, and
shows on the screen the reconstructed volume with
different resolution levels depending on the distance
to the camera. The visualization stage consists of
two steps: a reconstruction of the volume followed
by the rendering itself. This process is performed
brick by brick with the required level of
decompression for each brick.

Fig. 1 shows the different data structures used in
this implementation. The original volume data is
divided into bricks and each brick is divided into
blocks of 16 × 16 × 16 elements. In the example
shown in the figure a brick contains 2 × 2 × 2
blocks. Each block is divided into cells, each cell
containing 4 × 4 × 4 elements. Finally, a chunk
contains a group of 2 × 2 × 2 elements.

Fig. 1 – Data structures used in the rendering system.

Our compression algorithm requires reorganizing

the volume data into smaller structures called

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 300

blocks, cells and chunks. For example, the wavelet
transform that is applied to blocks processes data in
a chunk basis. During the visualization stage, the
volume is considered to be divided in bricks, which
are processed individually.

The different steps of the initial compression and
the later visualization stages will be described in the
next subsections.

3.1. Compression

The compression stage is the preprocessing that
takes place before the visualization process. Fig. 2
shows the different steps performed during this
stage, and the data generated at each step. First, a
wavelet transform is applied to the volumetric data.
Afterwards, the wavelet coefficients are quantized to
restrict the values to a limited number of
possibilities. The quantization step scales down the
coefficients obtained by the wavelet transform,
nullifying those with a close-to-zero value, so losing
information. Finally, the encoding step generates the
compressed volume data, which is stored later in the
hard disk. All these steps are executed on the CPU.

Fig. 2 – Compression steps over the original volume.

The wavelet transform step applies a wavelet-

transform operator to blocks of 16 × 16 × 16
elements using a Haar filter. Our CPU
implementation is similar to other solutions that can
be found in the literature [2]. The transform is
recursively applied to each block, generating bands
of coefficients.

Fig. 3 shows how the wavelet transform
generates the coefficients for a 16 × 16 × 16 block,
which are then grouped in eight bands. These bands
are labeled from LLL to HHH.

The LLL band contains the average coefficients,
and the detail coefficients are stored in the
remaining bands. The transform is recursively
applied to the LLL band, generating new levels
of subbands until we get four levels
of transform. These levels are the basis of the
multiresolution system.

To avoid any data loss during the wavelet
application the coefficients are preserved without
modifications. This means that the magnitude of the
coefficients (specially the low-frequency ones)

grows each time the transform is applied. This
approach increases the storage requirements but
guarantees that the only source of data loss is in the
later quantization step.

Fig. 3 – The result of applying a 4-level wavelet

transform to a 16 × 16 × 16 block of data.

Quantization is a lossy compression technique

that reduces the range of the values of the
compressed dataset [18]. In our implementation we
have chosen a scalar quantization solution with
fixed-rate coding that removes the least significant
bits of the coefficients obtained from the previous
wavelet transform. This quantization reduces the
magnitude of the coefficients, and nullifies those
with a close-to-zero value. The quantization level
must be decided according to the compression
quality, where not only the compression ratio, but
also the signal to noise ratio are considered.

The encoding step converts the resulting
volumetric data from the wavelet-transform and
quantization steps into its final compressed form
following a compromise between good compression
ratio and fast random access.

Fig. 4 shows the main data structures used in this
step and their meaning. The cell-tag table array
stores a cell-tag table for each block in the volume.
A cell-tag table contains two-byte tags labeling each
cell in a block. The most significant byte stores the
width in bytes of the coefficients in the cell (or zero
for a null cell), and the less significant byte stores
the index of the significance map for the cell. The
significance map array contains a bitmap for each
non-null cell in the volume. This bitmap is used to
flag coefficients in the cells as zero or nonzero.
Although it has not been represented in Fig. 4, it is
also necessary to store an offset value for each cell.
It is stored in 8 bytes (long integer) and contains the
corresponding non-null coefficient array.

Finally, four arrays store all the non-null
coefficients from the transformed volume data. Each
coefficient is stored in an array depending on its
width in bytes. This encoding supports coefficients
of up to four bytes.

Our encoding solution increases the flexibility of
the implementation presented in [2], which was

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 301

limited to 4 × 4 × 4-cell blocks. Two-byte cell tags
enable using bigger blocks, so more resolution levels
could be supported, as the maximum number or
recursive wavelet transforms that can be applied is
restricted by the size of the block.

Fig. 4 – Structure of the encoded data.

3.2. Visualization

The visualization stage is responsible of
reconstructing the compressed volume on the GPU
(decoding and inverse wavelet transform
computation) and rendering it on the screen. Fig. 5
shows the different steps that take place in this stage.
The volume is processed brick by brick.

First, a brick is selected from the compressed
volume and reconstructed at a specific level of
resolution. This reconstruction involves the steps of
decoding and inverse transform, which have been
implemented in CUDA kernels, and hence, run on
the GPU. The restored brick data are stored in an
OpenGL Pixel Buffer Object (PBO), and then
copied into a texture buffer to be mapped onto a
proxy geometry. These operations including the final
rasterization are implemented using the OpenGL
API. The process continues with another brick until
the complete volume has been rendered.

Fig. 5 – Visualization system for decompressing and
rendering the volume data.

The visualization process is performed brick by
brick. In each frame, the CPU decides in which
order bricks should be reconstructed according to the
position of the camera. A back-to-front order is
maintained to guarantee a correct composition of
the bricks.

For each brick, depending on its distance to the
camera, the CPU chooses a resolution level. Bricks
that are close to the camera are rendered at the
highest level. Bricks that are far from the camera do
not contribute to the final result as much as the
closer ones, so in order to speed up the whole
process they are rendered at a lower level of
resolution.

As stated earlier, two CUDA kernels execute the
steps of decoding and inverse transform required to
decompress the brick data in order to reconstruct the
whole volume. The decompressed data are stored in
a PBO, which can be accessed by the CUDA and
OpenGL functions.

To complete the visualization, an OpenGL call
copies the brick data from the PBO into a texture
buffer. Then, the CPU orders the construction of the
proxy geometry using several OpenGL calls. This
proxy geometry contains the slices where the brick
texture is mapped onto.

Depending on the resolution level, the texture
might not completely fill the available space in the
texture buffer. That is, the highest resolution level
uses the complete texture space, but low-resolution
textures require only a small portion of that space.
This means that the texture coordinates assigned to
each vertex of the proxy geometry must be adjusted
to the real texture size according to the resolution
level chosen for the current brick.

Analyzing each step of the visualization stage
more in detail, first we have to pay attention to the
decoding step. The process of decoding is performed
in a kernel on the GPU. This kernel reads the
compressed data of the brick from the compressed
volume stored in the GPU global memory and writes
the decoded data in a previously allocated buffer (to
be later processed by the inverse wavelet transform).
Each data block in the brick is assigned to a thread
block, where each thread processes a cell (whose
size is 4 × 4 × 4 in our implementation).

The decoding process is as follows. Each thread
starts by determining if its cell is non-null or not, as
indicated by the cell tag associated to the cell. If the
cell is non-null, the data reconstruction begins. The
thread loops through the elements of the cell, and
tries to load them from the arrays of non-null
coefficients in the compressed volume (see Fig. 4)
accessing the information stored in the significance-
map of the cell and considering the offset value for
the cell. If the cell’s significance map identifies a

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 302

coefficient as non-null, its value is stored as is in the
buffer in global memory, otherwise a zero is written.

For each brick, data from the different blocks are
initially interleaved in global memory attending to
their absolute position in the brick. In order to
increase the spatial locality of memory accesses, the
decoded data are contiguously stored in global
memory in a blockwise fashion. Our proposal
arranges the data of each block together to reduce
the time spent in memory accesses when the inverse
wavelet transform is computed.

Once the decoding kernel has finished, another
kernel performs an inverse wavelet transform on the
GPU to restore the brick contents. Each data block
in the brick is assigned to a thread block depending
on its identifier, and each thread processes a chunk
of 2 × 2 × 2 voxels although this could be modified
with minor changes in the implementation.

The inverse transform is a recursive process, and
it is applied until the desired level of resolution is
achieved. The resulting coefficients of processing a
level of resolution are stored in shared memory,
where this data will be available to compute the next
level of resolution. When the desired level is
reached, these coefficients are copied from shared
memory into the OpenGL PBO. In the case of
processing the highest level of resolution, the
coefficients are directly stored in the PBO,
bypassing the shared memory and consequently
reducing its impact on the memory load.

When storing data in the PBO, the positions
where data are placed are determined by the
identifiers of the thread block and the current
resolution level. For low resolution levels, the data
generated by each thread block are grouped in order
to avoid chunks of data scattered in the PBO.

Fig. 6 shows how a 32 × 32 × 32 restored brick is
stored in the PBO for different levels of resolution.

Fig. 6 – Storing data from shared memory into the
PBO for different resolutions.

4. RESULTS

4.1. NUMERICAL RESULTS

We performed our tests on a machine consisting
on a CPU multicore and a GPU. The CPU is an Intel
Core 2 Quad Q9450 with four cores at 2.66 GHz and
6 GB of RAM. The GPU is a NVIDIA GeForce
GTX 580 with 16 SMs of 32 SPs each featuring a
total of 512 processor cores operating at a clock rate
of 1.544 GHz, and with 1.5 GB of global memory.
Each SM has 64 kB of RAM with a configurable
partitioning of shared memory and L1 cache (16 kB
of shared memory and 48 kB of L1 cache, or vice
versa). Additionally, a unified L2 cache of 768 kB is
available for all SMs [16].

We compiled the code using the NVIDIA nvcc
compiler provided within the CUDA 4.0 toolkit and
the gcc version 4.4.3 under Linux.

Table 1 details the different datasets used in this
work that can be considered as representative
instances of volumes obtained from organic tissues
and synthetic materials The BrainWeb dataset was
obtained at the BrainWeb Simulated Brain
Database [19]. ModelHead corresponds to a
volumetric CT of a synthetic model of the human
head, whereas RealHead is volumetric dataset of a
real human head obtained with an MRI technique.
The last two volumes, A80 and Knee-001, were
obtained through segmentation using a GPU-
accelerated level-set segmentation algorithm on two
datasets comprising contrast-enhanced CT images.
In the case of A80 the dataset corresponds to several
brain vessel images that presented some observable
cases of aneurysms. Knee-001 corresponds to a knee
image. Fig. 7 shows renderings from the datasets
using our solution.

Table 1. Datasets used in this work considering
that in all the cases the number of bytes per voxel is 2.

Name Size File Size

RealHead 160 × 512 × 512 80 MB

Brainweb 256 × 256 × 181 23 MB

ModelHead 512 × 512 × 348 174 MB

A80 512 × 512 × 512 256 MB

Knee-001 256 × 256 × 256 32 MB

4.2. QUALITY ANALYSIS AND STORAGE
REQUIREMENTS

We have measured the quality of the proposed
decoding implementation with the volumes
described in Table 1. Tables 2 and 3 show the values
obtained for the BrainWeb and ModelHead datasets
for different levels of quantization.

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 303

Fig. 7 – Volume rendering of the test datasets. From left to right and from top to bottom: RealHead, BrainWeb,
ModelHead, A80 and Knee-001.

Quality is measured here in terms of compression

ratio, mean squared error (MSE) and peak signal-to-
noise ratio (PSNR). A quantization level
corresponds to removing a specific number of least
significant bits from the coefficients of the wavelet
transform (see Section 3.1.2). Eleven different
quantization levels are considered in the
experiments, as indicated in the table.

Generally, a value of PSNR above 60 is
considered good, so we have chosen a quantization
level of 8 bits in our tests to measure performance of
the complete GPU volume rendering system (see
below). We noticed that changing the number of bits
removed during quantization did not significantly
affect the performance measured in terms of
execution times, however it does severely affect the
storage requirements as it was explained in
Section 4.1.

The compressed volume is stored in different
data structures that were detailed in section 3.2 and
shown in Fig. 4. Considering the implementation
issues it can be concluded that the nine integer
arrays that will be detailed in the next paragraphs are
required in order to store the compressed volume.

The cell tags for the cells in the volume are
stored in a 2-byte integer array. In addition, for each
non-null cell a significance map is generated, so the
indices of the maps, the maps themselves and the

offsets to access the coefficients are stored in three
8-byte integer arrays.

Table 2. Compression quality for different levels
of quantization for the BrainWeb dataset.

bits

Compr.
volume

size (MB)

Compress.
ratio

MSE PSNR

0 25.52 1 : 0.89 0.00 ∞
1 25.10 1 : 0.90 0.45 99.77
2 18.92 1 : 1.20 0.72 97.75
3 16.81 1 : 1.35 2.28 92.76
4 14.85 1 : 1.52 8.84 86.86
5 13.25 1 : 1.71 35.34 80.85
6 11.41 1 : 1.98 137.92 74.93
7 8.63 1 : 2.62 509.06 69.26
8 5.57 1 : 4.06 1614.11 64.25
9 2.89 1 : 7.83 3488.04 60.90
10 1.81 1 : 12.50 6628.75 58.12
11 1.15 1 : 19.67 12135.79 55.49

All the non-zero coefficients are stored in four

byte arrays. These arrays contain as many bytes
as required by the non-null coefficients of
different lengths.

Finally one more 8-byte pointer array per brick is
required in order to store the indices of the non-null
blocks in the brick.

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 304

Table 3. Compression quality for different levels
of quantization for the ModelHead dataset.

bits

Compr.
volume

size (MB)

Compress.
ratio

MSE PSNR

0 111.82 1 : 1.56 0.00 ∞

1 89.08 1 : 1.95 0.45 99.79

2 64.35 1 : 2.70 0.63 98.31

3 45.87 1 : 3.79 1.34 95.05

4 33.02 1 : 5.27 3.25 91.21

5 23.95 1 : 7.27 8.58 87.00

6 17.74 1 : 9.81 23.81 82.56

7 13.09 1 : 13.29 66.71 78.09

8 9.57 1 : 18.18 187.64 73.60

9 7.08 1 : 25.48 504.59 69.30

10 5.29 1 : 32.89 1320.25 65.12

11 3.82 1 : 45.55 3117.75 61.39

For the ModelHead image in Table 1 whose size

is 512 × 512 × 348 voxels with 2 bytes/voxel, i.e. a
volume of 174 MB, and considering a brick size of
128 × 128 × 128, 16 × 16 × 16 blocks and 4 × 4 × 4
cells, and a quantization level of 8 bits, the size
required to store the compressed volume is 9.57 MB.
This size could be reduced, as it can be observed in
Table 3, if a higher level of quantization is selected,
thus loosing quality in the visualized image.

4.3. PERFORMANCE ANALYSIS

In order to evaluate the performance we focus on
the GPU implementation of the different steps of the
rendering system. In particular, we have measured
execution times and speedups of the decoding and
inverse-transform kernels compared to the CPU
implementations. Then, we executed the complete
system on the GPU and took measures of execution

time for each step and of FPS for the whole system
varying the volume size and brick size parameters.

Regarding the speedup measurements, we focus
on the implementations of the decoding and the
inverse-transform steps implemented in CUDA.
Table 4 shows the results we have obtained for
different volume sizes that were constructed from
the RealHead dataset and considering average
values for only one brick. High speedups are
obtained for both kernels, especially for the inverse
transform. For both algorithms, the speedup
increases with the volume size, as the computational
capabilities of the GPU are better exploited when the
number of working threads is larger.

We also evaluate the performance of the whole
visualization process on GPU showing the execution
times for each step and the frames per second (FPS)
obtained. Table 5 shows the performance for two of
the datasets whose sizes are described in Table 1
using different brick sizes. As for the other
experiments the total time per brick is calculated and
multiplied by the number of non-null bricks (the null
ones do not require computations) obtaining the total
time (“Total" in the Tables). The FPS value is
directly calculated from this value. From Table 1,
we see that, in general, the larger the brick size, the
better the performance obtained. Generally,
incrementing the brick size increases the time
required to process a brick, but reduces the number
of bricks, resulting in a lower time to complete
a frame.

Table 6 details results for the A80 and Knee-001
datasets. In these cases there are empty bricks in the
volumes, i.e. bricks that do not require computation.
So, the number of non-null bricks are also specified
in the table and considered in the computation of the
time per frame (“Total” in the Table). As in Table 5,
for the same volume bigger bricks sizes require
smaller number of bricks and, therefore, smaller
execution times and higher FPS rates.

Table 4. Execution times in seconds and speedups respect to the CPU implementation of the decoding
and inverse-transform kernels operating on a single brick of the RealHead image for different brick sizes.

Kernel 64 × 64 × 64 128 × 128 × 128 256 × 256 × 256

Decoding

GPU

CPU

Speedup

0.000077

0.003173

41.2x

0.000196

0.024237

123.7x

0.001205

0.207878

172.5x

Inverse Transf. GPU

CPU

Speedup

0.000027

0.009205

340.0x

0.000192

0.069018

352.6x

0.001526

0.557935

365.6x

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 305

Table 5. Execution times (seconds) and calculated FPS for the steps of the GPU rendering system varying
the brick size and considering the RealHead, BrainWeb and ModelHead volumes. All the bricks are non-null.

Dataset Brick
Size

of
bricks

Decode
per brick
(CUDA)

Inv. Transf.
per brick
(CUDA)

Copy
per brick
(OpenGL)

Render
per brick
(OpenGL)

Total
per brick

Total FPS

RealHead 643

1283

2563

192
32
4

0.000077
0.000196
0.001205

0.000027
0.000192
0.001526

0.000016
0.000023
0.000038

0.000382
0.000699
0.001546

0.000502
0.001110
0.004315

0.0963
0.0355
0.0172

10
28
57

BrainWeb 643

1283

2563

48
8
1

0.000081
0.000226
0.001571

0.000027
0.000191
0.001534

0.000016
0.000023
0.000038

0.000726
0.001188
0.002282

0.000850
0.001628
0.005425

0.0408
0.0132
0.0054

24
75
184

ModelHead 643

1283

2563

384
48
8

0.000075
0.000215
0.001206

0.000027
0.000192
0.001524

0.000016
0.000023
0.000037

0.000529
0.000940
0.001559

0.000647
0.001369
0.004326

0.2484
0.0657
0.0346

4
15
29

Table 6. Execution times (second)s and calculated FPS for the steps of the GPU rendering system using A80
and Knee-001 datasets and varying the brick size. The number of non-null bricks is also specified.

Dataset Brick
Size

of
bricks/

non-null
bricks

Decode
per brick
(CUDA)

Inv.
Transf.

per brick
(CUDA)

Copy
per brick
(OpenGL)

Render
per brick
(OpenGL)

Total
per brick

Total FPS

A80

323

643

1283

2563

5123

4096/531
512/129
64/31
8/7
1/1

0.000062
0.000055
0.000060
0.000139
0.000819

0.000011
0.000009
0.000023
0.000088
0.000564

0.000013
0.000016
0.000023
0.000037
0.000061

0.000246
0.000451
0.000819
0.001565
0.002624

0.000332
0.000531
0.000925
0.001829
0.004068

0.176
0.068
0.029
0.013
0.004

5
14
34
76
250

Knee-001 323

643

1283

2563

512/115
64/29
8/8
1/1

0.000060
0.000048
0.000058
0.000240

0.000012
0.000013
0.000030
0.000226

0.000013
0.000017
0.000023
0.000037

0.000431
0.000806
0.001531
0.002981

0.000516
0.000884
0.001642
0.003484

0.059
0.026
0.013
0.003

16
38
76
333

4.4. COMPARISON TO OTHER WORKS
To the best of our knowledge, this is the first

GPU implementation of a decompression scheme
based on [2].

The authors reported their solution required, at
best, nearly 10 seconds to reconstruct a volume of
512 × 512 × 512 elements on CPU. This includes
both the decoding step and the inverse transform
step. For a brick of the same size, Table 4 shows a
performance between 15 and 20 milliseconds for
both steps on the GPU.

Our inverse wavelet transform compares
favorably with other GPU implementations in the
literature. In a recent work [20], the performance of
a 3D fast wavelet transform was measured on a GPU
processing 64 frames of a video at different
resolutions, requiring 6.8 ms for a 512 × 512 video,
and 13.4 ms for a 1024 × 1024 video. This
implementation performed a one-level transform
using a Daubechies D4 wavelet [21]. To compare
these results, we have measured the performance of
our inverse-transform kernel for a single level
instead of four. Processing a brick of size
256 × 256 × 256, which is exactly the same size as
the former video, requires 1 ms in our solution. A
512 × 512 × 512 brick, which is twice the size of the
latter video, requires 7 ms.

The performance of the GPU decompression and
rendering system is also competitive with similar
solutions in the literature. A scheme based on the
Karhunen-Loève transform [22] is presented in [1].
Compression is performed on CPU using a vector
quantization approach that preserves the coefficients
from blocks containing the most relevant edges.
Visualization is achieved in a two-pass render, the
first one devoted to decompress several slices of
data, and the second one to the actual rendering. A
512 × 512 × 512 is rendered at a rate between 6 and
11 FPS, depending on the size of the viewport. For a
volume with a similar size (ModelHead), our
solution achieves 29 FPS without the size of the
viewport affecting significantly.

Finally, a solution based on the S3 texture
compression algorithm (also known as DXT) [23]
was introduced in [24] for time-varying 3D datasets.
The reconstruction of the compressed volume data is
embedded into a programmable shader, and up to
three frames are compressed into the RGB channels
of a texture. The authors show results for a volume
of size 400 × 600 × 400 visualized at 35 FPS.
Although this performance is slightly higher than
our solution’s, our compression scheme provides
better results in terms of quality, with a greater
PSNR for a similar compression ratio.

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 306

5. CONCLUSIONS

In this work we have presented a GPU solution
for decompressing and visualizing 3D datasets using
a multiresolution rendering scheme. A previous
compression stage based on wavelets, and performed
in the CPU, is required. The selection of the
quantization level applied to the wavelet coefficients
is the factor that decides the compression rate and
the SPNR value of the compressed volume. A
tradeoff value of 8 bits is selected for the
quantization level.

The GPU stores the compressed version of the
original volume. Our GPU solution processes the
compressed volume in 3D data pieces called bricks.
For each brick a level of resolution is selected
depending on its distance to the camera, and the
brick data are decompressed up to that level.

The decompression involves decoding and
computing the inverse wavelet transform of the data.
Both steps are implemented in CUDA, so they are
executed within the GPU. Unlike other out-of-core
techniques, communication between CPU and GPU
is minimal, avoiding the bottleneck that the PCI bus
between both is. As we apply four levels of wavelet,
our approach supports up to four different levels of
resolution (five including the original one).

The visualization is carried out using the texture
mapping technique. The decompressed brick data is
copied into an OpenGL texture buffer and mapped
onto a proxy geometry composed of several parallel
polygonal slices. The GPU rasterizes the geometry
by blending the slices to produce the final image.

The solution has been tested with five medical
datasets obtaining competitive results compared to
other recent GPU implementations of compressed
volume rendering. The refresh rates obtained are
competitive, the PSNR values are greater than 60,
and a compression ratio between 1:4 and 1:18 for
volume sizes in the range between 643 and 2563 is
obtained. A higher quantization level, that could
give enough quality for some applications, would
increase the compression rate of the solution at the
cost of worsening these quality parameters.

As future work, we plan to extend our solution to
larger datasets, including datasets that do not fit
inside the GPU memory. For these cases, empty-
space–skipping techniques are essential to identify
bricks in the volume that do not add essential
information to the final rendering in order to keep an
interactive refresh rate.

6. ACKNOWLEDGEMENTS

This work was supported in part by the Ministry
of Science and Innovation, Government of Spain,
and FEDER funds under contract TIN 2010-17541,
and by the Xunta de Galicia under contracts

08TIC001206PR and 2010/28. Julián Lamas-
Rodríguez acknowledges financial support from the
Ministry of Science and Innovation, Government of
Spain, under a MICINN-FPI grant.

7. REFERENCES

[1] N. Fout and K.-L. Ma. Transform coding for
hardware-acceleratedvolume rendering, IEEE
Transactions on Visualization and Computer
Graphics, (13) 6 (2007), pp. 1600-1607.

[2] I. Ihm and S. Park, Wavelet-based 3D
compression scheme for interactive
visualization of very large volume data,
Computer Graphics Forum, Lake Tahoe, CA,
(18) 1 (May 2-5, 1999), pp. 3-15.

[3] S. Guthe, M. Wand, J. Gonser, and W. Straßer,
Interactive rendering of large volume data sets,
in IEEE Visualization 2002, Boston,
Massachusetts, (Oct. 27-Nov. 1, 2002),
pp. 53-60.

[4] J. Schneider and R. Westermann, Compression
domain volume rendering, in IEEE
Visualization 2003, Seattle, Washington,
(Oct. 19-24, 2003) pp. 293-300.

[5] R. Parys and G. Knittel, Giga-voxel rendering
from compressed data on a display wall,
Journal of WSCG, (17) 13 (2009), pp. 73-80.

[6] E. Gobbetti, J. A. Iglesias Guitián, and F.
Marton, COVRA: A compression-domain
output-sensitive volume rendering architecture
based on a sparse representation of voxel
blocks, Computer Graphics Forum, (31) 3-4
(2012), pp. 1315-1324.

[7] S. K. Suter, J. A. Iglesias Guitián, F. Marton,
M. Agus, A. Elsener, C. P. Zollikofer, M. Gopi,
E. Gobbetti, and R. Pajarola. Interactive
multiscale tensor reconstruction for
multiresolution volume visualization, IEEE
Transactions on Visualization and Computer
Graphics, (17) 12 (2011), pp. 2135-2143.

[8] M. B. Rodríguez, E. Gobbetti, J. I. Guitián, M.
Makhinya, F. Marton, R. Pajarola, and S. Suter,
A survey of compressed GPU-based direct
volume rendering,” Eurographics 2013,
Girona, Spain, (May 6-10, 2013), pp. 117-136.

[9] Julián Lamas-Rodríguez, Francisco Argüello,
Dora B. Heras, “A GPU-based Multiresolution
Pipeline for Compressed Volume Rendering”,
The 2013 International Conference on Parallel
and Distributed Processing Techniques and
Applications, Las Vegas, EEUU, (July 22-25,
2013), pp. 523-529.

[10] A.V. Gelder and K. Kim, Direct volume
rendering with shading via three-dimensional
textures, 1996 Symposium on Volume
Visualization, (Oct. 28-29, 1996), pp. 23-30.

Julián Lamas-Rodríguez, Francisco Argüello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

 307

[11] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-
Salama, and D. Weiskopf, Real-time volume
graphics. A K Peters, Ltd., 2006.

[12] Q. Zhang, R. Eagleson, and T. M. Peters.
Volume visualization: a technical overview
with a focus on medical applications, Journal
of Digital Imaging, (24) 4 (2011), pp. 640-664.

[13] E. Gobbetti, F. Marton, and J. A. I. Guitián. A
single-pass GPU raycasting framework for
interactive out-of-core rendering of massive
volumetric datasets, The Visual Computer, (24)
7–9, (2008), pp. 797-806.

[14] B. Liu, G. J. Clapworthy, F. Dong, and E. C.
Prakash. Octree rasterization: accelerating
high-quality out-of-core GPU volume
rendering, IEEE Transactions on Visualization
and Computer Graphics, (99) (2012), pp. 1-14.

[15] J. Nickolls and W. J. Dally. The GPU
computing era, IEEE Micro, (30) 2 (2010), pp.
56-69.

[16] CUDA C programming guide (version 4.0),
NVIDIA, 2011.

[17] D. B. Kirk and W.-m. W. Hwu, Programming
massively parallel processors: a hands-on
approach. Burlington, Massachusetts, USA:
Elsevier, 2010.

[18] R. M. Gray and D. L. Neuhoff, Quantization,
IEEE Transactions on Information Theory, (44)
6 (1998), pp. 2325–2383.

[19] C. Cocosco, V. Kollokian, R.-S. Kwan, and A.
Evans, BrainWeb: online interface to a 3D MRI
simulated brain database, NeuroImage, (5) 4
(1997), p. S425.

[20] G. Bernabé, G. D. Guerrero, and J. Fernández,
CUDA and OpenCL implementations of 3D
fast wavelet transform, 3rd IEEE Latin
American Symposium on Circuits and Systems,
Playa del Carmen, Mexico, (Feb. 29- March 2,
2012), pp. 1-4.

[21] I. Daubechies, Ten Lectures on Wavelets,
Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania,
1992.

[22] R. D. Dony, Karhunen-Loève transform, in
The Transform and Data Compression
Handbook. Boca Ratón, Florida, CRC Press,
2004.

[23] K. I. Iourcha, K. S. Nayak, and Z. Hong,
System and method for fixed-rate block-based
image compression with inferred pixel values,
US Patent 5 956 431, Sept. 21, 1999.

[24] Y. Cao, L. Xiao, and H. Wang, “Hardware-
accelerated volume rendering based on DXT
compressed datasets,” International
Conference on Audio, Language and Image
Processing, Shangai, China, (Nov. 23-25,
2010), pp. 523-52.

Julián Lamas Rodríguez,
received his B.Sc in Computer
Engineering from the University
of Coruña, Spain, and his M.Sc
in Videogame Creation from
the University Pompeu-Fabra
in Barcelona, Spain, both in
2006. In 2007 he joined the

Systems Laboratory Group in the Technological
Research Institute of University of Santiago de
Compostela. In 2009 he joined the Computer
Architecture Group of the Department of Electronics
and Computer Science in the same University. He
recently joined the Visualization and Data Analysis
Department at Zuse-Institut Berlin. The scope of his
research is centered in high performance computing
using graphics processors.

Francisco Argüello Pedreira,
received the B.S. and Ph.D.
degrees in Physics from the
University of Santiago, Spain in
1988 and 1992, respectively. He
is currently an Associate Pro-
fessor in the Department of
Electronic and Computer
Engineering at the University of
Santiago de Compostela, Spain.

His current research interests include signal and
image processing, computer graphics, parallel and
distributed computing, and quantum computing.

Dora Blanco Heras, received
a M.S. degree in Physics in
1994 and a Ph.D. in 2000 from
the University of Santiago de
Compostela (Spain). She is
currently an Associate Pro-
fessor in the Department of
Electronics and Computer En-
gineering at the same Uni-
versity. Her research is in the

field of parallel and distributed computing, including,
for example, software optimization techniques for
emerging architectures, and on computer graphics
and image processing.

