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Abstract: Several well-known data transfer protocols are presented in a comparative study to address the issue of big 
data transfer for tablet-class machines. The data transfer protocols include standard Java and C++, and block-data 
transfers protocols that use both the Java New IO (NIO) and the Zerocopy libraries, and a block-data C++ transfer 
protocol. Several experiments are described and results compared against the standard Java IO and C++ (stream-based 
file transport protocols). The motivation for this study is the development of a client/server big data file transport 
protocol for tablet-class client machines that rely on the Java Remote Method Invocation (RMI) package for distributed 
computing. Copyright © Research Institute for Intelligent Computer Systems, 2013. All rights reserved. 
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1. INTRODUCTION 

Big data transfer across distributed client/server 
systems has become a major concern in all fields of 
information processing. Numerous big data transport 
utilities have been developed to address the demands 
in area such as genomics and cancer research [1, 2], 
high-energy particle physics [3], and GIS 
analysis [4]. 

Today’s big data file transfer utilities rely on 
streams of either a single striped file or multiple 
individual files, whose parallel send/receive client-
server strategies are the basis for the increase in big 
data throughput. The GridFTP File Transfer 
Protocol [5] is one such. GridFTP is characterized 
by a fast file transfer protocol that supports large 
files, secure file transfers, capabilities for multiple 
destination points for file transfers, and an API that 
allows various file transfer capabilities. GridFTP is 
part of the Globus Toolkit. 

Current big data transfer tools are designed to 
make optimal use of hardware parallelism on both 
the client and server sides of a distributed cluster 
system. File transport, in such an environment, can 
be organized into parallel file transfer streams. 
BBFTP [6], BBCP [7] and the Fast Data Transfer 
(FDT) [8] utilities are conceptually similar to the 
GridFTP parallel file streaming approach. FDT, for 
example, is written in Java and has the capability to 
run on all major computer platforms. In addition, 
FDT uses the Java New IO (NIO) [9], where files 
are processed in blocks-of-bytes rather than the byte-

by-byte data stream as performed by standard 
Java IO. 

The introduction of tablet-class machines such as 
the Apple iPad and Android tablets extends the 
paradigm of a client-server and opens up the 
speculation of how big data transfer capabilities can 
be provided. The challenges posed by tablet-class 
machines are underscored by their limited hardware 
resources: the lack of a disk array storage facility, 
the limited number of communication ports, 
underclocked processors to reduce heat production, 
and flash-based memory that are more susceptible to 
failure. However, one advantage offered by off-the-
self tablets is its processor configuration that 
supports at least a dual-core processing unit. 
Although limited, this processor parallelism 
provides a means to implement producer/consumer 
data transfer strategies. The availability of a 
producer/consumer data transfer capability and the 
use of a high-throughput data transfer protocol 
would provide big data solutions to tablet-class 
machines. In this paper, we limit the focus to the 
design of a data transfer utility that can support a 
tablet-class, client-server environment for big  
data transfers. 

As mentioned above, parallel transfer of large 
striped-data files provide high throughput by utilities 
such as GridFTP and FDT. Unfortunately, these 
approaches require high-end peripheral hardware to 
capture, coordinate and merge the multiple 
concurrent streams of a single large data file that 
arrives at the client-end. Tablet machines are at a 
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significant disadvantage and as such a more modest 
yet robust data transfer strategy is required. 

This paper is an extension of our presentation 
made at the IAACS 2013 workshop held in Berlin 
[10], we limit the focus to the design of data transfer 
utilities that support a tablet-class, client-server 
environment for big data transfers. This paper 
provides a comparative analysis of several Java and 
C++ approaches that introduces optimizations to 
reduce the standard Java and C++ IO overheads in 
filling the socket buffer. Java NIO and 
Zerocopy [11] are well known techniques described 
and compared in this paper. A blocked (buffered) 
Zerocopy is also described and presented as an 
analog to the NIO method. It should be pointed out 
that Zerocopy requires a Linux or Unix OS but that 
should not be an issue on the server side of the 
network. In addition comparisons with C++ byte-by-
byte streaming and a C++ blocked data transfers are 
used in comparing the different strategies. 

In the next sections, assumptions regarding the 
use of Java New IO (NIO) and Java Zerocopy are 
described. The proposed approach describes the 
integration of Zerocopy and NIO with data transfer 
timing results provided. To complete the 
comparison, file transfer times between a standard 
C++ and a block-data transfer are also provided. 

 
2. BACKGROUND 

Tablet-class client machines represent a 
collection of window-oriented technologies for 
which no unique operating system dominates the 
industry. In such an environment, the design of a 
generic client-server data transfer tool must rely on 
programming languages that are compatible on any 
and all computer platforms. Java is one such 
language that bridges this gap but also provides a 
Remote Method Invocation (RMI) capability that 
supports coordination between distributed computer 
platforms seamlessly. The RMI mode can be 
relatively slow since the instructions are interpreted. 
However, the use of RMI as a coordinator of a 
distributed client-server architecture is not a 
computationally intensive task; for that reason the 
application of RMI should not incur substantial 
overhead delays. On the other hand, the internal Java 
IO stream can lead to TPC/IP overhead delays. 

Java is an object-oriented language that employs 
a byte-by-byte streaming IO process in preparing the 
socket buffer for data transfer into the network 
interface card (NIC) buffer and transferred to its 
destination. At such a fine level of data granularity, 
Java IO is inefficient and does not scale well. 

Block IO data transfers are a more efficient 
alternative. As such, Java NIO was developed as a 
block-oriented approach. Java NIO provides the 

flexibility to adjust the IO block size, which can 
potentially affect the TPC/IP bandwidth-delay 
product (BDP) and enhance its throughput 
performance [12].  

In addition to Java NIO, an optimized treatment 
of internal data copying, known as Zerocopy, was 
developed and made available in the NIO library. 
The next two sections will describe the NIO and 
Zerocopy approaches. The integration of these two 
methods forms the basis of the desires tablet client-
server big data file transfer mechanism. 

 

2.1. JAVA NIO 

Java NIO is an open source library developed and 
maintained by Sun (Oracle). NIO provides block-
oriented IO transfers of a file. The strategy of 
sending a file in a block-wise fashion reduces the 
software management needs for packetized byte 
information. The Channel and the Buffer are the 
principle NIO objects. Channels are analogous to the 
original Java IO but are bidirectional. In this sense, a 
channel can be opened for read or for write or for 
both. Data that is written into a channel must first be 
written into a buffer, and data that is read from a 
channel is read into a buffer. A buffer is an object 
that holds the data that has been read from the 
channel or holds the data that is to be written into the 
channel. In the NIO library, all data is handled with 
buffers. The interplay between the Channel object 
and the Buffer object marks the operational 
difference between Java IO and Java NIO. In Java 
IO, data is written and read directly from Stream 
objects. NIO allows, therefore, a pipeline between 
the Channel object and the Buffer object to hide 
access latencies. 

We give two coding examples of NIO that 
illustrates reading from and writing to a file. A more 
complete description of NIO can be found in the 
introductory tutorial [13].  

Reading a file requires three steps. First, a 
channel is acquired by creating a FileInputStream 
using the original Java IO library: 

 
FileInputStream fin = new FileInputStream( "r.txt" ); 
FileChannel fc = fin.getChannel(); 
 
Second, a Buffer object is created: 
 
ByteBuffer buffer = ByteBuffer.allocate( buff_Size ); 
 
Third, the data is read from the Channel into the 

Buffer: 
 

fc.read( buffer ); 
 
This example points out an important aspect of 

the Channel and Buffer objects. Notice that the 
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coding of the channel does not explicitly indicate the 
amount of data that needs to be read into the buffer. 
As a consequence, Buffer objects are endowed with 
an internal accounting system that keeps track of the 
amount of data that has been read and the amount of 
buffer space remaining for additional data. This 
capability will be useful in our future 
implementation of a producer/consumer IO strategy. 

The second example is writing to a file. First, a 
channel is created: 

 
FileOutputStream fout = new FileOutputStream( 

"w.txt" ); 
FileChannel fc = fout.getChannel(); 
 
Second, a buffer is created and then data written 

into it: 
 

ByteBuffer buffer = ByteBuffer.allocate(buff_Size ); 
for (int i=0; i<message.length; ++i) { 
     buffer.put( message[i] ); 
} 
buffer.flip(); 

 
Third, write into the buffer: 

 
fc.write( buffer ); 

As in the previous example, the internal 
accounting system of the buffer automatically tracks 
the amount of data written into the buffer and the 
remaining buffer space for which additional data can 
still be written. The buffer.put() method fills the 
buffer with data, and the buffer.flip()method  
readies the newly filled buffer data to be written to 
another channel. 

Notice that the allocate() method defines the 
block-oriented IO size. This block size parameter 
can be dynamically adjusted to affect TCP/IP 
performance in combination with algorithms such as 
Fast TCP [14]. 

NIO supports memory-mapped file IO. This 
method when applied to reading and writing file data 
can greatly improve channel-based IO as well as the 
original Java IO. Memory mapping is an OS 
capability where the file system maps portions of a 
file into portions of the memory on demand.  

The following code is an example of how a 
FileChannel() or portions of it can be mapped  
into memory: 

 
MappedByteBuffer mbb = 
fc.map(FileChannel.MapMode.READ_WRITE, 0, 
buff_Size ); 
 
The map() method returns a MappedByteBuffer 

as a subclass of ByteBuffer. Any manipulations 
using this buffer are automatically mapped to 
memory on demand by the operating system.  

It should be pointed out that the Fast Data 
Transfer (FDT) IO tools is based in part on NIO. 

 

2.2. ZEROCOPY 

Zerocopy is a stream-based file transfer library 
that differs from Java IO in that it reduces the 
number of internal data copying and associated 
context switches. Fig. 1 illustrates the Java IO data 
copying behavior when a request to send a file from 
the server to a remote client. The following code 
represents the data flow encountered in Fig. 1: 

 
File.read(fileDesc, buf, len); 
Socket.send(socket, buf, len); 
 

 

Fig. 1 – Java IO internal data movement  
& copying [11]. 

 

Table 1. Java IO context switching [11]. 

Time 
Sequence 

User Context Kernel Context 

 Before Read
 

 
T0

 
 Syscall Read 

T1 Before Send  
T3

 
 Syscall Write 

T3 Next Cycle
 

 
 
We see in this illustration that the file's data flow 

copies the file elements into the Read buffer that is 
then copied into the application buffer then into the 
Socket buffer, and finally into the NIC buffer. In 
order to handle these internal data transfers, the OS 
intervenes with a corresponding number of context 
switches. Table 1 lists the temporal order and 
number of context switches incurred by Java IO. 
Zerocopy mitigates the number of copying required 
by Java IO by copying the content of the Read 
buffer directly into the Socket buffer. The 
transferTo() method in Zerocopy bypasses the 
Application buffer and copies the Read buffer 
directly to the Socket buffer. UNIX and various 
flavors of Linux operating systems support 
transferTo() by routing the method invocation to the 
sendfile() system call. Rather than relying on the two 
methods File.read() and Socket.send(), Zerocopy is 
expressed by a single call: 

 
transferTo(position, count, writableChannel); 
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Fig. 2 illustrates the Zerocopy approach. From 
Table 2, the associated number of context switching 
is reduced from four to two.  

 

 

Fig. 2 – Zerocopy internal data movement  
& copying [11]. 

 

Table 2. Zerocopy context switching [11]. 

Time 
Sequence 

User Context Kernel Context 

 Before transferTo()
 

 
T0

 
 Syscall Read and Send 

T1 Next Cycle
 

 
 

2.3. ZEROBUFFER 

Unlike NIO, Zerocopy does not rely upon the 
application buffer to assist in file transfers under the 
TCP protocol. As a consequence Zerocopy lacks the 
block-oriented IO structure required to support 
parallel file transfers, as does NIO. A closer 
examination of the transferTo() method, however, 
finds that a position index can be set to a beginning 
location of the file to be transferred. This capability 
can be used to transform Zerocopy into a block-
oriented IO implementation, which is referred to as 
ZeroBuffer. The following code fragment details the 
block-oriented ZeroBuffer implementation: 

 
fc = new FileInputStream(input).getChannel(); 
 
while (position != fc.size()) 
{ 
position += fc.transferTo(position, bufferSize, sc); 
} 
 

The file channel fc is initialized and set to the 
new FileInputStream. Within the while loop, the 
transferTo() method is invoked with a position 
indicator that points to a location within the file, a 
block bufferSize, and the socket channel  
descriptor sc.  

The complete programs for all the file transfer 
tests are available at [15]. 

 

3. FILE TRANSFER COMPARISIONS 

Table 3 provides the detail of the Client/Server 
machine properties. Table 4 summarizes the file 

transfer times (milliseconds) between Java IO and 
Zerocopy for which both use stream-based (byte-by-
byte) data transfer methods. The results of these tests 
indicate a 50 times performance increase of 
Zerocopy over Java IO. Similar results are reported 
elsewhere in the literature [11]. The test used file 
sizes ranging from 0.3 MB to 33 MB. Each file is 
run ten times to determine a "best" file transfer time. 
An average transfer time is not reported since the 
network utilization can distort the significance of 
average values.  

 

Table 3. Machine functions and properties. 

Machine 
Function 

Machine 
Types 

Processor 
Configuration 

Memory 
System 

OS 

Server MacBook 2.8 GHz Intel 
Core i7 

8 GB  
1333 MHz 

DDR3 

OS X 
Lion 

Client MacPro 2 x 2.4 GHz 
Quad-Core 
Intel Xeon 

16 GB 
1066 MHz 

DDR3 
ECC 

OS X 
Lion 

 
NIO and ZeroBuffer are characterized by explicit 

block (buffer)-size assignments, which from Fig. 1 is 
referred to as the application buffer. Table 5 lists file 
transfer times measured for Zerocopy, NIO and 
ZeroBuffer. Although, Zerocopy is independent of 
the application buffer size its transfer time is listed 
for each buffer for comparison purposes only. The 
best NIO and ZeroBuffer results are listed as a 
function of their corresponding application buffer 
sizes, which range from 1 KB to 16 MB. The results 
presented in this paper are for a 1.03 GB file. Other 
results for smaller files produced similar results.  

The experiments also varied the TCP Send/Recv 
buffer sizes. The Mac OS X sets the default size of 
the Send/Recv buffer to 64 KB. The TCP Sendbuffer 
(on the server-side) is manually adjusted and is 
coordinated with a reciprocal assignment (on the 
client-side) for the TCP Receive buffer using the 
same size. 

 

Table 4. Data transfer times. 

Files (MB) Java IO 
(ms) 

Zerocopy 
(ms) 

File1 (0.3)         7       3 
File2 (0.6)       13       7 
File3 (1.2)   3687     47 
File4 (2.5) 6103   107 
File5 (4.9) 14969   298 
File6 (9.9) 29307   564 

 
Fig. 3 is a plot of the corresponding file transfer 

times listed in Table 5. The TCP Send/RecvSpace 
buffer size is manually set to 64 KB. NIO, Zerocopy 
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and ZeroBuffer deliver comparable transfer times. 
There are several items to point out. First notices 
that ZeroBuffer suffers noticeable overheads for 
small application buffer sizes (1 KB to 2 KB); 
whereas, the while-loop introduced to create its 
block-oriented IO structure shows little difference in 
comparison with Zerocopy. This is quite surprising 
given the somewhat "artificial" block-oriented 
approach taken. The second item to note is the 
behavior of the NIO method. NIO exhibits file 
transfer slowdowns for small application buffer sizes 
(1 KB to 2 KB); as well as for larger buffer sizes 
(2 MB to 16 MB). Overall, NIO and ZeroBuffer 
methods are comparable to the file transfer time of 
Zerocopy, between the application buffer sizes 
ranging from 4 KB to 1 MB. 

 

Table 5. File size = 1.03 GB 
(TCP Send/RecvSpace = 64 KB). 

Application 
Buffer Size 

NIO 
(ms) 

ZeroBuffer 
(ms) 

Zerocopy 
(ms) 

1KB 109.88 135.15 88.2 
2KB 96.62 100.8 88.2 
4KB 88.96 88.4 88.2 
8KB 89.69 89.05 88.2 
16KB 90.29 89.11 88.2 
32KB 89.23 89.62 88.2 
64KB 90.26 89.12 88.2 
128KB 89.79 88.98 88.2 
256KB 88.46 88.81 88.2 
512KB 88.45 88.36 88.2 
1MB 89.97 88.28 88.2 
2MB 92.22 88.55 88.2 
4MB 94.06 88.45 88.2 
8MB 94.55 89.03 88.2 
16MB 94.7 88.51 88.2 

 

 

Fig. 3 – A plot of the Table 5. 

 
The TCP Send/RecvSpace buffer settings are 

considerations based on work by several authors 
investigating [16, 17, 18] the optimal tuning of TCP 
file transfers. Starting with the TCP Send/RecvSpace 

buffer sizes of 64 KB, 156 KB, 256 KB, 512 KB, 
and 1 MB, we find little difference in file transfer 
performance. What we observed, however, is that 
the file transfer performance for NIO improves with 
increasing TCP Send/RecvSpace buffer size. Fig. 4 
and Fig. 5 are presented to illustrate this observation.  

 

 

Fig. 4 – Results for TCP Send/RecvSpace = 256KB. 

 

 

Fig. 5 – Results for TCP Send/RecvSpace = 1MB. 

 
As a final set of comparisons, we examine the 

transfer speeds that can be obtained with a byte-by-
byte and block or buffered data transfer approaches 
using C++. The two methods are referred to as 
C++(1) and C++(2), respectively. These methods are 
analogous to standard Java and Java NIO, whereas a 
C++ version that is comparable to Zerocopy was not 
readily available for this study. Fragments of the 
socket program for each method are provided below 
[19, 20]. C++(1) uses a simple while construct: 

 
int ch;  
char toSEND[1]; 
 
while((ch=getc(file))!=EOF) { 
            toSEND[0] = ch; 
            send(socket, toSEND, 1, 0); 
} 
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C++(2) uses a buffered send size of 1024 bytes as 
depicted in the following code fragment: 

 
char buf[1024]; 
 
while (!feof(file)) { 
int rval = (int)fread(buf, 1, sizeof(buf), file); 
int sent = (int)send(sock, &buf[off], rval - off, 0); 
off += sent; 
} 
 
The TCP Send/RecvSpace for the server 

processor is maintained at a size of 131,072. On the 
client side, the TCP Send/RecvSpace is fixed at a 
size of 65,536. No attempts are made to study the 
transfer times as a function of the TCP 
Send/RecvSpace. The sole purpose of this 
experiment is to compare the relative performance of 
the various C++ file transfer methods with Zerocopy 
and ZeroBuffer. The client/server configuration is 
hosted on a local area network (LAN) within the 
Center for Advance Energy Studies CAES) in Idaho 
Falls. We are currently working towards the 
assessment of file transfer performances over a wide 
area network (WAN).  

Table 6 displays the data transfer times for the 
different Java and C++ programs. The time is given 
in milliseconds. The files range in size from 
0.256 MB up to 16.4 MB. The buffer size used for 
ZeroBuffer and C++(2) is set at 1024 bytes. 

 

Table 6. Data transfer times. 

File Size 
(MB) 

ZeroBuffer 
(ms) 

Zero 
(ms) 

C++(2) 
(ms) 

C++(1) 
(ms) 

0.256 9 8 1 333 
0.512 16 18 2 596 

1.0 31 31 4 1158 
2.0 55 54 7 2267 
4.1 83 85 16 4236 
8.2 143 151 34 8273 
16.4 161 164 67 16636 

 
Notice that the data transfer rates for the C++(2) 

implementation is far superior to its byte-by-byte 
transfer counterpart. This is consistent with results 
between Java and Java NIO. In either case the block-
data transfers utilizes the I/O subsystems more 
efficiently. This of course is a well-known result. 
The transfer times of C++(2) varies by a factor of 9 
to 2.5 times faster in comparison to the 
corresponding Zero{Buffer, copy} transfer times; 
however, notice that the speedup factor decreases 
with increases in file size. In other words, it appears 
that for much larger file sizes C++(2) may reach 
parity with Zero{Buffer, copy} transfer rates. To test 
this conjecture, we ran two test cases using file sizes 
of 0.734 GB and 1.47 GB. Table 7 presents the 

results for C++2, Zero copy and Zero copy + buffer. 
Again a buffer size of 1024 bytes is used. 

 

Table 7. Data transfer times. 

File Size 
(GB) 

ZeroBuffer 
(ms) 

Zero 
(ms) 

C++(2) 
(ms) 

.734 7726 6092 5068 
1.47 15194 13332 10098 

 
Comparing the ratios between Zero (copy) and 

C++(2), the transfer rates of C++(2) now appears to 
be given by factors of 1.2 (0.734 GB) and 1.32 
(1.47 GB), respectively. These results are in good 
agreement with our prior experiments. 

We make one final observation with regards to 
the transfer of large files. In Figs. 3, 4, and 5 
ZeroBuffer consistently underperforms Zero (copy) 
for buffer sizes less than 4 K bytes. For buffer sizes 
of 4 K bytes and larger, ZeroBuffer is comparable in 
file transfer times to Zero (copy). To test the 
consistency of this behavior, Table 8 list the results 
of performing the same file transfer experiments but 
using a buffer size of 5K bytes. For both the 
0.734 GB and 1.47 GB files, ZeroBuffer and Zero 
are comparable in transfer time as argued. What is 
not expected is the reduction in transfer times for 
C++(2) by more than 50 %, and between 2.8 to 3.25 
speedup over ZeroBuffer. 

 

Table 8. Data transfer times 
(Buffer = 5 KB). 

File Size 
(GB) 

ZeroBuffer 
(ms) 

Zero 
(ms) 

C++(2) 
(ms) 

0.734 6537 (6092) 2010 
1.47 12865 (13332) 4583 

 
In Table 8, the times for Zero (copy) are inserted 

only for comparison purposes (recall that Zero 
(copy) is buffer size independent). 

Determining a more optimal buffer size for 
C++(2) requires further experiments; although, we 
suspect that further experiments with larger files and 
larger buffer sizes will exhibit behavior similar to 
those illustrated in Figs. 3, 4, and 5. 

 
4. SUMMARY AND CONCLUSION 

We developed data transfer programs using 
commonly available socket libraries. The socket 
programs for NIO, Zerocopy, and C++ are 
straightforward and required no special 
programming considerations. The timer resolution of 
the C++ programs is based on the Apple LLVM 
compiler and developed under the XCode Integrated 
Development Environment (IDE) [21]. 
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The comparative collections of I/O results are 
presented. The programs build upon standard Java 
and C++ techniques and libraries available to the 
general users. More specialized routines might be 
found at advanced application websites or through 
proprietary sources.  

The data streaming strategy of Java IO and C++ 
are known to be inefficient for big data transfers. In 
this study, block-oriented IO methods are compared 
to an efficient non-blocked IO method known as 
Zerocopy. In addition, this paper provides the first 
direct comparison between Zerocopy and NIO. 

A block-oriented IO method (ZeroBuffer) is 
introduced that supports Zerocopy efficiencies over 
a large range of application and TCP buffer sizes. 
Although the Zerocopy method can be reliably used 
to address the appetite of tablet-class client/server 
file transfers, ZeroBuffer has the potential to support 
non-blocking, concurrent IO threads, which is an 
important feature of high-end grid-IO. 

Overall, the buffered C++ implementation proved 
to be the fastest of the file transfer codes, but 
required a buffer size greater than 4 K bytes. 
ZeroBuffer is shown to have similar behavior; 
although, not as fast. 

A further advantage may be gained when clients 
and server are hosted on a WAN where the 
bandwidth utilization for the transfer of large data 
files is strongly influenced by the behavior of the 
TCP network protocol under extreme external 
demands. In this regard, the block-data transfer 
mode can provide a self-throttling mechanism to 
reduce the TCP overhead latencies experienced by 
large data transfers initiated in a single-continuous 
send-operation mode over the network. 

Finally, this paper represents the initial stages of 
a much more ambitious effort to provide serious 
information discovery and analysis on tablet-class 
machines. To achieve this goal, a new paradigm of 
big data transfer should be considered and realized: 
raw data should never be transferred across wide 
area networks. Instead raw data should be localized 
in persistent data servers where stored data should 
only be marshaled into a form that is information-
dense; that is, a form that can be easily visualized, 
virtualized, and orders of magnitude smaller in size 
than its original raw data footprint. Optimal data 
transfer time or data compression is not enough to 
achieve this goal. A big data system will likely 
require block-algorithms to sustain a 
producer/consumer-like pipelined data transfer 
protocol, where blocks of data are computed and 
transferred across the network in an overlapping 
pipeline fashion. In order to sustain this operation, a 
distributed server farm that coordinates the in-situ 
placement of raw data and its access will prove to  
be advantageous.  
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