
Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 316

BIG DATA TRANSFER FOR TABLET-CLASS MACHINES

Tevaganthan Veluppillai 1), Brandon Ortiz 2), Robert E. Hiromoto 3)

1), 3) University of Idaho, Idaho Falls, Idaho 83402, USA, {hiromoto@uidaho.edu, veluteva@isu.edu}
2) University of Idaho, Moscow, Idaho 83844-1010, USA, brandon.ortiz@vandals.uidaho.edu

Abstract: Several well-known data transfer protocols are presented in a comparative study to address the issue of big
data transfer for tablet-class machines. The data transfer protocols include standard Java and C++, and block-data
transfers protocols that use both the Java New IO (NIO) and the Zerocopy libraries, and a block-data C++ transfer
protocol. Several experiments are described and results compared against the standard Java IO and C++ (stream-based
file transport protocols). The motivation for this study is the development of a client/server big data file transport
protocol for tablet-class client machines that rely on the Java Remote Method Invocation (RMI) package for distributed
computing. Copyright © Research Institute for Intelligent Computer Systems, 2013. All rights reserved.

Keywords: Blocked file transport; stream-based; block-oriented; tablet machines; client/server configuration.

1. INTRODUCTION

Big data transfer across distributed client/server
systems has become a major concern in all fields of
information processing. Numerous big data transport
utilities have been developed to address the demands
in area such as genomics and cancer research [1, 2],
high-energy particle physics [3], and GIS
analysis [4].

Today’s big data file transfer utilities rely on
streams of either a single striped file or multiple
individual files, whose parallel send/receive client-
server strategies are the basis for the increase in big
data throughput. The GridFTP File Transfer
Protocol [5] is one such. GridFTP is characterized
by a fast file transfer protocol that supports large
files, secure file transfers, capabilities for multiple
destination points for file transfers, and an API that
allows various file transfer capabilities. GridFTP is
part of the Globus Toolkit.

Current big data transfer tools are designed to
make optimal use of hardware parallelism on both
the client and server sides of a distributed cluster
system. File transport, in such an environment, can
be organized into parallel file transfer streams.
BBFTP [6], BBCP [7] and the Fast Data Transfer
(FDT) [8] utilities are conceptually similar to the
GridFTP parallel file streaming approach. FDT, for
example, is written in Java and has the capability to
run on all major computer platforms. In addition,
FDT uses the Java New IO (NIO) [9], where files
are processed in blocks-of-bytes rather than the byte-

by-byte data stream as performed by standard
Java IO.

The introduction of tablet-class machines such as
the Apple iPad and Android tablets extends the
paradigm of a client-server and opens up the
speculation of how big data transfer capabilities can
be provided. The challenges posed by tablet-class
machines are underscored by their limited hardware
resources: the lack of a disk array storage facility,
the limited number of communication ports,
underclocked processors to reduce heat production,
and flash-based memory that are more susceptible to
failure. However, one advantage offered by off-the-
self tablets is its processor configuration that
supports at least a dual-core processing unit.
Although limited, this processor parallelism
provides a means to implement producer/consumer
data transfer strategies. The availability of a
producer/consumer data transfer capability and the
use of a high-throughput data transfer protocol
would provide big data solutions to tablet-class
machines. In this paper, we limit the focus to the
design of a data transfer utility that can support a
tablet-class, client-server environment for big
data transfers.

As mentioned above, parallel transfer of large
striped-data files provide high throughput by utilities
such as GridFTP and FDT. Unfortunately, these
approaches require high-end peripheral hardware to
capture, coordinate and merge the multiple
concurrent streams of a single large data file that
arrives at the client-end. Tablet machines are at a

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 317

significant disadvantage and as such a more modest
yet robust data transfer strategy is required.

This paper is an extension of our presentation
made at the IAACS 2013 workshop held in Berlin
[10], we limit the focus to the design of data transfer
utilities that support a tablet-class, client-server
environment for big data transfers. This paper
provides a comparative analysis of several Java and
C++ approaches that introduces optimizations to
reduce the standard Java and C++ IO overheads in
filling the socket buffer. Java NIO and
Zerocopy [11] are well known techniques described
and compared in this paper. A blocked (buffered)
Zerocopy is also described and presented as an
analog to the NIO method. It should be pointed out
that Zerocopy requires a Linux or Unix OS but that
should not be an issue on the server side of the
network. In addition comparisons with C++ byte-by-
byte streaming and a C++ blocked data transfers are
used in comparing the different strategies.

In the next sections, assumptions regarding the
use of Java New IO (NIO) and Java Zerocopy are
described. The proposed approach describes the
integration of Zerocopy and NIO with data transfer
timing results provided. To complete the
comparison, file transfer times between a standard
C++ and a block-data transfer are also provided.

2. BACKGROUND

Tablet-class client machines represent a
collection of window-oriented technologies for
which no unique operating system dominates the
industry. In such an environment, the design of a
generic client-server data transfer tool must rely on
programming languages that are compatible on any
and all computer platforms. Java is one such
language that bridges this gap but also provides a
Remote Method Invocation (RMI) capability that
supports coordination between distributed computer
platforms seamlessly. The RMI mode can be
relatively slow since the instructions are interpreted.
However, the use of RMI as a coordinator of a
distributed client-server architecture is not a
computationally intensive task; for that reason the
application of RMI should not incur substantial
overhead delays. On the other hand, the internal Java
IO stream can lead to TPC/IP overhead delays.

Java is an object-oriented language that employs
a byte-by-byte streaming IO process in preparing the
socket buffer for data transfer into the network
interface card (NIC) buffer and transferred to its
destination. At such a fine level of data granularity,
Java IO is inefficient and does not scale well.

Block IO data transfers are a more efficient
alternative. As such, Java NIO was developed as a
block-oriented approach. Java NIO provides the

flexibility to adjust the IO block size, which can
potentially affect the TPC/IP bandwidth-delay
product (BDP) and enhance its throughput
performance [12].

In addition to Java NIO, an optimized treatment
of internal data copying, known as Zerocopy, was
developed and made available in the NIO library.
The next two sections will describe the NIO and
Zerocopy approaches. The integration of these two
methods forms the basis of the desires tablet client-
server big data file transfer mechanism.

2.1. JAVA NIO

Java NIO is an open source library developed and
maintained by Sun (Oracle). NIO provides block-
oriented IO transfers of a file. The strategy of
sending a file in a block-wise fashion reduces the
software management needs for packetized byte
information. The Channel and the Buffer are the
principle NIO objects. Channels are analogous to the
original Java IO but are bidirectional. In this sense, a
channel can be opened for read or for write or for
both. Data that is written into a channel must first be
written into a buffer, and data that is read from a
channel is read into a buffer. A buffer is an object
that holds the data that has been read from the
channel or holds the data that is to be written into the
channel. In the NIO library, all data is handled with
buffers. The interplay between the Channel object
and the Buffer object marks the operational
difference between Java IO and Java NIO. In Java
IO, data is written and read directly from Stream
objects. NIO allows, therefore, a pipeline between
the Channel object and the Buffer object to hide
access latencies.

We give two coding examples of NIO that
illustrates reading from and writing to a file. A more
complete description of NIO can be found in the
introductory tutorial [13].

Reading a file requires three steps. First, a
channel is acquired by creating a FileInputStream
using the original Java IO library:

FileInputStream fin = new FileInputStream("r.txt");
FileChannel fc = fin.getChannel();

Second, a Buffer object is created:

ByteBuffer buffer = ByteBuffer.allocate(buff_Size);

Third, the data is read from the Channel into the

Buffer:

fc.read(buffer);

This example points out an important aspect of

the Channel and Buffer objects. Notice that the

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 318

coding of the channel does not explicitly indicate the
amount of data that needs to be read into the buffer.
As a consequence, Buffer objects are endowed with
an internal accounting system that keeps track of the
amount of data that has been read and the amount of
buffer space remaining for additional data. This
capability will be useful in our future
implementation of a producer/consumer IO strategy.

The second example is writing to a file. First, a
channel is created:

FileOutputStream fout = new FileOutputStream(

"w.txt");
FileChannel fc = fout.getChannel();

Second, a buffer is created and then data written

into it:

ByteBuffer buffer = ByteBuffer.allocate(buff_Size);
for (int i=0; i<message.length; ++i) {
 buffer.put(message[i]);
}
buffer.flip();

Third, write into the buffer:

fc.write(buffer);

As in the previous example, the internal
accounting system of the buffer automatically tracks
the amount of data written into the buffer and the
remaining buffer space for which additional data can
still be written. The buffer.put() method fills the
buffer with data, and the buffer.flip()method
readies the newly filled buffer data to be written to
another channel.

Notice that the allocate() method defines the
block-oriented IO size. This block size parameter
can be dynamically adjusted to affect TCP/IP
performance in combination with algorithms such as
Fast TCP [14].

NIO supports memory-mapped file IO. This
method when applied to reading and writing file data
can greatly improve channel-based IO as well as the
original Java IO. Memory mapping is an OS
capability where the file system maps portions of a
file into portions of the memory on demand.

The following code is an example of how a
FileChannel() or portions of it can be mapped
into memory:

MappedByteBuffer mbb =
fc.map(FileChannel.MapMode.READ_WRITE, 0,
buff_Size);

The map() method returns a MappedByteBuffer

as a subclass of ByteBuffer. Any manipulations
using this buffer are automatically mapped to
memory on demand by the operating system.

It should be pointed out that the Fast Data
Transfer (FDT) IO tools is based in part on NIO.

2.2. ZEROCOPY

Zerocopy is a stream-based file transfer library
that differs from Java IO in that it reduces the
number of internal data copying and associated
context switches. Fig. 1 illustrates the Java IO data
copying behavior when a request to send a file from
the server to a remote client. The following code
represents the data flow encountered in Fig. 1:

File.read(fileDesc, buf, len);
Socket.send(socket, buf, len);

Fig. 1 – Java IO internal data movement
& copying [11].

Table 1. Java IO context switching [11].

Time
Sequence

User Context Kernel Context

 Before Read

T0

 Syscall Read

T1 Before Send
T3

 Syscall Write

T3 Next Cycle

We see in this illustration that the file's data flow

copies the file elements into the Read buffer that is
then copied into the application buffer then into the
Socket buffer, and finally into the NIC buffer. In
order to handle these internal data transfers, the OS
intervenes with a corresponding number of context
switches. Table 1 lists the temporal order and
number of context switches incurred by Java IO.
Zerocopy mitigates the number of copying required
by Java IO by copying the content of the Read
buffer directly into the Socket buffer. The
transferTo() method in Zerocopy bypasses the
Application buffer and copies the Read buffer
directly to the Socket buffer. UNIX and various
flavors of Linux operating systems support
transferTo() by routing the method invocation to the
sendfile() system call. Rather than relying on the two
methods File.read() and Socket.send(), Zerocopy is
expressed by a single call:

transferTo(position, count, writableChannel);

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 319

Fig. 2 illustrates the Zerocopy approach. From
Table 2, the associated number of context switching
is reduced from four to two.

Fig. 2 – Zerocopy internal data movement
& copying [11].

Table 2. Zerocopy context switching [11].

Time
Sequence

User Context Kernel Context

 Before transferTo()

T0

 Syscall Read and Send

T1 Next Cycle

2.3. ZEROBUFFER

Unlike NIO, Zerocopy does not rely upon the
application buffer to assist in file transfers under the
TCP protocol. As a consequence Zerocopy lacks the
block-oriented IO structure required to support
parallel file transfers, as does NIO. A closer
examination of the transferTo() method, however,
finds that a position index can be set to a beginning
location of the file to be transferred. This capability
can be used to transform Zerocopy into a block-
oriented IO implementation, which is referred to as
ZeroBuffer. The following code fragment details the
block-oriented ZeroBuffer implementation:

fc = new FileInputStream(input).getChannel();

while (position != fc.size())
{
position += fc.transferTo(position, bufferSize, sc);
}

The file channel fc is initialized and set to the
new FileInputStream. Within the while loop, the
transferTo() method is invoked with a position
indicator that points to a location within the file, a
block bufferSize, and the socket channel
descriptor sc.

The complete programs for all the file transfer
tests are available at [15].

3. FILE TRANSFER COMPARISIONS

Table 3 provides the detail of the Client/Server
machine properties. Table 4 summarizes the file

transfer times (milliseconds) between Java IO and
Zerocopy for which both use stream-based (byte-by-
byte) data transfer methods. The results of these tests
indicate a 50 times performance increase of
Zerocopy over Java IO. Similar results are reported
elsewhere in the literature [11]. The test used file
sizes ranging from 0.3 MB to 33 MB. Each file is
run ten times to determine a "best" file transfer time.
An average transfer time is not reported since the
network utilization can distort the significance of
average values.

Table 3. Machine functions and properties.

Machine
Function

Machine
Types

Processor
Configuration

Memory
System

OS

Server MacBook 2.8 GHz Intel
Core i7

8 GB
1333 MHz

DDR3

OS X
Lion

Client MacPro 2 x 2.4 GHz
Quad-Core
Intel Xeon

16 GB
1066 MHz

DDR3
ECC

OS X
Lion

NIO and ZeroBuffer are characterized by explicit

block (buffer)-size assignments, which from Fig. 1 is
referred to as the application buffer. Table 5 lists file
transfer times measured for Zerocopy, NIO and
ZeroBuffer. Although, Zerocopy is independent of
the application buffer size its transfer time is listed
for each buffer for comparison purposes only. The
best NIO and ZeroBuffer results are listed as a
function of their corresponding application buffer
sizes, which range from 1 KB to 16 MB. The results
presented in this paper are for a 1.03 GB file. Other
results for smaller files produced similar results.

The experiments also varied the TCP Send/Recv
buffer sizes. The Mac OS X sets the default size of
the Send/Recv buffer to 64 KB. The TCP Sendbuffer
(on the server-side) is manually adjusted and is
coordinated with a reciprocal assignment (on the
client-side) for the TCP Receive buffer using the
same size.

Table 4. Data transfer times.

Files (MB) Java IO
(ms)

Zerocopy
(ms)

File1 (0.3) 7 3
File2 (0.6) 13 7
File3 (1.2) 3687 47
File4 (2.5) 6103 107
File5 (4.9) 14969 298
File6 (9.9) 29307 564

Fig. 3 is a plot of the corresponding file transfer

times listed in Table 5. The TCP Send/RecvSpace
buffer size is manually set to 64 KB. NIO, Zerocopy

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 320

and ZeroBuffer deliver comparable transfer times.
There are several items to point out. First notices
that ZeroBuffer suffers noticeable overheads for
small application buffer sizes (1 KB to 2 KB);
whereas, the while-loop introduced to create its
block-oriented IO structure shows little difference in
comparison with Zerocopy. This is quite surprising
given the somewhat "artificial" block-oriented
approach taken. The second item to note is the
behavior of the NIO method. NIO exhibits file
transfer slowdowns for small application buffer sizes
(1 KB to 2 KB); as well as for larger buffer sizes
(2 MB to 16 MB). Overall, NIO and ZeroBuffer
methods are comparable to the file transfer time of
Zerocopy, between the application buffer sizes
ranging from 4 KB to 1 MB.

Table 5. File size = 1.03 GB
(TCP Send/RecvSpace = 64 KB).

Application
Buffer Size

NIO
(ms)

ZeroBuffer
(ms)

Zerocopy
(ms)

1KB 109.88 135.15 88.2
2KB 96.62 100.8 88.2
4KB 88.96 88.4 88.2
8KB 89.69 89.05 88.2
16KB 90.29 89.11 88.2
32KB 89.23 89.62 88.2
64KB 90.26 89.12 88.2
128KB 89.79 88.98 88.2
256KB 88.46 88.81 88.2
512KB 88.45 88.36 88.2
1MB 89.97 88.28 88.2
2MB 92.22 88.55 88.2
4MB 94.06 88.45 88.2
8MB 94.55 89.03 88.2
16MB 94.7 88.51 88.2

Fig. 3 – A plot of the Table 5.

The TCP Send/RecvSpace buffer settings are

considerations based on work by several authors
investigating [16, 17, 18] the optimal tuning of TCP
file transfers. Starting with the TCP Send/RecvSpace

buffer sizes of 64 KB, 156 KB, 256 KB, 512 KB,
and 1 MB, we find little difference in file transfer
performance. What we observed, however, is that
the file transfer performance for NIO improves with
increasing TCP Send/RecvSpace buffer size. Fig. 4
and Fig. 5 are presented to illustrate this observation.

Fig. 4 – Results for TCP Send/RecvSpace = 256KB.

Fig. 5 – Results for TCP Send/RecvSpace = 1MB.

As a final set of comparisons, we examine the

transfer speeds that can be obtained with a byte-by-
byte and block or buffered data transfer approaches
using C++. The two methods are referred to as
C++(1) and C++(2), respectively. These methods are
analogous to standard Java and Java NIO, whereas a
C++ version that is comparable to Zerocopy was not
readily available for this study. Fragments of the
socket program for each method are provided below
[19, 20]. C++(1) uses a simple while construct:

int ch;
char toSEND[1];

while((ch=getc(file))!=EOF) {
 toSEND[0] = ch;
 send(socket, toSEND, 1, 0);
}

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 321

C++(2) uses a buffered send size of 1024 bytes as
depicted in the following code fragment:

char buf[1024];

while (!feof(file)) {
int rval = (int)fread(buf, 1, sizeof(buf), file);
int sent = (int)send(sock, &buf[off], rval - off, 0);
off += sent;
}

The TCP Send/RecvSpace for the server

processor is maintained at a size of 131,072. On the
client side, the TCP Send/RecvSpace is fixed at a
size of 65,536. No attempts are made to study the
transfer times as a function of the TCP
Send/RecvSpace. The sole purpose of this
experiment is to compare the relative performance of
the various C++ file transfer methods with Zerocopy
and ZeroBuffer. The client/server configuration is
hosted on a local area network (LAN) within the
Center for Advance Energy Studies CAES) in Idaho
Falls. We are currently working towards the
assessment of file transfer performances over a wide
area network (WAN).

Table 6 displays the data transfer times for the
different Java and C++ programs. The time is given
in milliseconds. The files range in size from
0.256 MB up to 16.4 MB. The buffer size used for
ZeroBuffer and C++(2) is set at 1024 bytes.

Table 6. Data transfer times.

File Size
(MB)

ZeroBuffer
(ms)

Zero
(ms)

C++(2)
(ms)

C++(1)
(ms)

0.256 9 8 1 333
0.512 16 18 2 596

1.0 31 31 4 1158
2.0 55 54 7 2267
4.1 83 85 16 4236
8.2 143 151 34 8273
16.4 161 164 67 16636

Notice that the data transfer rates for the C++(2)

implementation is far superior to its byte-by-byte
transfer counterpart. This is consistent with results
between Java and Java NIO. In either case the block-
data transfers utilizes the I/O subsystems more
efficiently. This of course is a well-known result.
The transfer times of C++(2) varies by a factor of 9
to 2.5 times faster in comparison to the
corresponding Zero{Buffer, copy} transfer times;
however, notice that the speedup factor decreases
with increases in file size. In other words, it appears
that for much larger file sizes C++(2) may reach
parity with Zero{Buffer, copy} transfer rates. To test
this conjecture, we ran two test cases using file sizes
of 0.734 GB and 1.47 GB. Table 7 presents the

results for C++2, Zero copy and Zero copy + buffer.
Again a buffer size of 1024 bytes is used.

Table 7. Data transfer times.

File Size
(GB)

ZeroBuffer
(ms)

Zero
(ms)

C++(2)
(ms)

.734 7726 6092 5068
1.47 15194 13332 10098

Comparing the ratios between Zero (copy) and

C++(2), the transfer rates of C++(2) now appears to
be given by factors of 1.2 (0.734 GB) and 1.32
(1.47 GB), respectively. These results are in good
agreement with our prior experiments.

We make one final observation with regards to
the transfer of large files. In Figs. 3, 4, and 5
ZeroBuffer consistently underperforms Zero (copy)
for buffer sizes less than 4 K bytes. For buffer sizes
of 4 K bytes and larger, ZeroBuffer is comparable in
file transfer times to Zero (copy). To test the
consistency of this behavior, Table 8 list the results
of performing the same file transfer experiments but
using a buffer size of 5K bytes. For both the
0.734 GB and 1.47 GB files, ZeroBuffer and Zero
are comparable in transfer time as argued. What is
not expected is the reduction in transfer times for
C++(2) by more than 50 %, and between 2.8 to 3.25
speedup over ZeroBuffer.

Table 8. Data transfer times
(Buffer = 5 KB).

File Size
(GB)

ZeroBuffer
(ms)

Zero
(ms)

C++(2)
(ms)

0.734 6537 (6092) 2010
1.47 12865 (13332) 4583

In Table 8, the times for Zero (copy) are inserted

only for comparison purposes (recall that Zero
(copy) is buffer size independent).

Determining a more optimal buffer size for
C++(2) requires further experiments; although, we
suspect that further experiments with larger files and
larger buffer sizes will exhibit behavior similar to
those illustrated in Figs. 3, 4, and 5.

4. SUMMARY AND CONCLUSION

We developed data transfer programs using
commonly available socket libraries. The socket
programs for NIO, Zerocopy, and C++ are
straightforward and required no special
programming considerations. The timer resolution of
the C++ programs is based on the Apple LLVM
compiler and developed under the XCode Integrated
Development Environment (IDE) [21].

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 322

The comparative collections of I/O results are
presented. The programs build upon standard Java
and C++ techniques and libraries available to the
general users. More specialized routines might be
found at advanced application websites or through
proprietary sources.

The data streaming strategy of Java IO and C++
are known to be inefficient for big data transfers. In
this study, block-oriented IO methods are compared
to an efficient non-blocked IO method known as
Zerocopy. In addition, this paper provides the first
direct comparison between Zerocopy and NIO.

A block-oriented IO method (ZeroBuffer) is
introduced that supports Zerocopy efficiencies over
a large range of application and TCP buffer sizes.
Although the Zerocopy method can be reliably used
to address the appetite of tablet-class client/server
file transfers, ZeroBuffer has the potential to support
non-blocking, concurrent IO threads, which is an
important feature of high-end grid-IO.

Overall, the buffered C++ implementation proved
to be the fastest of the file transfer codes, but
required a buffer size greater than 4 K bytes.
ZeroBuffer is shown to have similar behavior;
although, not as fast.

A further advantage may be gained when clients
and server are hosted on a WAN where the
bandwidth utilization for the transfer of large data
files is strongly influenced by the behavior of the
TCP network protocol under extreme external
demands. In this regard, the block-data transfer
mode can provide a self-throttling mechanism to
reduce the TCP overhead latencies experienced by
large data transfers initiated in a single-continuous
send-operation mode over the network.

Finally, this paper represents the initial stages of
a much more ambitious effort to provide serious
information discovery and analysis on tablet-class
machines. To achieve this goal, a new paradigm of
big data transfer should be considered and realized:
raw data should never be transferred across wide
area networks. Instead raw data should be localized
in persistent data servers where stored data should
only be marshaled into a form that is information-
dense; that is, a form that can be easily visualized,
virtualized, and orders of magnitude smaller in size
than its original raw data footprint. Optimal data
transfer time or data compression is not enough to
achieve this goal. A big data system will likely
require block-algorithms to sustain a
producer/consumer-like pipelined data transfer
protocol, where blocks of data are computed and
transferred across the network in an overlapping
pipeline fashion. In order to sustain this operation, a
distributed server farm that coordinates the in-situ
placement of raw data and its access will prove to
be advantageous.

5. ACKNOWLEGMENTS

This research is being performed using funding
received from the DOE Office of Nuclear Energy's
Nuclear Energy University Programs.

6. REFERENCES

[1] C. Wang, D. Zhang. A novel compression tool
for efficient storage of genome resequencing
data, Nucleic Acids Research, Vol. 39, Issue 7,
April 2011, e45.

[2] Lynda Chin, William C. Hahn, Gad Getz, et al.
Making sense of cancer genomic data, Genes &
Development, Vol. 25, Issue 6, 2011,
pp. 534-555.

[3] http://supercomputing.caltech.edu (last acces-
sed 15, Feb., 2013.)

[4] M. J. de Smith, M. F. Goodchild,
P. A. Longley. Geospatial Analysis: A
Comprehensive Guide to Principles,
Techniques and Software Tools, 2nd edition,
Troubador, UK, 2007.

[5] W. Allcock, J. Bresnahan, R. Kettimuthu,
M. Link, C. Dumitrescu, I. Raicu, I. Foster, The
globus striped GridFTP framework and server,
Proceedings of the ACM/IEEE conference on
Supercomputing SC'05, ACM Press, November
2005, pp. 54.

[6] http://doc.in2p3.fr/bbftp/
[7] http://www.slac.stanford.edu/~abh/bbcp/
[8] R. S. Prasad, M. Jain and C. Dovrolis, Socket

Buffer Auto-Sizing for High-Performance Data
Transfers, Journal of Grid Computing, Vol. 1,
Issue 1, 2003, pp. 361-376.

[9] Getting started with NIO, https://www.ibm.
com/developerworks/java/tutorials/j-nio/j-nio-
pdf.pdf.

[10] V. Tevaganthan, B. Ortiz, R. E. Hiromoto, A
big data file transfer tool for tablet-class
machines, Proceedings of the IEEE 7th
International Conference on Intelligent Data
Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS'2013),
Berlin, Germany, September 12-14, 2013,
pp. 676-680.

[11] S. K. Palaniappan and P. B. Nagaraja, Efficient
data transfer through zero copy: Zero copy,
zero overhead, 2 Sep 2008,
http://www.ibm.com/developerworks/library/j-
zerocopy/

[12] M. Jain, R. S. Prasad and C. Dovrolis, The TCP
bandwidth-delay product revisited: network
buffering, cross traffic, and socket buffer auto-
sizing, http://hdl.handle.net/1853/5920.

[13] Greg Travis, Getting started with new I/O
(NIO) skill level: introductory,

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto / International Journal of Computing, 12(4) 2013, 316-323

 323

http://www.ibm.com/developerworks/java/tutor
ials/j-nio/j-nio-pdf.pdf.

[14] C. Jin et al., FAST TCP: from theory to
experiments, IEEE Network, Vol. 19, Issue 1,
2005, pp. 4-11.

[15] http://datatransfer.codeplex.com
[16] S. Thulasidasan, W. Feng, M. K. Gardner.

Optimizing GridFTP through dynamic right-
sizing, Proceedings of IEEE International
Symposium on High Performance Distributed
Computing, 2003, pp. 14-23.

[17] J. Semke, J. Mahdavi, M. Mathis, Automatic
TCP buffer tuning, Computer Communication
Review, Vol. 28, 1998, pp. 315-322.

[18] R. S. Prasad, M. Jain, C. Dovrolis, Socket
buffer auto-sizing for high-performance data
transfers, Journal of Grid Computing, Vol. 1,
Issue 4, 2003, pp. 361-376.

[19] Beej's Guide to Network Programming,
Jorgensen Publishing, October 20, 2011.

[20] http://www.linuxhowtos.org/C_C++/socket.ht
m (last accessed 16 Dec., 2013).

[21] https://developer.apple.com/technologies/tools/
(last accessed 31 Dec., 2013).

Tevaganthan Veluppillai is a
Master's student at the University of
Idaho. He is developing of
client/server system for tablet-class
client machines.

Brandon Ortiz is a PhD student at the University of
Idaho. His interests are in the development of
wireless communication protocols for autonomous
vehicles.

Robert E. Hiromoto, received his
Ph.D. degree in Physics from
University of Texas at Dallas. He is
professor of computer science at
the University of Idaho. His areas
of research include information-
based design of computational
algorithms, and information pro-
cessing applied to decryption tech-

niques and secure wireless communication
protocols.

