
Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 340

HARDWARE MODELS FOR AUTOMATED PARTITIONING
AND MAPPING IN MULTI-CORE SYSTEMS USING

MATHEMATICAL ALGORITHMS

Lukas Krawczyk, Erik Kamsties

Dortmund University of Applied Sciences and Arts
Emil-Figge-Str. 42, 44227 Dortmund, Germany

E-mail: lukas.krawczyk@fh-dortmund.de; erik.kamsties@fh-dortmund.de

Abstract: Multi-core CPUs offer several major benefits in embedded systems. For instance, they usually provide higher
energy efficiency and more computing power compared to single-core CPUs. However, these benefits do not come for
free: A program has to be divided into tasks, which can be executed in parallel on different cores. Partitioning of
software and mapping on cores are nontrivial activities that require detailed knowledge about the underlying hardware
platform, e.g., the number of cores, their speed, available memories, etc. Such information is typically stored in
handbooks. If this information would be available in a machine readable model, we call it hardware model, the
partitioning and mapping activities can be automated. In this paper, we propose a hardware model and illustrate it using
an example of a Freescale multi-core CPU. We then discuss a small case study situated in the automotive domain,
which illustrates the use of the hardware model in partitioning, mapping, and code generation. Copyright © Research
Institute for Intelligent Computer Systems, 2013. All rights reserved.

Keywords: Multi-core; hardware model; embedded systems software development; target mapping; model-driven
development; Autosar.

1. INTRODUCTION1

The demands on mobile and embedded systems
are ever increasing. Mobile phones offer strong
multi-media capabilities and, for instance, embedded
systems in cars implement image recognition to
analyze radar images of traffic in an adaptive cruise
control. Mobile and embedded systems benefit in
several ways from multi-core CPUs. These CPUs
provide more computing power at the same clock
speed resulting from several cores working in
parallel. They provide better energy efficiency
because they run on a lower clock speed compared
to a single-core with the same computing power and
cores may be switched off if their power is not
needed. Furthermore, multi-core CPUs allow for
high-assurance systems by running two cores
redundantly in a so called lockstep mode.

A program which utilizes the benefits of a multi-
core CPU has to be divided into a set of
communicating tasks, which can be executed in
parallel without blocking each other because of
synchronization on shared resources. In order to find

1 The research leading to these results has received funding from the
Federal Ministry of Education and Research (BMBF) as part of the
AMALTHEA project.

an optimal partitioning and mapping, hardware-
related information must be taken into account. A
trivial example is the number of cores, more
advanced information includes the type and speed of
shared memories.

Such information about a CPU is typically stored
in large processor handbooks. If hardware
information would be available in a machine
readable model, we call it hardware model, the
partitioning and mapping activities can be
further automated.

In this paper, we propose a hardware model
which is rich enough to describe systems of
heterogeneous multi-core CPUs as well as peripheral
hardware. The use of the hardware model in
partitioning and mapping is shown in a case study.
Additional application for code generation is
outlined. Furthermore, we provide an example of a
hardware model for a Freescale MPC5668G multi-
core SoC popular in the automotive domain.

This paper is organized as follows: Section 2
discusses the related work. Section 3 outlines the
hardware model and the example model is shown in
section 4. The main part of this paper is a case study
on how hardware models support partitioning,
mapping, and code generation, followed by a simple

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 341

Yakindu DAMOS2 based example illustrating the
respective steps of the case study for an automated
partitioning and mapping of automotive software in
section 6. A conclusion and directions for future
work close this paper.

2. RELATED WORK

The idea of utilizing models to support particular
steps of development has been pursued for years.
For instance, the probably best known application of
hardware models is hardware synthesis, which
allows transforming a given formal description of
hardware into an implementation. This topic is being
performed and researched since decades and lead to
the introduction of several hardware modeling
languages, such as SystemC, VHDL, SystemVerilog
etc. [1] and tooling which utilized these languages.
Hardware models usually describe the structure and
behavior of hardware at a high abstraction level e.g.
in terms of register-transfers (VHDL). The true
hardware models used by the chip manufacturer for
hardware synthesis are considered as intellectual
property (IP) and thus usually not publicly available.

Hardware models with an even higher abstraction
level have been described in EAST-ADL [2] and
AUTOSAR [3]. They are used within the
development of automotive embedded systems and
support preliminary allocation decisions and the
configuration of micro controllers. Compared to
these types, we need a hardware model which is
located in between: Common hardware description
languages like SystemC are still far too detailed to
support our cases, and important implementation
details, like the cycles per second, are yet unknown.
On the other hand, AUTOSAR and EAST-ADL are
not specialized enough to provide the required
amount of information.

An algorithm for the automatic partitioning and
mapping of embedded software for a homogenous
multiprocessor system has been described, among
others, by Cordes et al [4]. It is based on integer
linear programming and utilizes a model of the
hardware platform with information of its
communication and task-creation overheads. Our
hardware model targets to support algorithms for
heterogeneous multi-core system partitioning and
mapping, hence much more hardware related
information is required. This includes, but is not
limited to, the specification of unique characteristics
of the cores, e.g. a FPU, as well as additional
constraints which will restrict mapping decisions.

Our previous publication [5] is dealing with the
partitioning and mapping for heterogeneous multi-
core systems using a hardware model. It outlines a

2 http://blog.yakindu.org/category/damos-2/

pragmatic approach for partitioning and mapping of
data flow graphs with a simple algorithm. In this
paper, we seek to determine the optimal allocation of
tasks to cores in due consideration of allocation
constraints. As such, we need a more versatile
approach, e.g. integer linear programming, which
has to be supported by the hardware model.

3. HARDWARE MODEL

The purpose of our hardware model is the
support of embedded systems development in
general, i.e. regardless of the embedded systems
field of application (automotive, mobile, …).
Common steps within this procedure are usually
partitioning and mapping of embedded software as
well as code generation. One of our goals is to
provide compatibility with AUTOSAR, which is the
current standard in the automotive domain.

The meta-model of our hardware model is shown
in Fig. 1. Classes shown in the upper left corner
represent the three main hierarchies of elements that
may be modeled: Components, Ports and Pins. This
structure is oriented at AUTOSARs ECU Resource
Description and allows a direct mapping between
both models elements. Classes in the upper right
corner represent the data-types additional attributes
of the elements may take (e.g. Boolean, Integer,
Long, ...). Classes in the lower left corner represent
the extensions that have been made to enhance the
amount of information compared to AUTOSARs
ECU Resource Description and as such allowing us
to utilize the model beyond the automotive scope.

We introduced a hierarchy for descriptions up to
system level, allowing describing a system of ECUs,
each consisting of an unbound number of System-
on-Chips (SoCs) which may contain multiple cores.
Each element may operate on a different frequency
which is described by a Prescaler and its referenced
Quartz. The Memory class is used to describe any
type of memories on different hierarchies, e.g. a
cache as well as RAMs or ROMs. The Network class
is used to span a network which is accessed through
ComplexPorts. This allows deriving a memory map
out of the hardware model which supports the
detection of concurrent access to any type
of component.

4. HARDWARE MODEL EXAMPLE

One of the domains which favors the usage of
heterogeneous multi-core CPUs is the automotive
domain, which is the reason why our example
focuses on this branch. Yet the hardware model
itself is not limited to this domain.

Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 342

The simplified hardware model based on the
heterogeneous Freescale MPC5668G multi-core
SoC is illustrated in Fig. 2. In this figure, blocks in
the upper row represent hardware components with
master access on the network while the blocks in the
lower row indicate slaves. Networks on the SoC
which are referenced by Ports (white rectangles) and
peripheral elements are represented by blocks in the
mid row.

Fig. 2 – Simplified illustration of the MPC5668G SoC
hardware model.

The Freescale MPC5668G SoC contains two

heterogeneous cores. The main core is the e200z6,
which operates at 116 MHz, has 32KB L1 cache and

supports floating-point computations. An additional
e200z0 core, operating on half the e200z6
frequency, is available as I/O processor. The
memory consists of 2MB flash and 592kb RAM
which is split up into one 512kb and one 80kb
module to allow concurrent access by the masters.
The network, which is provided by the AMBA
Crossbar Switch, allows up to 6 concurrent
connections from masters to slaves with up to 64 bit
width. Further interfaces, like I²C and SPI, can be
accessed through an AIPS Bridge.

5. USAGE OF A HARDWARE MODEL IN

PARTITIONING AND MAPPING

The case study within this paper targets at the
hardware model support of the steps which are
required to partition and map software to multiple
cores and generate target specific ready to compile
code. To achieve this, we follow Fosters PCAM
methodology for designing parallel algorithms [6].
His methodology specifies the steps partitioning,
communication analysis, agglomeration, and
mapping. Code generation follows Herrington [7].

5.1. PARTITIONING

The first step is the decomposition of software
models, which involves to determine the task
granularity and which computations should be part
of a coherent set. According to Foster, this step is

Fig. 1 – EMF based meta-model describing the hardware model.

Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 343

intended to reveal parallel execution opportunities of
a problem by partitioning it into fined-grained
decompositions, providing the greatest flexibility for
parallel algorithms. However, it should be avoided
to replicate data or computations, e.g. both should
form disjoint sets.

This step requires information about peripheral
elements with their base addresses and address
ranges (e.g. a memory map). This allows
determining which addresses belong to one specific
periphery and which tasks can be merged (as they
address the same piece of hardware) or split (as they
access different/independent entities of hardware).
Based on this information, a partitioning and
mapping algorithm is able to analyze software
models in consideration of a specific target platform
and to decompose tasks in a target
optimized manner.

5.2. COMMUNICATION ANALYSIS

The second step is the communication analysis.
Once a model has been partitioned into tasks, data
dependencies between the respective tasks will have
evolved. For instance, a former coherent process
might now be split up into multiple processes, with
each of them depending on the results of the
respective other process.

In communication analysis, such dependencies
are identified and the inter-task communication as
well as its cost is analyzed. This step has two phases:
The first phase involves the definition of a channel
structure. Each channel links two tasks and allows
the communication between tasks that require data
and the respective possessors of these data. In the
second phase, the messages which are being
communicated on these channels are derived
and defined.

To support this step, we need information about
data type implementations. As it is well known, the
size of data types usually depends on the target
operating system and compiler. For instance, data
types like long, double and int may have several
valid implementations which differ in their size and,
as such, affect the communication overhead.
Depending on the concrete implementation, the
number of transferred bytes by an int type variable
may vary between 2 and 8 bytes.

5.3. AGGLOMERATION

After an initial set of tasks has been specified and
communication dependencies between these tasks
identified, it is required to agglomerate the tasks into
greater task sets. In the agglomeration stage previous
decisions are revisited and the tasks further
optimized towards a parallel platform. This may be
achieved by simply merging decomposed tasks into

one or more greater tasks, for instance, if the tasks
have a too fine granularity for a specific underlying
hardware platform with a high task creation
overhead. Another aspect in the agglomeration step
is the replication of computations and data.

To support this step, information about the
number of cores, the communication channels and
available memories as well as processor cache are
required. An agglomeration algorithm will consider
cache sizes that will have a significant impact on the
decision if data replication should be applied or not.
Furthermore, the available capacity of the
communication channels of a specific target
platform steers the granularity of the agglomerated
tasks, e.g. slow channels favor fewer tasks while a
high-speed on-chip network could handle even many
tasks of fine granularity.

5.4. MAPPING

The mapping step consists of the allocation of
software model parts to elements of a hardware
platform. The purpose of this step is to specify
which task should run on which processor of the
target platform, providing the target platform is a
multi-core system without automatic task
scheduling. The goal of the mapping algorithm is to
minimize the execution time by:

- Increasing concurrency, i.e. distributing tasks
on different processors.

- Increasing locality, i.e. arrange tasks which
communicate frequently on the same
processor.

Our hardware model contributes towards this
with specific information about cores and their
parameters, such as frequency, their target
application etc. In addition, a generic possibility to
define constraints is provided, as these take a vast
variety of options, such as the maximum number of
processes, required instruction sets or safety-
constraints.

The communication between execution units is
the second aspect which has to be taken into
account. Naturally coherent computations may only
be distributed between interconnected executional
units. Additionally, the communication paths
between these units may contain several constraints,
prohibiting several constellations. It is essential to
know these as well as the capacity of the routes. To
achieve this, our hardware model provides basic
information about the complete network structure of
the target system, regardless of the abstraction level
its implemented (e.g. network of embedded systems,
one specific embedded system or merely a SoC. /
micro-controller). The information contains details
about any type of map-able network on an abstract
level (e.g. the networks speed, address space,

Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 344

scheduling policy etc,) as well as what participants
are connected to it. In addition, a generic structure
for further constraints is allowing an optimized
mapping, e.g. to ensure reliability by
safety constraints.

5.5. CODE GENERATION

The final step is code generation for a specific
target. Having the tasks and their mapping specified,
all required information for a code generator is
available and code generation may be performed.
Our scope is to develop ready to compile code for a
specific hardware, also known as platform
dependent code generation.

Two approaches for code generation are
available. The first approach is code generation for
abstract interfaces. Usually an API for the access to
the underlying hardware platform, e.g. a Hardware
Abstraction Layer (HAL), is introduced and code
utilizing this API generated. However, this approach
has several downsides. On the one hand, the
complexity of the API to be implemented has to be
estimated. An API with little functionality may be
realized very fast but will lack in efficiency and/or
flexibility. On the other hand, an implementation
with a wide scope of functions will be time
consuming and only be worth if the platform is used
in multiple projects. A tradeoff between these
granularities has to be predicted, which is not
always possible.

Parameterization of the code generation is the
second approach. Here, rules and/or templates are
used to customize the code generator for a specific
target platform. Templates may be further refined
with macros which are replaced by additional
hardware related information or code. As it may be
considered that the code was transformed correctly,
it is unlikely that further maintenance operations by
users are necessary. This allows mixing application
specific code and target platform specific code,
permitting the compiler to perform common
optimization techniques. Usually a typical compiler
includes a mixture of both approaches, i.e. has
several parameterized parts and accesses manually
written platform dependent code through a
specified interface.

Regardless of the actual approach, the amount of
information to support this process is the same.
While attributes of certain elements (e.g. ports and
pins, registers and memories, data path addresses
etc.) provide structural information which is
replaced by the code generator, code templates
and/or snippets allow to complete more challenging
tasks, like the initialization of specific controller or
even implement the hardware dependent layers of a
messaging protocol with its according functions.

6. CASE STUDY

This section briefly describes the experimental
environment for an integer linear programming
(ILP) based approach for partitioning and mapping
software for an embedded system utilizing the
hardware model. A more detailed description of the
resp. steps within the tool flow is given by the
following subsections. The software is represented
by the Yakindu Damos data flow model in Fig. 3
which describes a simple cruise control unit.

Fig. 3 – Example Data Flow Model

The structure of the steps which are performed

with the tool chain in our experimental environment,
which has been developed and implemented within
the itea2 project AMALTHEA, is shown in Fig. 4.

Its first tool is the hardware aware partitioning
tool, which will perform the steps partitioning (a)
and communication analysis (b) with regard to a
chosen hardware platform and pass the resulting
model to a so called graph partitioning tool. This
tool will divide the graph into smaller sub-graphs,
which technically equals the agglomeration (c) of
smaller executable units into tasks (i.e. each sub
graph represents one task). The next step is the
mapping (d) which is performed by an ILP based
mapping tool. In the final step, two code generators
produce the target platform code (e).

6.1. PARTITIONING

Yakindu DAMOS is capable of extracting a so
called Execution Graph (i.e. a cycle free graph of the
Data Flow Model) which serves as input for our
approach. This model has already a very fine
granularity, therefore we are able to skip any further
decomposition of the model and focus on splitting
and merging blocks which are using shared
hardware components.

In this example, the blocks DesiredValue and

ActualValue are reading data from the I²C and

SPI interfaces. As shown in the Freescale
MPC5668G SoCs hardware model (Fig. 2), these

interfaces are located behind the AIPS Bridge,
therefore it is wise to merge them in order to reduce
overheads which might occur by task creations or

Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 345

context switches and prevent mutual exclusion (Fig.
4(a)).

Partitioning (a)

Comm. Analysis (b)

e200z6

e200z0

Agglomeration (c)

Task1

Task3

...

master.c slave.c

Task1

Task2

DesiredVal
ActualVal

Sum

Task3

...

Gain Sum2

Discrete-
Integrator

Task2

Mapping (d)

os.oil

Code Generation (e)

Fig. 4 – Partitioning and mapping approach.

6.2. COMMUNICATION ANALYSIS

The communication cost of the model can be
determined by the number of data transfers between
the blocks and their respective data type size. As
usually several operating systems are available for a
specific hardware, the information about the
concrete implementation is stored in tables that are
attached to the hardware model. This allows to
calculate the communication cost and enhance the
edges of the execution graph with these values (Fig.
4(b)), providing the required information for the
following steps.

6.3. AGGLOMERATION

The agglomeration is performed by a graph
partitioning algorithm based on vector clocks (see
[8]). This algorithm is implemented in a graph
partitioning tool which merges the Blocks from the

DFG model into larger groups of tasks. The
hardware model supplies information about (i) the
maximum number of simultaneously executable
tasks (i.e. cores, threads per core, …) as well as (ii)
the task creation overhead. This allows steering the
granularity of the resulting tasks resp. the maximum
number of tasks to create. The graph from the
previous step describes the relation between the
blocks as well as their coherence, which has impact
on the sorting order of the Blocks as well as decision
which Blocks will be distributed into the which task
(Fig. 4(c)).

6.4. MAPPING

The mapping (Fig. 4(d)) in this algorithm is
performed by a pragmatic ILP (Integer Linear
Programming) approach based on [9], which
focusses on minimizing the maximum execution
time of concurrently operating cores. The mapping
tool utilizes the open source oj!Algorithms3 project
which we use to solve the ILP equations.

The first step in this mapping algorithm is to
determine the required execution time ETi,j of each
task i for the resp. core j. This is can easily be
determined by (1) and (2).

,i j i jET CT CC , (1)

j j j jCC TC PS Q , (2)

where CTi is the number of cycles which are
required to process the task and CCj the number of
cycles the core can process per second. The variable
TCj describes the number of ticks that are required to
process one cycle, PSj the prescaler for frequency
scaling and Qj the frequency of the quartz attached
to the core.

The second step is the formulation of mapping
constraints e.g. to limit the number of cores a task
will be allocated to one core (3)

,1
1 []

n

i jj
A i m

 , (3)

with Ai,j describing the allocation of task i to core

j, m number of tasks and n number of cores.
This equation however is only valid, if all cores

are suitable to process this task. As some of the tasks
may contain special requirements on a core, e.g. the
presence of a Floating Point Unit (FPU) or a specific
instruction set, it would be also required to narrow

3 See http://ojalgo.org/

Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 346

down the solution space to valid cores. In our
example for instance, only the main core e200z6
contains a FPU, hence we would need to limit the
scope of valid cores to this core only.

A general formulation to narrow down the
solution space for multiple valid cores is given in (4)

, 0i jA j V , (4)

with V being a group of valid cores.

A very simple approach to minimize the
execution time can now be achieved solving the
equations (5) and (6) as mentioned in [9]

minz , (5)

, ,1
[]

m

i j i ji
A ET z j n

 , (6)

with z being the maximum execution time of all

concurrently executed cores.

6.5. CODE GENERATION

The code generation for this algorithm is
performed by two code generators (Fig. 4(e)).

The first code generator is provided by Yakindu
DAMOS and innately capable of producing
hardware independent code for the resp. blocks of
the data flow graph. To support target ready code
generation, hardware related information is provided
by the hardware model. This consists of libraries for
I²C and SPI access as well as the addresses of
hardware components, i.e. the memories
and peripherals.

However, the code for the blocks on its own is
not sufficient to provide target ready code. For
instance, it is still necessary to merge the blocks
code into tasks and allocate those to cores etc. This
is done by the operating system (OS) code generator.
Among others, its purpose is to create the task code
which will call blocks and distribute the code to the
respective cores C files. Furthermore, it will create
the input files for the targets compiler which will
specify the mapping from tasks to cores as well as to
provide the libraries for advanced controllers, e.g.
optional CAN, LIN or Ethernet controllers.

7. CONCLUSION AND OUTLOOK

This paper introduces a hardware model which is
capable of supporting automated partitioning and
mapping in heterogeneous multi-core systems. The
case study has shown how our hardware model is
able to support the involved steps and which amount

of hardware related information is required for an
automated execution. Furthermore, it has outlined a
feasible implementation of these aspects as part of a
seamless tool chain.

Future work will target the development and
implementation of advanced partitioning and
mapping algorithms with different goals (i.e. energy
efficiency), multiple constraints (e.g. bus access) as
well as their support with hardware models.

8. REFERENCES

[1] P. Marwedel. Embedded System Design:
Embedded systems foundations of cyber-
physical systems, Springer Science+ Business
Media, 2011.

[2] A. P. Consortium et al., EAST-ADL domain
model specification, 2010. [Online]. Available:
http://www.east-adl.info

[3] AUTOSAR, Automotive open system
architecture, 2007. [Online]. Available:
http://www.autosar.org

[4] D. Cordes, P. Marwedel, and A. Mallik.
Automatic parallelization of embedded
software using hierarchical task graphs and
integer linear programming, in
IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2010, pp. 267–276.

[5] L. Krawczyk and E. Kamsties. Hardware
models for automated partitioning and mapping
in multi-core systems, in Proceedings of the 7th
IEEE International Conference on Intelligent
Data Acquisition and Advanced Computing
Systems: Technology and Applications
(IDAACS 2013), Berlin, Germany, 12-14
September 2013, pp. 721-725.

[6] I. T. Foster. Designing and Building Parallel
Programs. Reading, Mass.: Addison-Wesley,
1995.

[7] J. Herrington. Code Generation in Action,
Manning Publications Co., USA, 2003.

[8] R. Hoettger, B. Igel and E. Kamsties. A novel
partitioning and tracing approach for
distributed systems based on vector clocks, in
Proceedings of the 7th IEEE International
Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and
Applications (IDAACS 2013), Berlin,
Germany, 12-14 September 2013, pp. 670-675.

[9] M. Drozdowski. Scheduling for Parallel
Processing, Springer London, 2010.

Lukas Krawczyk, Erik Kamsties / International Journal of Computing, 12(4) 2013, 340-347

 347

Lukas Krawczyk received his
B.Sc. degree in informatics from
Dortmund University of Applied
Sciences and Arts in 2009 and
is currently working as research
assistant within the AMALTHEA
project. His scientific interests
are: Embedded Systems
Development, hardware level
programing.

Erik Kamsties is a professor for
software engineering and em-
bedded systems at the Dort-
mund University of Applied
Science and Arts. He received a
Diploma (M.S.) from the Tech-
nical University of Berlin and a
doctoral degree (Ph.D.) in com-
puter science from the Universi-
ty of Kaiserslautern, (Germany).

His current research focuses on requirements
engineering, model-driven development, and
embedded multi-core systems.

