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Abstract: Electroencephalography (EEG) and Magnetoencephalography (MEG) provide insight into neuronal 
processes in the brain in a real-time scale. This renders these modalities particularly interesting for online analysis 
methods, e.g. to visualize brain activity in real-time. Brain activity can be modeled in terms of a source distribution 
found by solving the bioelectromagnetic inverse problem, e.g. using linear source reconstruction methods. Such 
methods are particularly suitable to be used on modern highly parallel processing systems, such as widely available 
graphic processing units (GPUs). We present a system that, according to its modular scheme, can be configured in a 
very flexible way using graphical building blocks. Different preprocessing algorithms together with a linear source 
reconstruction method can be used for online analysis. The algorithms use both CPU and GPU resources. We tested our 
system in a simulation and in a realistic experiment. Copyright © Research Institute for Intelligent Computer Systems, 
2014. All rights reserved. 
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1. INTRODUCTION 

The functioning of the brain is linked to 
biochemical and biophysical processes between 
interacting neurons and neuronal populations. This 
interaction is strongly related to current flows. 
Synchronous activity in a neuronal population, i.e. a 
large number of neurons concurrently respond to an 
excitatory input, produces currents which are strong 
enough to be detected. This can be done either on 
the head surface by measuring potentials between 
attached electrodes using Electroencephalography 
(EEG), or by measuring the magnetic flux density 
using Magnetoencephalography (MEG). In contrast 
to imaging techniques, e.g. functional magnetic 
resonance imaging (fMRI) or positron emission 
tomography (PET), which are essentially related to 
metabolism, EEG/MEG provides insight into brain 
processes in a real-time scale. To exploit  
the advantage of high time resolution, techniques  
for online processing of such signals are  
particularly interesting. 

An important discipline in EEG/MEG analysis is 
source localization, i.e. inferring the current density 
which might have produced the measured data. This, 
however, is an ill-posed problem. Different 
approaches to solve this so called 
bioelectromagnetic inverse problem have been 

presented in literature, see [1] for an overview of 
this topic. A very common method is distributed 
source reconstruction, where a spatial current 
distribution is estimated from the data. In this 
approach, a large number of equivalent current 
dipoles (ECD), each of which has a fixed orientation 
and location, densely cover the source space. 
Usually, this is the cortical sheet which is 
approximated using a triangulated surface. Given a 
model of the volume conductor, which describes the 
conductivity profile inside the head, a so called 
leadfield vector can be calculated for each source, 
which relates its activity to a spatial pattern at sensor 
level. Based on this linear forward model, this 
approach provides the possibility for linear inverse 
solutions such as the popular minimum norm 
solution [2, 3], which actually minimizes the L2-
norm of weighted current strengths. 

Linear problems such as the mentioned 
EEG/MEG source localization technique can easily 
be parallelized, which renders them particularly 
suitable for online processing using modern high 
performance computing hardware such as general 
purpose graphic processing units (GPGPUs). Today, 
such hardware can easily be utilized using NVIDIA's 
CUDA technology which, among others, provides a 
comfortable way to use graphic processing units for 
computationally demanding problems. However, the 
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practical realization of a system capable for the 
online reconstruction of brain activity from 
electromagnetic signals requires much more than 
only the parallelization of some algorithm.  First, a 
system concept including an efficient data structure 
used to share information between processing steps 
is strictly necessary. Second, the processing pipeline 
needs to be flexible enough to be adopted and 
parameterized during measurement. Third, 
additional algorithms need to be provided to 
sufficiently prepare EEG/MEG data in real-time for 
source reconstruction. Fourth, other information, e.g. 
at least a general forward model, needs to be 
provided in advance to do source reconstruction. 

To exploit the fact that EEG/MEG data provides 
insight into fast neuronal processes, we developed a 
software framework which principally allows online 
processing and visualization of brain activity in a 
real-time scale. According to our best knowledge, 
this framework is conceptually different from other 
solutions which provide online processing 
capabilities, e.g.[4, 5, 6, 7], because we aim to 
provide source localization using a high density 
source space (more than 250.000 ECDs) from high 
channel EEG/MEG data. Without loss of generality, 
we focused on the analysis of evoked brain 
responses in the time domain, i.e. activity which 
occurs due to sensory, auditory or visual stimulation. 
Based on simulations we have shown previously  
that our solution holds real-time requirement  
which are important for online processing and 
visualization [8]. 

Here, we introduce important extensions of the 
software which are essentially needed for practical 
applications. This includes a physical link to a real 
measurement device and a solution for the 
preparation of a forward model on demand. These 
extension allowed us to explore our framework 
under practical considerations using a simple 
experimental paradigm. 

The paper is structured as follows. First, we will 
discuss some issues related to the online analysis of 
EEG/MEG signals. Second, the general concept of 
our framework will be introduced.  Moreover, we 
will give a short explanation on each of the 
implemented modules, i.e. algorithms.  Third, we 
describe how the system’s online capabilities were 
tested. Fourth, we will demonstrate a practical 
application of the software in a realistic 
environment. Finally, we will discuss and conclude 
our results. 
 

2. CHALLENGES FOR ONLINE SOURCE 
RECONSTRUCTION 

In contrast to offline processing, online 
localization of brain activity depends on two 

important prerequisites. First, EEG/MEG data needs 
to be preprocessed in real-time. Second, a forward 
model is already required during the measurement 
whose calculation, however, partially depends on 
information only available after measurement setup 
(see below). 

Signal preprocessing requires computational 
performance which competes with source 
localization resources. However, the quality of 
source localization highly depends on well 
preprocessed data, in which noise and artifacts are 
widely reduced. Noise can be distinguished in 
technical noise of the measurement system and 
neuronal noise from other brain regions, e.g. task-
unrelated brain activity. To account for noise, filter 
techniques and signal averaging can be applied. The 
latter is only possible for phase related activity, such 
as evoked responses. Artifacts are either caused by 
strong electromagnetic activity emerging from 
external brain regions, e.g. eye blinks, heartbeat and 
even nearby passing trains, or result from defective 
sensors. Artifacts need to be detected and removed 
from the data. Sometimes, a correction rather than a 
rejection is possible. Due to the different types and 
characteristics of artifacts this is particularly 
challenging.  Some artifacts can easily be detected 
and removed online, e.g. using a threshold based 
approach. For others, a universal and reliable 
automated detection is computationally intensive 
and, therefore, difficult to be realized in online 
systems [9, 10]. 

The calculation of a forward model to be used in 
an online framework is difficult in several aspects. 
First, the calculation requires a head model and the 
exact sensor positions. The former includes a 
description of the source space and of the volume 
conductor. The use of an individual head model 
would be optimal, but involves the recording of 
other modalities, e.g. MRI data, before the 
EEG/MEG measurement. Often, this is not 
available. The use of a standard head model is a 
feasible alternative. Second, the calculation of the 
forward model, i.e. in our case the leadfield matrix1, 
is computationally expensive and takes a long time, 
in particular when a source space with high spatial 
resolution is used. But since it depends on the sensor 
positions, it cannot be prepared in advance. The 
solution to this problem is different for EEG  
and MEG. 

For EEG, the sensor positions depend on the 
placement of electrodes on the head. Therefore, it is 

                                                
1The Leadfield matrix describes the forward solution, i.e. 
the impact from each source on each sensor. It is 
computed by physical modeling of the electromagnetic 
fields in the head tissue. 
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Fig. 1 - Abstract structure of a module in 
OpenWalnut. Gray shaded blocks represent functions 

that are provided by each module. 

possible to place a dense grid of virtual sensors on 
the head surface and use them to calculate the 
leadfield matrix. When the true sensor positions are 
known, their leadfield can be derived from the 
virtual sensors, e.g. based on interpolation[11]. 

For MEG, the sensor positionsdepend on the 
relative position of the head in the measurement 
device. Thus, the forward model can be calculated 
under the assumption that the head is centered in the 
device. This can actually be achieved by applying 
head movement detection and correction algorithms 
to the recorded MEG data. 

 
3. SOFTWARE CONCEPT  

AND ARCHITECTURE 

The basic idea of our concept is to split the signal 
processing chain into separate functional units, i.e. 
modules that can be put together. Each module is 
realized in terms of a prototype that becomes part of 
a processing chain. The module parameters can be 
changed during measurement. This principle allows 
to set up and reuse modules easily, even several 
times during the same measurement. The module's 
intended functionality is reflected by a certain 
algorithm. Based on NVIDIA’s CUDA technology, 
each module can separately use the graphic 
processing unit for high performance tasks. This 
allows an easy extension by new and efficient 
algorithms, which can either be executed on the 
CPU or on the GPU. Moreover, each module holds a 
separate visualization instance. 

The possibility for a flexible organization of the 
signal processing chain requires a hybrid data 
structure consisting of static and dynamic areas 
which is shared among all modules at run time. This 
structure provides access to all data that might be 
used by any module. For example, the static part of 
this structure contains measurement parameters, e.g. 
EEG sensor positions, but also the shape of the 
source space. The dynamic part actually contains 
raw or transformed (filtered) sensor data, localized 
source time courses, or might be used differently. 

The modular concept allows signal branching, i.e. to 
set up signal chains using a tree structure. Such  
a configuration could be used to test  
different parameterizations of a certain algorithm  
or to realize different source localizations  
algorithms concurrently. 

The implementation of our concept is based on 
OpenWalnut, a software for multi-modal brain 
visualization [12, 13]. This platform also follows a 
strict modular concept. The modules have so called 
input and output connectors to interact with other 
modules. These connectors can have any data type, 
only outputs and inputs that are directly connected 
need to share the same data structure. Whenever a 
module updates data at its output connector, 
connected modules are scheduled to allow seamless 
processing. Besides this useful architecture, 
OpenWalnut provides an intuitive mechanism to 
select modules and put them together by means of 
graphical building blocks. 

According to our concept and the architecture of 
OpenWalnut, the structure of a module is 
summarized inFig. 1. It is worth to note that each 
module is responsible for the visualization of its 
results. On the one hand, this provides a very high 
flexibility and allows a relatively easy independent 
implementation because of non-existing 
dependencies or information from other modules. 
On the other hand, already a few sophisticated active 
visualizations instances can become computationally 
intractable and, besides that, drastically increase the 
complexity of the user front-end. Therefore 
visualization can be deactivated manually. 

A brief overview of our data structure is depicted 
in Fig. 2. The main class for all modules is 
EMMeasurement, which allows to maintain any 
information which could be needed for EEG/MEG 

Fig. 2–Shared command and data structure. Modules 
can be connected based on the EMMeasurement class, 

which contains any sub-data that may be needed. 
EMData holds dynamic data, all other parts contain 

static information, e.g. individual surfaces. 
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online analysis. Within this class, other structures 
are nested, e.g. EMData, Measurement Information 
and Subject. While the EMData holds dynamic data, 
i.e. it contains raw and processed data, the other 
parts contain static data. Given this structure, the 
modules interact on the basis of commands.  The 
INIT command forces a module to initialize all its 
required data structures. The RESET command 
forces a module to reset all data structures. EMData 
is computed by the module’s algorithm on receiving 
the COMPUTE command.  Note, the modular 
concept implies that data is processed in a block-
wise manner. 

 
4. MODULES AND ALGORITHMS 

Based on this concept the open source toolbox 
NA-Online2 was developed. It extends OpenWalnut 
by the following modules: MNE Realtime Client, 
FIFF Reader/Writer, EMM Simulator, Alignment, 
Leadfield Interpolation, FIR Filter, Epoch 
Separation, Epoch Averaging and Source 
Reconstruction. Their functions and purposes are 
introduced briefly: 

(1) MNE Realtime Client: based on MNE 
software [14], it provides a physical link  
to a NeuromagVectorView System (Elekta,  
Helsinki, Finland). 

(2) FIFF Reader/Writer:Reading and writing 
files using the FIFF format. It can read a previously 
recorded measurement or save a running 
measurement to disk. 

(3) EMM Simulator:this module allows streaming 
of a recorded measurement for simulation purposes. 

(4) (Coordinate) Alignment: co-registration 
between EEG/MEG device coordinate system and 
head model coordinate system, which is needed to 
calculate a leadfield matrix (see below) and for 
visualization.We implemented a semi-automatic 
coordinate transformation. The procedure depends 
on the manual labeling of three fiducial points 
(location of nasion, left ear, and right ear) on the 
skin surface in the head model before the 
measurement, and the digitization of these points 
with the EEG/MEG system. The subsequent 
transformation is based on iterative closet point 
algorithm [15].The coordinate transformation is 
done only once, after digitizing fiducials and 
electrode positions.  

(5) Leadfield Interpolation:  its purpose is to 
provide the EEG leadfield matrix for the digitized 
sensor positions before online processing. Before a 
measurement, a generic leadfield matrix is computed 
using the MNE toolbox [14] by placing virtual EEG 
electrodes on the skin surface in the head model. 

                                                
2https://bitbucket.org/labp/na-online_ow-toolbox 

The virtual electrode positions are derived by 
randomly selectingapproximately 1.000 nodes from 
the triangulated head surface (usually consisting of 
more than 5.000 nodes). Note that the resulting 
leadfield matrix is already about 1 GB in size. 
During measurement setup, the true sensor positions 
are digitized. For each real electrode, we identify the 
four nearest virtual electrodes in the close vicinity. 
Then, linear interpolation scheme is applied. We 
preferred this naive linear approach over others, e.g. 
spline based interpolation [11], because it allows a 
fast and efficient computation. The leadfield 
information of each virtual sensor is weighted 
according the reciprocal value of its euclidean 
distance to the true electrode. Then, the leadfield at 
the true sensor position can be estimated by adding 
up the weighted leadfield vectors. 

(6) FIR Filter: we implemented time domain 
filtering and provide lowpass, highpass, bandpass 
and bandstop characteristic. Filtering can either be 
done on CPU or on the GPU. 

(7) Epoch Separation: Activity in the brain is 
evoked by presenting stimulus material. It is then 
particularly interesting to analyze this activity when 
a stimulus is applied. This module splits the 
continuous data stream according to stimulus 
presentation information into single epochs, i.e. data 
frames that range from a time point before to a point 
after stimulus onset. Only extracted epochs are 
passed to further modules. 

(8) Epoch Averaging: Responses to an identical 
stimulus are expected to be phase related and very 
similar. This allows to apply averaging to increase 
the signal to noise ratio. This module implements 
total average and moving average. The former uses 
all epochs detected during a measurement to 
calculate an averaged evoked response. The latter 
only uses a certain number of the last epochs that 
were detected. 

(9) Source Reconstruction: this module provides 
the concurrent linear reconstruction of distributed 
sources of all sampling points in an epoch, e.g. the 
average evoked response. We implemented the 
weighted minimum norm method [2, 3]. This 
algorithm requires information about the signal to 
noise ratio, which still has to be estimated manually. 
Source reconstruction is implemented for CPU and 
GPU. The module provides a view of the 
reconstructed source time courses and a 3D shape of 
the source space. By selecting a time point in the 
signal view, the corresponding spatial distribution 
pattern is mapped to the 3D surface. We ensured that 
the full resolution cortical surface can be used for 
the reconstruction (usually more than 200.000 
sources). It is worth to note that the amount of both 
incoming and processed data, which has to be 
transferred between CPU and GPU, has a 
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tremendous impact on the total performance. If, for 
example, an epoch consists of 150 samples in float 
precision and 370 channels, the data size transferred 
from CPU to GPU is approximately 210 kByte. If 
activity is reconstructed to 250.000 sources, 143 
MByte need to be transferred in the back direction. 

 
5. SIMULATIONS AND EXPERIMENTAL 

TESTING 

We tested our software in two steps: (1) we 
simulated an online measurement based on a 
previously recorded data set. (2) We performed real 
online analysis using a simple experimental 
paradigm. The purpose of these tests is to explore 
the real-time capabilities of the system and to 
demonstrate the signal flow. Due to the fact that a 
head movement correction is not yet implemented, 
we restricted the reconstruction to EEG data. 

In the simulation, a FIFF file with 60 EEG 
channels (500 Hz sampling rate)and 1 trigger 
channel was streamed over a wireless LAN 
connection (54 Mbps) into our software system.  The 
trigger channel encodes the occurrence of stimuli, 
here a total of 114 beep tones.The setup of the signal 
processing chain was according to Fig. 3with the 
parameterization as follows: 

1) MNE Realtime Client: block size 1s 
2) Alignment: 10 ICP iterations 
3) Leadfield Interpolation: 1702 virtual sensors 
4) FIR Filter: bandpass (1Hz-20Hz), order 200 
5) Epoch Separation: [-100ms, +200ms] 
6) Epoch Averaging: total average 
7) Source Reconstruction: minimum norm method 

A triangulated surface approximating the cortical 
sheet with one ECD at each node (cortical 
orientation constraint) represents the source space 
(244.662 sources).   The volume conductor is based 
on a 3-layer BEM model (brain, skull, and skin 
surface). All surfaces were segmented from the 
subject's individual MRI data set using 
FreeSurfer[16].The positions of the virtual sensors 
were extracted from the head surface (skin) using 
theEEG Sensor Generator3 tool. Finally, the generic 

                                                
3https://bitbucket.org/labp/na-online_eeg_sensor_tools 

leadfield matrix was computed using the  
MNE toolbox. 

The general signal flow is as follows: The MNE 
Realtime Client module receives data from the 
streaming server, maps this into our data model 
(Command, EMMeasurement, EMData) and sets 
additional static data, e.g. BEM layers, source model 
and sensor positions. The readily prepared data 
block is transferred to the Alignment module, where 
the co-registration between EEG/MEG device and 
head model coordinate system is performed. Then, 
the leadfield columns at the true sensor positions are 
estimated in the Leadfield Interpolation module as 
described above.   This results in a 60x244.662 sized 
leadfield matrix, which is stored in the data 
structure. The data blocks are passed to FIR Filter, 
where a filter routine is involved. In the 
subsequentEpoch Separation module, data segments 
with a length of 300ms are extracted according to 
stimulus information. Detected epochs are then 
passed to the Epoch Averaging module. Finally, the 
averaged evoked response is calculated and 
transferred to the Source Reconstruction module. 
Here, a source distribution is estimated at each 
sample point of the averaged signal (300ms), which 
basically involves a huge matrix-matrix 

Fig. 4 - Source Reconstruction module in 
OpenWalnut. Top: Averaged epochs of all 60 EEG 
channels (overlapped). Bottom: 3D view, estimated 
source strength at selected time point mapped on 

individual cortical surface. 

Fig. 3 – Signal processing chain used for experimental testing. The online pipeline of our software devides  in  data 
acquisition (green), which establishes a connection to an EEG/MEG device via TCP/IP, forward model 

preparation (orange), EEG/MEG data preprocessing (yellow) and analysis modules (blue). 
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multiplication. The calculation of the inverse 
operator (solution matrix based on minimum norm 
assumption) is done before the actual reconstruction. 
This is possible because it is largely independent of 
the data, only the signal to noise ratio has to be taken 
into account. The average time for this calculation 
was 2.2 seconds in our simulation. This means that 
the operator needs to be ready before a data block is 
subject of source localization. The source 
reconstruction module is invoked whenever a new 
epoch is detected. 

Fig. 4 shows the result as it appears in 
OpenWalnut after all trials were averaged. The view 
can be rotated and different threshold values can be 
used to modify the color mapping. The mapping of a 
source distribution corresponds to a selectable time 
point in the signal view. The result evolves with 
each new epoch until the end of the measurement. 

During tests we measured the processing time for 
each block in each module. This block processing 
time includes both the computational time for the 
algorithm and the time for visualization. The data 
transfer time between modules is not included in this 
measurement for two reasons: First, this time is 
difficult to estimate because the data transfer is not 
handled by modules but by the OpenWalnut kernel. 
Second, data transfer is based on the mapping and 
remapping of pointers and the time consumption 
should be negligible. It should be noted that the 
block size is automatically reduced at Epoch 
Separation, which is due to the selected epoch  
time interval. 

The described signal chain was tested under two 
conditions: CPU-only processing and GPU-
supported processing. While the former is only 
based on CPU execution, the latter involves GPU 
algorithms if modules support this. The tests were 
done on a high-performance workstation: Intel Xeon 
E5620 CPU with 2.4 GHz, 12 GB DDR3 RAM and 
a NVIDIA Tesla C2070 GPU. 

The estimated processing times are summarized 
in Table 1. The times differ somewhat from earlier 
results [8],because, first, we now used double 
precision and, second, only EEG data is processed in 
the preprocessing stages. MEG data is excluded 
because source reconstruction was not yet possible 
at all. As can be seen, the processing time for FIR 
Filter and Source Reconstruction decreases if the 
GPU is used.FIR Filter scales better with increasing 
channel size, e.g. when processing EEG and MEG. 
The total processing time for the CPU-only case 
exceeds the block size by approximately70 percent, 
while the total time for GPU-supported processing is 
in the range of less than 25 percent of the block size. 
A total processing time less than the block size is 
necessary in order to process incoming data in time, 
i.e. to provide online capabilities. Given the setup 

presented here, this can only be achieved using  
the GPU. 

In addition to the above test, we practically 
applied the software for the online localization of 
evoked brain activity in the primary motor cortex, 
which can be triggered based on electrical 
stimulation. The signal processing chain was similar 
to the simulation setup. As before, head model 
information of the individual subject was available 
(source space with 277.370 sources). We now used 
the real physical link to a NeuromagVectorView 
MEG system (306 MEG channels, 64 EEG 
channels). The online analysis was performed on a 
notebook: Intel Core i7-3630QM with 2.4 GHz, 8 
GB DDR3 RAM and a NVIDIA GeForce GTX 
660M. The reconstructed brain activity could clearly 
be localized to areas in the primary motor cortex. 
This test showed, that our implementation even 
performs well under real world conditions and on 
common end-user hardware. 

 
6. CONCLUSION 

We have shown that the current system can 
principally be used to reconstruct and visualize 
evoked brain activity based on distributed source 
localization during EEG/MEG measurements. 
Particular the usage of GPUs provides promising 
resources that can be utilized to improve the system 
further and to implement additional functions and 
algorithms. 

Still, some issues need to be tackled before the 
presented system can finally be used in a real online 
processing framework in a seamless manner. 

For example, we currently use a fixed value for 
the estimated signal-to-noise-ratio (SNR). This value 
is actually required to calculate the inverse operator, 
where it scales between the portion of data to be 
explained and modelling assumptions. Thus, this 
values should automatically be estimated. Moreover, 
the inverse operator should be updated whenever the 
SNR changes. In case of evoked responses, this 
actually happens with every new epoch. As shown in 
the simulation section, the calculation of the inverse 
operator exceeds the block size. One possible 

Table 1. Averaged processing time for one block, 
all times in milliseconds. 

 CPU-only GPU-
supported 

Alignment 77.20 
Leadfield Interp. 3188.0 

FIR Filter 13.56 8.34 
Epoch Separation 2.16 2.16 
Epoch Averaging 0.87 0.87 

Source Rec. 1,742.71 225.84 
Total sum 1,759.30 237.21 
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solution to this issue is to calculate a set of inverse 
operators in advance, where each covers a certain 
SNR range. Thus, recalculation would be replaced 
by the selection of a selection mechanism. We also 
currently do not account for the actual noise 
covariance. While solutions to this issue is 
straightforward, it was not required to verify the 
online processing capabilities of our software. 

Another issue is the computation of the forward 
model, i.e. the leadfield matrix. We believe that our 
solution for EEG, which is based on leadfield 
interpolation, is a good compromise between 
computational time and accuracy. Comparisons 
between a leadfield matrix for a given sensor setup 
estimated from leadfield interpolation and using a 
normal forward calculation revealed only slight 
differences between both results. Due to the head 
movement in MEG devices, which can be expected 
in most scenarios, such an interpolation approach, 
e.g. as proposed in[11], is not possible for MEG 
data. Instead, the head position in the MEG device 
has to be taken into account. The method presented 
in [17] effectively allows to correct the data for the 
head position based on a simplified forward model 
and the minimum norm approach. The corrected 
data can then be used for the localization with a 
more complex forward model, e.g. again using the 
individual folded surface. It seems worthwhile to 
employ this approach for online processing. Before 
this can be done, the detection of the true head 
position in the MEG device is necessary which, 
thanks to dedicated tracking coils, is possible in an 
effective way [18]. These methods are currently  
being realized. 

Other important issues are the access to further 
EEG/MEG systems, which we plan to achieve by 
integrating the FieldTrip Buffer4, progress in the 
field of efficient artefact detection procedures, and 
further optimization of existing modules. For 
example, it is easily possible to drastically reduce 
the computational time for source reconstruction just 
be limiting the number of reconstructed time points, 
e.g. to only some automatically selected extrema of 
the signal or to a few user defined samples. 

While we proofed our concept for online 
processing based on time domain analysis, future 
development will certainly include processing in the 
frequency domain. Possible fields of applications 
can be found in neurosciences, e.g. neurofeedback 
with the interesting possibility to measure 
information in the source domain. 

It is worth to note that, like OpenWalnut, our 
toolbox is licensed under LGPL and therefore can 
easily be modified, improved or extended. 

 

                                                
4http://fieldtrip.fcdonders.nl/development/realtime 
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